1
|
Kaushik A, Kest H, Sood M, Steussy BW, Thieman C, Gupta S. Biofilm Producing Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Humans: Clinical Implications and Management. Pathogens 2024; 13:76. [PMID: 38251383 PMCID: PMC10819455 DOI: 10.3390/pathogens13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Since its initial description in the 1960s, methicillin-resistant Staphylococcus aureus (MRSA) has developed multiple mechanisms for antimicrobial resistance and evading the immune system, including biofilm production. MRSA is now a widespread pathogen, causing a spectrum of infections ranging from superficial skin issues to severe conditions like osteoarticular infections and endocarditis, leading to high morbidity and mortality. Biofilm production is a key aspect of MRSA's ability to invade, spread, and resist antimicrobial treatments. Environmental factors, such as suboptimal antibiotics, pH, temperature, and tissue oxygen levels, enhance biofilm formation. Biofilms are intricate bacterial structures with dense organisms embedded in polysaccharides, promoting their resilience. The process involves stages of attachment, expansion, maturation, and eventually disassembly or dispersion. MRSA's biofilm formation has a complex molecular foundation, involving genes like icaADBC, fnbA, fnbB, clfA, clfB, atl, agr, sarA, sarZ, sigB, sarX, psm, icaR, and srtA. Recognizing pivotal genes for biofilm formation has led to potential therapeutic strategies targeting elemental and enzymatic properties to combat MRSA biofilms. This review provides a practical approach for healthcare practitioners, addressing biofilm pathogenesis, disease spectrum, and management guidelines, including advances in treatment. Effective management involves appropriate antimicrobial therapy, surgical interventions, foreign body removal, and robust infection control practices to curtail spread within healthcare environments.
Collapse
Affiliation(s)
- Ashlesha Kaushik
- Division of Pediatric Infectious Diseases, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Master of Science, Healthcare Quality and Safety, Harvard Medical School, Boston, MA 02115, USA
| | - Helen Kest
- Division of Pediatric Infectious Diseases, St. Joseph’s Children’s Hospital, 703 Main Street, Paterson, NJ 07503, USA;
| | - Mangla Sood
- Department of Pediatrics, Indira Gandhi Medical College, Shimla 171006, India;
| | - Bryan W. Steussy
- Division of Microbiology, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA;
| | - Corey Thieman
- Division of Pharmacology, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA;
| | - Sandeep Gupta
- Division of Pulmonary and Critical Care, St. Luke’s Regional Medical Center, Unity Point Health, 2720 Stone Park Blvd, Sioux City, IA 51104, USA;
| |
Collapse
|
2
|
Henry M, Lundy FH. Oral Antibiotic Management of Acute Osteomyelitis of the Hand: Outcomes and Cost Comparison to Standard Intravenous Regimen. Hand (N Y) 2021; 16:535-541. [PMID: 34260293 PMCID: PMC8283108 DOI: 10.1177/1558944719873145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Acute, direct inoculation osteomyelitis of the hand has traditionally been managed by intravenous antibiotics. With proven high levels of bone and joint penetration, specific oral antimicrobials may deliver clinical efficacy but at substantially lower cost. Methods: Sixty-nine adult patients with surgically proven acute, direct inoculation osteomyelitis of the hand were evaluated for clinical response on a 6-week postdebridement regimen of susceptibility-matched oral antibiotics. Inclusion required gross purulence and bone loss demonstrated at the initial debridement and radiographic evidence of bone loss. Excluded were 2 patients with extreme medical comorbidities. There were 53 men and 16 women with a mean age of 46 years. Mean follow-up was 16 weeks (±10). The cost model for the outpatient oral antibiotic treatment was intentionally maximized using Walgreen's undiscounted cash price. The cost model for the traditional intravenous treatment regimen was intentionally minimized using the fully discounted Medicare fee schedule. Results: All patients achieved resolution of osteomyelitis by clinical and radiographic criteria. In addition, 7 patients underwent successful subsequent osteosynthesis procedures at the previously affected site without reactivation. The mean postdebridement direct cost of care per patient in the study cohort was $482.85, the cost of the antibiotic alone. The postdebridement direct cost of care per patient on a regimen of vancomycin 1.5 g every 12 hours via peripherally inserted central catheter line was $21 646.90. Conclusions: Acute, direct inoculation osteomyelitis of the hand can be successfully managed on oral antibiotic agents with substantial direct and indirect cost savings.
Collapse
Affiliation(s)
- Mark Henry
- Hand & Wrist Center of Houston, TX, USA,Mark Henry, Hand & Wrist Center of Houston, 1200 Binz Street, 13th Floor, Houston, TX 77006, USA.
| | | |
Collapse
|
3
|
Morrisette T, Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Rybak MJ. The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA-Salvaging the Gold Standards with Combination Therapy. Antibiotics (Basel) 2020; 9:E762. [PMID: 33143290 PMCID: PMC7692208 DOI: 10.3390/antibiotics9110762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is associated with substantial morbidity and mortality. Vancomycin (VAN) has been used as the gold standard treatment for invasive MRSA infections for decades but, unfortunately, the reliance of VAN as the primary treatment option against these infections has led to a reduction in VAN susceptibility in MRSA isolates. Although daptomycin (DAP) is another common treatment option against invasive MRSA infections, it has been shown that the development of VAN resistance can lead to DAP nonsusceptibility. VAN or DAP backbone regimens in combination with other antibiotics has been advocated as an alternative approach to improve patient outcomes in VAN/DAP-susceptible infections, enhance outcomes in infections caused by isolates with reduced VAN/DAP susceptibility, and/or prevent the emergence of VAN/DAP resistance or further resistance. A peer-reviewed literature search was conducted using Medline, Google Scholar and PubMed databases. The primary purpose of this review is to describe the mechanisms and epidemiology of MRSA isolates with a reduction in VAN and/or DAP susceptibility, evaluate in vitro and in vivo literature describing combination therapy (CT) against MRSA isolates with reduced VAN and/or DAP susceptibility and describe studies involving the clinical outcomes of patients treated with CT against invasive MRSA infections.
Collapse
Affiliation(s)
- Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Jacinda C. Abdul-Mutakabbir
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pharmacy, Detroit Receiving Hospital, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Updates on Combination Therapy for Methicillin-Resistant Staphylococcus aureus Bacteremia. Curr Infect Dis Rep 2020. [DOI: 10.1007/s11908-020-00737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S, Darban-Sarokhalil D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep 2020; 10:12689. [PMID: 32728110 PMCID: PMC7391782 DOI: 10.1038/s41598-020-69058-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Vancomycin-resistant Staphylococcus aureus (VRSA), Vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA (hVISA) are subject to vancomycin treatment failure. The aim of the present study was to determine their precise prevalence and investigate prevalence variability depending on different years and locations. Several international databases including Medline (PubMed), Embase and Web of Sciences were searched (data from 1997 to 2019) to identify studies that addressed the prevalence of VRSA, VISA and hVISA among human clinical isolates around the world. Subgroup analyses and meta-regression were conducted to indicate potential source of variation. Publication bias was assessed using Egger's test. Statistical analyses were conducted using STATA software (version 14.0). Data analysis showed that VRSA, VISA and hVISA isolates were reported in 23, 50 and 82 studies, with an overall prevalence of 1.5% among 5855 S. aureus isolates, 1.7% among 22,277 strains and 4.6% among 47,721 strains, respectively. The overall prevalence of VRSA, VISA, and hVISA before 2010 was 1.2%, 1.2%, and 4%, respectively, while their prevalence after this year has reached 2.4%, 4.3%, and 5.3%. The results of this study showed that the frequency of VRSA, VISA and hVISA after 2010 represent a 2.0, 3.6 and 1.3-fold increase over prior years. In a subgroup analysis of different strain origins, the highest frequency of VRSA (3.6%) and hVISA (5.2%) was encountered in the USA while VISA (2.1%) was more prevalent in Asia. Meta-regression analysis showed significant increasing of VISA prevalence in recent years (p value ≤ 0.05). Based on the results of case reports (which were not included in the calculations mentioned above), the numbers of VRSA, VISA and hVISA isolates were 12, 24 and 14, respectively, among different continents. Since the prevalence of VRSA, VISA and hVISA has been increasing in recent years (especially in the Asian and American continents), rigorous monitoring of vancomycin treatment, it's the therapeutic response and the definition of appropriate control guidelines depending on geographical regions is highly recommended and essential to prevent the further spread of vancomycin-resistant S. aureus.
Collapse
Affiliation(s)
- Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation and Partnerships, Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Multifunctional Pharmaceutical Effects of the Antibiotic Daptomycin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8609218. [PMID: 31263709 PMCID: PMC6556800 DOI: 10.1155/2019/8609218] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Daptomycin (DAP), a cyclic lipopeptide produced by Streptomyces roseosporus, is a novel antibiotic to clinically treat various Gram-positive pathogenic bacteria-induced infections. Although DAP has a strong broad-spectrum bactericidal effect, recently rare bacterial antibiotic resistance against DAP gradually arises. The review is to summarize the normal indications of DAP, its off-label usage against several clinical pathogen infections, the unique antibacterial mechanisms of DAP, and the combination of antibiotic therapies for highly DAP-resistant pathogens. More noticeably, rising evidences demonstrate that DAP has new potential activity of anticancer and immunomodulatory effects. So far the multifunctional pharmaceutical effects of DAP deserve to be further explored for future clinical applications.
Collapse
|
7
|
Lewis PO, Heil EL, Covert KL, Cluck DB. Treatment strategies for persistent methicillin-resistant Staphylococcus aureus bacteraemia. J Clin Pharm Ther 2018; 43:614-625. [PMID: 30003555 DOI: 10.1111/jcpt.12743] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia is a long-standing challenge to health care, often complicated by metastatic infections, treatment failure and mortality. When MRSA bacteraemia persists despite adequate initial treatment, current Infectious Diseases Society of America guidelines recommend evaluation and removal of possible sources of infection. In addition, a change in therapy may be considered. The objective of this review was to explore the therapeutic options for the treatment of persistent MRSA bacteraemia. METHODS A literature search of PubMed, MEDLINE and Google Scholar was performed using the following search terms: [methicillin-resistant Staphylococcus aureus OR MRSA] AND [bacteraemia OR bloodstream infection] AND [persistent OR persistence OR refractory OR treatment failure OR salvage] AND treatment. We evaluated relevant, adult, English-language, peer-reviewed studies published between 1985 and May 2018. In vitro and animal studies were considered as supportive of in vivo data. RESULTS AND DISCUSSION Randomized, controlled trials are lacking. However, case series and case reports support multiple treatment options including high-dose daptomycin in combination with an antistaphylococcal β-lactam, ceftaroline, trimethoprim-sulfamethoxazole (TMP-SMX) or fosfomycin; ceftaroline alone or in combination with vancomycin or TMP-SMX; linezolid alone or in combination with a carbapenem, or telavancin. WHAT IS NEW AND CONCLUSION Given the heterogeneity of the data, a preferred regimen has not emerged. Prescribers must take into consideration recent exposure, source control, and available synergy and clinical data. Further comparative trials are needed to establish a preferred regimen and the creation of a universal treatment algorithm.
Collapse
Affiliation(s)
- Paul O Lewis
- Department of Pharmacy, Johnson City Medical Center, Johnson City, Tennessee
| | - Emily L Heil
- Department of Pharmacy Practice and Science, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Kelly L Covert
- Department of Pharmacy Practice, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee
| | - David B Cluck
- Department of Pharmacy Practice, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
8
|
Gudiol C, Cuervo G, Shaw E, Pujol M, Carratalà J. Pharmacotherapeutic options for treating Staphylococcus aureus bacteremia. Expert Opin Pharmacother 2017; 18:1947-1963. [DOI: 10.1080/14656566.2017.1403585] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Carlota Gudiol
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL. L’Hospitalet de Llobregat, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- REIPI (Spanish Network for Research in Infectious Disease), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Cuervo
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL. L’Hospitalet de Llobregat, Barcelona, Spain
- REIPI (Spanish Network for Research in Infectious Disease), Instituto de Salud Carlos III, Madrid, Spain
| | - Evelyn Shaw
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL. L’Hospitalet de Llobregat, Barcelona, Spain
- REIPI (Spanish Network for Research in Infectious Disease), Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Pujol
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL. L’Hospitalet de Llobregat, Barcelona, Spain
- REIPI (Spanish Network for Research in Infectious Disease), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carratalà
- Infectious Diseases Department, Bellvitge University Hospital, IDIBELL. L’Hospitalet de Llobregat, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- REIPI (Spanish Network for Research in Infectious Disease), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Smith JR, Yim J, Raut A, Rybak MJ. Oritavancin Combinations with β-Lactams against Multidrug-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococci. Antimicrob Agents Chemother 2016; 60:2352-8. [PMID: 26833159 PMCID: PMC4808215 DOI: 10.1128/aac.03006-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
Oritavancin possesses activity against vancomycin-resistant enterococci (VRE) and methicillin-resistantStaphylococcus aureus(MRSA).In vitrodata suggest synergy between beta-lactams (BLs) and vancomycin or daptomycin, agents similar to oritavancin. We evaluated the activities of BLs combined with oritavancin against MRSA and VRE. Oritavancin MICs were determined for 30 strains, 5 each of MRSA, daptomycin-nonsusceptible (DNS) MRSA, vancomycin-intermediate MRSA (VISA), heteroresistant VISA (hVISA), vancomycin-resistantEnterococcus faecalis, and vancomycin-resistantEnterococcus faecium Oritavancin MICs were determined in the presence of subinhibitory concentrations of BLs. Oritavancin combined with ceftaroline, cefazolin, or nafcillin was evaluated for lethal synergy against MRSA, and oritavancin combined with ceftaroline, ampicillin, or ertapenem was evaluated for lethal synergy against VRE in 24-h time-kill assays. Oritavancin at 0.5× the MIC was combined with BLs at 0.5× the MIC or the biological free peak concentration, whichever one was lower. Synergy was defined as a ≥2-log10-CFU/ml difference between the killing achieved with the combination and that achieved with the most active single agent at 24 h. Oritavancin MICs were ≤0.125 μg/ml for all MRSA isolates except three VISA isolates with MICs of 0.25 μg/ml. Oritavancin MICs for VRE ranged from 0.03 to 0.125 μg/ml. Oritavancin in combination with ceftaroline was synergistic against all MRSA phenotypes and statistically superior to all other combinations against DNS MRSA, hVISA, and MRSA isolates (P< 0.02). Oritavancin in combination with cefazolin and oritavancin in combination with nafcillin were also synergistic against all MRSA strains. Synergy between oritavancin and all BLs was revealed against VRE strain 8019, while synergy between oritavancin and ampicillin or ertapenem but not ceftaroline was demonstrated against VRE strain R7164. The data support the potential use of oritavancin in combination with BLs, especially oritavancin in combination with ceftaroline, for the treatment of infections caused by MRSA. The data from the present study are not as strong for oritavancin in combination with BLs for VRE. Further study of both MRSA and VRE in more complex models is warranted.
Collapse
Affiliation(s)
- Jordan R Smith
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Juwon Yim
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Animesh Raut
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA Wayne State University, School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
10
|
Roux S, Valour F, Karsenty J, Gagnieu MC, Perpoint T, Lustig S, Ader F, Martha B, Laurent F, Chidiac C, Ferry T. Daptomycin > 6 mg/kg/day as salvage therapy in patients with complex bone and joint infection: cohort study in a regional reference center. BMC Infect Dis 2016; 16:83. [PMID: 26888539 PMCID: PMC4756419 DOI: 10.1186/s12879-016-1420-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Background Even if daptomycin does not have approval for the treatment of bone and joint infections (BJI), the Infectious Diseases Society of America guidelines propose this antibiotic as alternative therapy for prosthetic joint infection. The recommended dose is 6 mg/kg/d, whereas recent data support the use of higher doses in these patients. Methods We performed a cohort study including consecutive patients that have received daptomycin >6 mg/kg/d for complex BJI between 2011 and 2013 in a French regional reference center. Factors associated with treatment failure were determined on univariate Cox analysis and Kaplan-Meier curves. Results Forty-three patients (age, 61 ± 17 years) received a mean dose of 8 ± 0.9 mg/kg/d daptomycin, for a mean 81 ± 59 days (range, 6–303 days). Most had chronic (n = 37, 86 %) implant-associated (n = 37, 86 %) BJI caused by coagulase-negative staphylococci (n = 32, 74 %). A severe adverse event (SAE) occurred in 6 patients (14 %), including 2 cases of eosinophilic pneumonia, concomitant with daptomycin Cmin >24 mg/L. Outcome was favorable in 30 (77 %) of the 39 clinically assessable patients. Predictors for treatment failure were age, non-optimal surgery and daptomycin withdrawal for SAE. Conclusions Prolonged high-dose daptomycin therapy was effective in patients with complex BJI. However, optimal surgery remains the cornerstone of medico-surgical strategy; and a higher incidence of eosinophilic pneumonia than expected was recorded.
Collapse
Affiliation(s)
- Sandrine Roux
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Florent Valour
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France.,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Judith Karsenty
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France.,Department of Infectious Diseases, William Morey Hospital, Chalon-sur-Saône, France
| | | | - Thomas Perpoint
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France
| | - Sébastien Lustig
- Claude Bernard Lyon 1 University, Lyon, France.,Department of Orthopaedic Surgery, Hospices Civils de Lyon, Lyon, France
| | - Florence Ader
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France.,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Benoit Martha
- Department of Infectious Diseases, William Morey Hospital, Chalon-sur-Saône, France
| | - Frédéric Laurent
- Claude Bernard Lyon 1 University, Lyon, France.,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.,Laboratory of Bacteriology, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Christian Chidiac
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France.,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Tristan Ferry
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France. .,Claude Bernard Lyon 1 University, Lyon, France. .,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.
| | | |
Collapse
|
11
|
Souli M, Karaiskos I, Galani L, Maraki S, Perivolioti E, Argyropoulou A, Charissiadou A, Zachariadou L, Tsiplakou S, Papaioannou V, Tsorlini H, Katsifa H, Baka V, Pantazi P, Paschali A, Kyratsa A, Trikka-Graphakos E, Giannopoulou P, Vogiatzakis E, Moraitou H, Papadogeorgaki H, Avgerinou H, Panagea T, Pantazatou A, Petinaki E, Stamatopoulou G, Toutouza M, Karatzoglou I, Kontopoulou K, Orfanidou M, Karantani I, Fytas P, Tzanetou K, Platsouka E, Kazila P, Chli A, Statiri N, Giamarellou H. Nationwide surveillance of resistance rates ofStaphylococcus aureusclinical isolates from Greek hospitals, 2012–2013. Infect Dis (Lond) 2015; 48:287-292. [DOI: 10.3109/23744235.2015.1110858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Kullar R, Sakoulas G, Deresinski S, van Hal SJ. When sepsis persists: a review of MRSA bacteraemia salvage therapy. J Antimicrob Chemother 2015; 71:576-86. [PMID: 26565015 DOI: 10.1093/jac/dkv368] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MRSA bacteraemia (MRSAB), including infective endocarditis, carries a high mortality rate, with up to 50% of patients failing initial therapy with vancomycin and requiring salvage therapy. Persistent MRSAB can be difficult to successfully eliminate, especially when source control is not possible due to an irremovable focus or the bacteraemia still persists despite surgical intervention. Although vancomycin and daptomycin are the only two antibiotics approved by the US FDA for the treatment of patients with MRSAB as monotherapy, the employment of novel strategies is required to effectively treat patients with persistent MRSAB and these may frequently involve combination drug therapy. Treatment strategies that are reviewed in this manuscript include vancomycin combined with a β-lactam, daptomycin-based therapy, ceftaroline-based therapy, linezolid-based therapy, quinupristin/dalfopristin, telavancin, trimethoprim/sulfamethoxazole-based therapy and fosfomycin-based therapy. We recommend that combination antibiotic therapy be considered for use in MRSAB salvage treatment.
Collapse
Affiliation(s)
- Ravina Kullar
- Global Center for Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | - George Sakoulas
- Division of Paediatric Pharmacology & Drug Discovery, University of California San Diego School of Medicine, La Jolla, CA, USA Sharp Rees-Stealy Medical Group, San Diego, CA, USA
| | - Stan Deresinski
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastiaan J van Hal
- Department of Microbiology & Infectious Diseases, Royal Prince Alfred Hospital, Camperdown, Australia
| |
Collapse
|
13
|
Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28:603-61. [PMID: 26016486 PMCID: PMC4451395 DOI: 10.1128/cmr.00134-14] [Citation(s) in RCA: 2917] [Impact Index Per Article: 291.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen that causes a wide range of clinical infections. It is a leading cause of bacteremia and infective endocarditis as well as osteoarticular, skin and soft tissue, pleuropulmonary, and device-related infections. This review comprehensively covers the epidemiology, pathophysiology, clinical manifestations, and management of each of these clinical entities. The past 2 decades have witnessed two clear shifts in the epidemiology of S. aureus infections: first, a growing number of health care-associated infections, particularly seen in infective endocarditis and prosthetic device infections, and second, an epidemic of community-associated skin and soft tissue infections driven by strains with certain virulence factors and resistance to β-lactam antibiotics. In reviewing the literature to support management strategies for these clinical manifestations, we also highlight the paucity of high-quality evidence for many key clinical questions.
Collapse
Affiliation(s)
- Steven Y C Tong
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Joshua S Davis
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Emily Eichenberger
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas L Holland
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
14
|
Gomes DM, Ward KE, LaPlante KL. Clinical implications of vancomycin heteroresistant and intermediately susceptible Staphylococcus aureus. Pharmacotherapy 2015; 35:424-32. [PMID: 25884530 DOI: 10.1002/phar.1577] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Staphylococcus aureus (S. aureus) has proven to be a major pathogen with the emergence of methicillin-resistant S. aureus (MRSA) infections and recently with heteroresistant vancomycin-intermediate S. aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) infections. Although vancomycin is traditionally a first-line and relatively effective antibiotic, its continued use is under question because reports of heteroresistance in S. aureus isolates are increasing. Both hVISA and VISA infections are associated with complicated clinical courses and treatment failures. The prevalence, mechanism of resistance, clinical significance, and laboratory detection of hVISA and VISA infections are not conclusive, making it difficult to apply research findings to clinical situations. We provide an evidence-based review of S. aureus isolates expressing heterogenic and reduced susceptibility to vancomycin.
Collapse
Affiliation(s)
- Diane M Gomes
- Department of Pharmacy Practice, University of Rhode Island, Kingston, Rhode Island; Veterans Affairs Medical Center, Providence, Rhode Island
| | | | | |
Collapse
|
15
|
Impact of the combination of daptomycin and trimethoprim-sulfamethoxazole on clinical outcomes in methicillin-resistant Staphylococcus aureus infections. Antimicrob Agents Chemother 2015; 59:1969-76. [PMID: 25605354 DOI: 10.1128/aac.04141-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Complicated Staphylococcus aureus infections, including bacteremia, are often associated with treatment failures, prolonged hospital stays, and the emergence of resistance to primary and even secondary therapies. Daptomycin is commonly used as salvage therapy after vancomycin failure for the treatment of methicillin-resistant S. aureus (MRSA) infections. Unfortunately, the emergence of daptomycin resistance, especially in deep-seated infections, has been reported, prompting the need for alternative or combination therapy. Numerous antibiotic combinations with daptomycin have been investigated clinically and in vitro. Of interest, the combination of daptomycin and trimethoprim-sulfamethoxazole (TMP-SMX) has proved to be rapidly bactericidal in vitro to strains that are both susceptible and nonsusceptible to daptomycin. However, to date, there is limited clinical evidence supporting the use of this combination. This was a multicenter, retrospective case series of patients treated with the combination of daptomycin and TMP-SMX for at least 72 h. The objective of this study was to describe the safety and effectiveness of this regimen in clinical practice. The most commonly stated reason that TMP-SMX was added to daptomycin was persistent bacteremia and/or progressive signs and symptoms of infection. After the initiation of combination therapy, the median time to clearance of bacteremia was 2.5 days. Microbiological eradication was demonstrated in 24 out of 28 patients, and in vitro synergy was demonstrated in 17 of the 17 recovered isolates. Further research with this combination is necessary to describe the optimal role and its impact on patient outcomes.
Collapse
|
16
|
Dhand A, Sakoulas G. Daptomycin in combination with other antibiotics for the treatment of complicated methicillin-resistant Staphylococcus aureus bacteremia. Clin Ther 2014; 36:1303-16. [PMID: 25444563 DOI: 10.1016/j.clinthera.2014.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as one of the most important nosocomial pathogens. Resistance to antibiotic therapy has been known to emerge especially in clinically complex scenarios, resulting in challenges in determining optimal treatment of serious MRSA. Daptomycin, in combination with other antibiotics, has been successfully used in the treatment of these infections, with the aims of resulting in reducing the prevention of antimicrobial resistance and increased killing compared with daptomycin monotherapy. METHODS This article reviews all the published studies that used daptomycin combination therapy for the treatment of bacteremia and associated complicated infections caused by gram-positive organisms, including MRSA. We discuss the rationale of combination antibiotics and the mechanisms that enhance the activity of daptomycin, with special focus on the role of β-lactam antibiotics. FINDINGS There are limited clinical data on the use of daptomycin in combination with other antibiotics. Most of this use was as successful salvage therapy in the setting of failing primary, secondary, or tertiary therapy and/or relapsing infection. Synergy between β-lactams and daptomycin is associated with several characteristics, including increased daptomycin binding and β-lactam-mediated potentiation of innate immunity, but the precise molecular mechanism is unknown. IMPLICATIONS Use of daptomycin in combination with other antibiotics, especially β-lactams, offers a promising treatment option for complicated MRSA bacteremia in which emergence of resistance during treatment may be anticipated. Because it is currently not possible to differentiate complicated from uncomplicated bacteremia at the time of presentation, combination therapy may be considered as first-line therapy, with de-escalation to monotherapy in uncomplicated cases and cases with stable pharmacologic and surgical source control.
Collapse
Affiliation(s)
- Abhay Dhand
- Westchester Medical Center, New York Medical College, Valhalla, New York
| | - George Sakoulas
- University of California, San Diego School of Medicine, La Jolla, California.
| |
Collapse
|
17
|
Abstract
Infective endocarditis (IE) continues to present a large burden to the health-care system. Staphylococcus aureus, the leading pathogen associated with the disease, has always proven difficult to treat. Increasing numbers of S. aureus isolates are demonstrating reduced susceptibility to vancomycin, and therapeutic options are limited. Daptomycin is frequently employed when vancomycin therapy proves unsuccessful or when vancomycin minimum inhibitory concentration (MIC) values rise above 1 mg/L. Currently, daptomycin is FDA-approved at a dose of 6 mg/kg/day for the treatment of S. aureus bacteremia and associated right-sided endocarditis. However, numerous in vitro and clinical studies suggest that daptomycin doses up to 12 mg/kg/day may provide improved efficacy and resistance prevention. Additionally, high-dose daptomycin has demonstrated excellent safety. Together, these data suggest a role for high-dose daptomycin in staphylococcal IE patients who are severely ill, previously failed therapy with vancomycin, or possess a S. aureus isolate with an elevated vancomycin MIC.
Collapse
|
18
|
Werth BJ, Barber KE, Ireland CE, Rybak MJ. Evaluation of ceftaroline, vancomycin, daptomycin, or ceftaroline plus daptomycin against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother 2014; 58:3177-81. [PMID: 24663016 PMCID: PMC4068431 DOI: 10.1128/aac.00088-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/14/2014] [Indexed: 11/20/2022] Open
Abstract
Infective endocarditis (IE) caused by methicillin-resistant Staphylococcus aureus (MRSA) with reduced susceptibility to vancomycin and daptomycin has few adequate therapeutic options. Ceftaroline (CPT) is bactericidal against daptomycin (DAP)-nonsusceptible (DNS) and vancomycin-intermediate MRSA, but supporting data are limited for IE. This study evaluated the activities of ceftaroline, vancomycin, daptomycin, and the combination of ceftaroline plus daptomycin against DNS MRSA in a pharmacokinetic/pharmacodynamic (PK/PD) model of simulated endocardial vegetations (SEVs). Simulations of ceftaroline-fosamil (600 mg) every 8 h (q8h) (maximum concentration of drug in serum [Cmax], 21.3 mg/liter; half-life [t1/2], 2.66 h), daptomycin (10 mg/kg of body weight/day) (Cmax, 129.7 mg/liter; t1/2, 8 h), vancomycin (1 g) q8h (minimum concentration of drug in serum [Cmin], 20 mg/liter; t1/2, 5 h), and ceftaroline plus daptomycin were evaluated against 3 clinical DNS, vancomycin-intermediate MRSA in a two-compartment, in vitro, PK/PD SEV model over 96 h with a starting inoculum of ∼8 log10 CFU/g. Bactericidal activity was defined as a ≥ 3-log10 CFU/g reduction from the starting inoculum. Therapeutic enhancement of combinations was defined as ≥ 2-log10 CFU/g reduction over the most active agent alone. MIC values for daptomycin, vancomycin, and ceftaroline were 4 mg/liter, 4 to 8 mg/liter, and 0.5 to 1 mg/liter, respectively, for all strains. At simulated exposures, vancomycin was bacteriostatic, but daptomycin and ceftaroline were bactericidal. By 96 h, ceftaroline monotherapy offered significantly improved killing compared to other agents against one strain. The combination of DAP plus CPT demonstrated therapeutic enhancement, resulting in significantly improved killing versus either agent alone against 2/3 (67%) strains. CPT demonstrated bactericidal activity against DNS, vancomycin-intermediate MRSA at high bacterial densities. Ceftaroline plus daptomycin may offer more rapid and sustained activity against some MRSA in the setting of high-inoculum infections like IE and should also be considered.
Collapse
Affiliation(s)
- Brian J Werth
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Katie E Barber
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Cortney E Ireland
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
19
|
Edwards B, Andini R, Esposito S, Grossi P, Lew D, Mazzei T, Novelli A, Soriano A, Gould IM. Treatment options for methicillin-resistant Staphylococcus aureus (MRSA) infection: Where are we now? J Glob Antimicrob Resist 2014; 2:133-140. [PMID: 27873719 DOI: 10.1016/j.jgar.2014.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/05/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection continues to be a substantial global problem with significant associated morbidity and mortality. This review summarises the discussions that took place at the 4th MRSA Consensus Conference in relation to the current treatment options for serious MRSA infections and how to optimise whichever therapy is embarked upon. It highlights the many challenges faced by both the laboratory and clinicians in the diagnosis and treatment of MRSA infections.
Collapse
Affiliation(s)
- B Edwards
- Medical Microbiology Department, Royal Infirmary of Edinburgh, 51 Little France Crescent, Dalkeith Road, Edinburgh EH16 4SA, UK.
| | - R Andini
- Second University of Naples, UOC Transplant and Infectious Disease Medicine, AORN Monaldi, Naples, Italy
| | - S Esposito
- Department of Medicine, University of Salerno, Salerno, Italy
| | - P Grossi
- Department of Surgical and Morphological Studies, University of Unisubria, Varese, Italy
| | - D Lew
- Chief Infectious Diseases Division, Chief Department of Specialties of Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - T Mazzei
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Firenze, Firenze, Italy
| | - A Novelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Firenze, Firenze, Italy
| | - A Soriano
- Department of Infectious Diseases, IDIBAPS, Hospital Clinic of Barcelona, Spain
| | - I M Gould
- Medical Microbiology Department, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
20
|
Burke SL, Rose WE. New pharmacological treatments for methicillin-resistantStaphylococcus aureusinfections. Expert Opin Pharmacother 2014; 15:483-91. [DOI: 10.1517/14656566.2014.876991] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Sader HS, Flamm RK, Jones RN. Antimicrobial activity of daptomycin tested against Gram-positive pathogens collected in Europe, Latin America, and selected countries in the Asia-Pacific Region (2011). Diagn Microbiol Infect Dis 2013; 75:417-22. [PMID: 23514757 DOI: 10.1016/j.diagmicrobio.2013.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/11/2023]
Abstract
We report the results of the international daptomycin surveillance programs for Europe, Latin America, and selected Asia-Pacific nations. A total of 7948 consecutive Gram-positive organisms of clinical significance were collected in 2011 and susceptibility tested against daptomycin and various comparator agents by Clinical and Laboratory Standards Institute (Clinical and Laboratory Standards Institute. M07-A9. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard: ninth edition Wayne, PA: CLSI. 2012.; Cubicin Package Insert 2012. Cubist Pharmaceuticals, Inc, Lexington, MA. Available at http://www.cubicin.com/pdf/PrescribingInformation.pdf. Accessed January 1, 2012.) broth microdilution methods. The test medium was adjusted to contain physiological levels of calcium (50 mg/L) when testing daptomycin. Daptomycin exhibited potent activity against methicillin-susceptible and -resistant Staphylococcus aureus overall and for each region (MIC(50/90), 0.25-0.5/0.5 μg/mL), with susceptibility rates at 100.0% in Latin America, Australia/New Zealand, and India, and at 99.9% in Europe. The daptomycin MIC(50/90) for coagulase-negative staphylococci was also at 0.25-0.5/0.5 μg/mL, and only 1 isolate was considered nonsusceptible with a MIC value at 2 μg/mL. Daptomycin was also highly active against Enterococcus faecalis (MIC(50/90), 1/1-2 μg/mL) and E. faecium (MIC(50/90), 2/2 μg/mL for both vancomycin-susceptible and -resistant isolates). All enterococcal isolates were susceptible to daptomycin (MIC, ≤4 μg/mL) and tigecycline. Susceptibility to linezolid for E. faecalis was at 100.0%, while for E. faecium regional susceptibility rates were at 100.0% except in Europe (99.0%). Viridans group streptococci (MIC(50/90), 0.25/1 μg/mL) and β-haemolytic streptococci (MIC(50/90), ≤0.06/0.25 μg/mL) continue to be very susceptible to daptomycin. In summary, the results of this investigation document the high potency and wide spectrum of daptomycin when tested against a large resistance-surveillance collection of Gram-positive pathogens and indicate that daptomycin nonsusceptibility remains rare among indicated species after many years of clinical use worldwide.
Collapse
|
22
|
Daptomycin: the role of high-dose and combination therapy for Gram-positive infections. Int J Antimicrob Agents 2013; 42:202-10. [PMID: 23845504 DOI: 10.1016/j.ijantimicag.2013.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 01/26/2023]
Abstract
Daptomycin, a cyclic lipopeptide with rapid bactericidal activity, is approved at doses of 4 mg/kg and 6 mg/kg for the treatment of its respective indications [i.e. complicated skin and soft-tissue infections (cSSTIs) caused by Gram-positive bacteria; and Staphylococcus aureus bacteraemia associated with right-sided infective endocarditis (RIE) or cSSTIs, or RIE due to S. aureus]. Higher doses and combination therapy strategies have been investigated in some difficult-to-treat infections in order to: enhance clinical success rates; treat pathogens that may be non-susceptible to standard doses; and minimise the risk of resistance development in patients, particularly those who may need an extended treatment duration, who may have had suboptimal surgical management and/or who may have not responded to prior antibiotic therapy. Although clinical trial data of daptomycin doses >6 mg/kg and of daptomycin in combination with other antibiotics are limited, clinical experience reported to date suggests that daptomycin is effective and well tolerated at higher doses and in combination. In this review, the rationale both for high-dose and combination therapy strategies with daptomycin is explored and the available evidence is presented by indication and evaluated from a clinical perspective. Safety and efficacy are discussed from prospective and retrospective clinical studies, together with case reports for a variety of infections, including bacteraemia, endocarditis, cSSTIs and osteomyelitis, and expert recommendations are provided in summary of the evidence. The use of high-dose daptomycin, alone or in combination, may be useful for difficult-to-treat Gram-positive infections and further evaluation of these strategies is warranted.
Collapse
|
23
|
Bal A, Garau J, Gould I, Liao C, Mazzei T, Nimmo G, Soriano A, Stefani S, Tenover F. Vancomycin in the treatment of meticillin-resistant Staphylococcus aureus (MRSA) infection: End of an era? J Glob Antimicrob Resist 2013; 1:23-30. [DOI: 10.1016/j.jgar.2013.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022] Open
|