1
|
Yang C, Jiang S, Wei C, Li C, Wang J, Li X, Zeng L, Hu K, Yang Y, Zhang J, Zhang X. Mechanism for transmission and pathogenesis of carbapenem-resistant Enterobacterales harboring the carbapenemase IMP and clinical countermeasures. Microbiol Spectr 2024; 12:e0231823. [PMID: 38197660 PMCID: PMC10846200 DOI: 10.1128/spectrum.02318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are some of the most important pathogens causing infections, which can be challenging to treat. We identified four blaIMP-carrying CRE isolates and collected clinical data. The transferability and stability of the plasmid were verified by conjugation, successive passaging, and plasmid elimination assays. The IncC blaIMP-4-carrying pIMP4-ECL42 plasmid was successfully transferred into the recipient strain, and the high expression of traD may have facilitated the conjugation transfer of the plasmid. Interestingly, the plasmid showed strong stability in clinical isolates. Whole-genome sequencing was performed on all isolates. We assessed the sequence similarity of blaIMP -harboring plasmid from our institution and compared it to plasmids for which sequence data are publicly available. We found that four blaIMP-carrying CRE belonged to four different sequence types. The checkerboard technique and time-kill assays were used to investigate the best antimicrobial therapies for blaIMP-carrying CRE. The time-kill assay showed that the imipenem of 1× minimum inhibitory concentration (MIC) alone had the bactericidal or bacteriostatic effect against IMP-producing strains at 4-12 h in vitro. Moreover, the combination of tigecycline (0.5/1/2 × MIC) and imipenem (0.5/1 × MIC) showed a bactericidal effect against the blaIMP-26-carrying CRECL60 strain.IMPORTANCECarbapenem-resistant Enterobacterales (CRE) are an urgent public health threat, and infections caused by these microorganisms are often associated with high mortality and limited treatment options. This study aimed to determine the clinical features, molecular characteristics, and plasmid transmissible mechanisms of blaIMP carriage as well as to provide a potential treatment option. Here, we demonstrated that conjugated transfer of the IncC blaIMP-4-carrying plasmid promotes plasmid stability, so inhibition of conjugated transfer and enhanced plasmid loss may be potential ways to suppress the persistence of this plasmid. The imipenem alone or tigecycline-imipenem combination showed a good bactericidal effect against IMP-producing strains. In particular, our study revealed that imipenem alone or tigecycline-imipenem combination may be a potential therapeutic option for patients who are infected with IMP-producing strains. Our study supports further trials of appropriate antibiotics to determine optimal treatment and emphasizes the importance of continued monitoring of IMP-producing strains in the future.
Collapse
Affiliation(s)
- Chengru Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Shan Jiang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, Jiangyou People’s Hospital, Jiangyou, China
| | - Chunli Wei
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chunjiang Li
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Kewang Hu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Ambrose SJ, Hall RM. Effect of the S008-sgaCD operon on IncC plasmid stability in the presence of SGI1-K or absence of an SGI1 variant. Plasmid 2023; 127:102698. [PMID: 37516393 DOI: 10.1016/j.plasmid.2023.102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
An IncC or IncA plasmid is needed to enable transfer of SGI1 type integrative mobilisable elements but an IncC plasmid does not stably co-exist with SGI1. However, the plasmid is stably maintained with SGI1-K, a natural SGI1 deletion variant that lacks the sgaDC genes (S007 and S006) and the upstream open reading frame (S008) found in the SGI1 backbone. Here, the effect of the sgaDC genes and S008 on the stability of an IncC plasmid in an Escherichia coli strain with or without SGI1-K was examined. Co-transcription of the S008 open reading frame with the downstream sgaDC genes was established. When a strain containing SGI1-K complemented with a pK18 plasmid that included S008-sgaDC or sgaDC expressed from the constitutive pUC promoter was grown without antibiotic selection, the resident IncC plasmid was rapidly lost but loss was slower when S008 was present. In contrast, SGI1-K and the S008-sgaDC or sgaDC plasmid were quite stably maintained for >100 generations. However, the high copy number plasmids carrying the SGI1-derived S008-sgaDC or sgaDC genes constitutively expressed could not be introduced into an E. coli strain carrying the IncC plasmid but without SGI1-K. Using equivalent plasmids with S008-sgaDC or sgaDC genes controlled by an arabinose-inducible promoter, under inducing conditions the IncC plasmid was stable but the plasmid containing the SGI1-derived genes was rapidly lost. This unexpected observation indicates that there are multiple interactions between the IncC plasmid and SGI1 in which the transcriptional activator genes sgaDC play a role. These interactions will require further investigation.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Zhang F, Ye X, Yin Z, Hu M, Wang B, Liu W, Li B, Ren H, Jin Y, Yue J. Comparative genomics reveals new insights into the evolution of the IncA and IncC family of plasmids. Front Microbiol 2022; 13:1045314. [PMID: 36466664 PMCID: PMC9709138 DOI: 10.3389/fmicb.2022.1045314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 06/13/2024] Open
Abstract
Incompatibility groups IncA and IncC plasmids are of great concern due to their ability to disseminate antibiotic resistance in bacteria via conjugative transfer. A deep understanding of their genomic structures and evolutionary characteristics is of great significance for improving our knowledge about its multidrug-resistance evolution and dissemination. However, current knowledge of their backbone structure, features of core functional modules and the characteristics of variable regions is based on a few plasmids, which highlights the need for a comprehensive systematic study. The present study thoroughly compared and analysed 678 IncA and IncC plasmid genomes. We found that their core functional genes were occasionally deficient and sometimes existed as multiple functional copies/multiple families, which resulted in much diversity. The phylogeny of 13 core functional genes corresponded well to the plasmid subtypes. The conjugative transfer system gained diverse complexity and exhibited many previously unnoticed types with multiple combinations. The insertion of mobile genetic elements (MGEs) in plasmids varied between types and was present in 4 insertion spots in different types of plasmids with certain types of transposons, integrons and insertion sequences. The impact of gene duplication, deletion, the insertion of MGEs, genome rearrangement and recombination resulted in the complex dynamic variable backbone of IncA and IncC plasmids. And IncA and IncC plasmids were more complex than their closest relative SXT/R391 integrative conjugative elements (ICEs), which included nearly all of the diversity of SXT/R391 in key systems. Our work demonstrated a global and systematic view of the IncA and IncC plasmids and provides many new insights into their genome evolution.
Collapse
Affiliation(s)
- Fengwei Zhang
- Medical College of Guizhou University, Guiyang, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xianwei Ye
- Medical College of Guizhou University, Guiyang, China
- Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Mingda Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Boqian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Wenting Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Beiping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hongguang Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yuan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Yue
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
4
|
Ambrose SJ, Hall RM. Can SGI1 family integrative mobilizable elements overcome entry exclusion exerted by IncA and IncC plasmids on IncC plasmids? Plasmid 2022; 123-124:102654. [DOI: 10.1016/j.plasmid.2022.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
5
|
Nohejl T, Valcek A, Papousek I, Palkovicova J, Wailan AM, Pratova H, Minoia M, Dolejska M. Genomic analysis of qnr-harbouring IncX plasmids and their transferability within different hosts under induced stress. BMC Microbiol 2022; 22:136. [PMID: 35590235 PMCID: PMC9118779 DOI: 10.1186/s12866-022-02546-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background Conjugative plasmids play a major role in the dissemination of antibiotic resistance genes. Knowledge of the plasmid characteristics and behaviour can allow development of control strategies. Here we focus on the IncX group of plasmids carrying genes conferring quinolone resistance (PMQR), reporting their transfer and persistence within host bacteria of various genotypes under distinct conditions and levels of induced stress in form of temperature change and various concentrations of ciprofloxacin supplementation. Methods Complete nucleotide sequences were determined for eight qnr-carrying IncX-type plasmids, of IncX1 (3), IncX2 (3) and a hybrid IncX1-2 (2) types, recovered from Escherichia coli of various origins. This data was compared with further complete sequences of IncX1 and IncX2 plasmids carrying qnr genes (n = 41) retrieved from GenBank and phylogenetic tree was constructed. Representatives of IncX1 (pHP2) and IncX2 (p194) and their qnrS knockout mutants, were studied for influence of induced stress and genetic background on conjugative transfer and maintenance. Results A high level of IncX core-genome similarity was found in plasmids of animal, environmental and clinical origin. Significant differences were found between the individual IncX plasmids, with IncX1 subgroup plasmids showing higher conjugative transfer rates than IncX2 plasmids. Knockout of qnr modified transfer frequency of both plasmids. Two stresses applied simultaneously were needed to affect transfer rate of wildtype plasmids, whereas a single stress was sufficient to affect the IncX ΔqnrS plasmids. The conjugative transfer was shown to be biased towards the host phylogenetic proximity. A long-term cultivation experiment pointed out the persistence of IncX plasmids in the antibiotic-free environment. Conclusions The study indicated the stimulating effect of ciprofloxacin supplementation on the plasmid transfer that can be nullified by the carriage of a single PMQR gene. The findings present the significant properties and behaviour of IncX plasmids carrying antibiotic resistance genes that are likely to play a role in their dissemination and stability in bacterial populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02546-6.
Collapse
Affiliation(s)
- Tomas Nohejl
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Adam Valcek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic.,Faculty of Medicine, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Ivo Papousek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Palkovicova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Alexander M Wailan
- Parasites and Microbes, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Hana Pratova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Marco Minoia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic. .,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic. .,Faculty of Medicine, Biomedical Center, Charles University, Pilsen, Czech Republic. .,Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
6
|
Urban Wildlife Crisis: Australian Silver Gull Is a Bystander Host to Widespread Clinical Antibiotic Resistance. mSystems 2022; 7:e0015822. [PMID: 35469421 PMCID: PMC9238384 DOI: 10.1128/msystems.00158-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Australian silver gull is an urban-adapted species that frequents anthropogenic waste sites. The enterobacterial flora of synanthropic birds often carries antibiotic resistance genes. Whole-genome sequence analyses of 425 Escherichia coli isolates from cloacal swabs of chicks inhabiting three coastal sites in New South Wales, Australia, cultured on media supplemented with meropenem, cefotaxime, or ciprofloxacin are reported. Phylogenetically, over 170 antibiotic-resistant lineages from 96 sequence types (STs) representing all major phylogroups were identified. Remarkably, 25 STs hosted the carbapenemase gene blaIMP-4, sourced only from Five Islands. Class 1 integrons carrying blaIMP and blaOXA alongside blaCTX-M and qnrS were notable. Multiple plasmid types mobilized blaIMP-4 and blaOXA-1, and 121 isolates (28%) carried either a ColV-like (18%) or a pUTI89-like (10%) F virulence plasmid. Phylogenetic comparisons to human isolates provided evidence of interspecies transmission. Our study underscores the importance of bystander species in the transmission of antibiotic-resistant and pathogenic E. coli. IMPORTANCE By compiling various genomic and phenotypic data sets, we have provided one of the most comprehensive genomic studies of Escherichia coli isolates from the Australian silver gull, on media containing clinically relevant antibiotics. The analysis of genetic structures capturing antimicrobial resistance genes across three gull breeding colonies in New South Wales, Australia, and comparisons to clinical data have revealed a range of trackable genetic signatures that highlight the broad distribution of clinical antimicrobial resistance in more than 170 different lineages of E. coli. Conserved truncation sizes of the class 1 integrase gene, a key component of multiple-drug resistance structures in the Enterobacteriaceae, represent unique deletion events that are helping to link seemingly disparate isolates and highlight epidemiologically relevant data between wildlife and clinical sources. Notably, only the most anthropogenically affected of the three sites (Five Islands) was observed to host carbapenem resistance, indicating a potential reservoir among the sites sampled.
Collapse
|
7
|
Zeballos-Gross D, Rojas-Sereno Z, Salgado-Caxito M, Poeta P, Torres C, Benavides JA. The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments: A Scoping Review. Front Microbiol 2021; 12:703886. [PMID: 34367104 PMCID: PMC8343230 DOI: 10.3389/fmicb.2021.703886] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
The role of wildlife with long-range dispersal such as gulls in the global dissemination of antimicrobial resistance (AMR) across natural and anthropogenic aquatic environments remains poorly understood. Antibiotic-resistant bacteria have been detected in resident and migratory gulls worldwide for more than a decade, suggesting gulls as either sentinels of AMR pollution from anthropogenic sources or independent reservoirs that could maintain and disperse AMR across aquatic environments. However, confirming either of these roles remains challenging and incomplete. In this review, we present current knowledge on the geographic regions where AMR has been detected in gulls, the molecular characterization of resistance genes, and the evidence supporting the capacity of gulls to disperse AMR across regions or countries. We identify several limitations of current research to assess the role of gulls in the spread of AMR including most studies not identifying the source of AMR, few studies comparing bacteria isolated in gulls with other wild or domestic species, and almost no study performing longitudinal sampling over a large period of time to assess the maintenance and dispersion of AMR by gulls within and across regions. We suggest future research required to confirm the role of gulls in the global dispersion of AMR including the standardization of sampling protocols, longitudinal sampling using advanced satellite tracking, and whole-genome sequencing typing. Finally, we discuss the public health implications of the spread of AMR by gulls and potential solutions to limit its spread in aquatic environments.
Collapse
Affiliation(s)
- Danae Zeballos-Gross
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Zulma Rojas-Sereno
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Facultad de Ciencias de la Vida, Centro de Investigación para la Sustentabilidad, Universidad Andrés Bello, Santiago, Chile
| | - Marília Salgado-Caxito
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Lisbon, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Julio A. Benavides
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Facultad de Ciencias de la Vida, Centro de Investigación para la Sustentabilidad, Universidad Andrés Bello, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| |
Collapse
|
8
|
Abstract
A putative type II toxin-antitoxin (TA) module almost exclusively associated with conjugative IncC plasmids is homologous to the higBA family of TA systems found in chromosomes and plasmids of several species of bacteria. Despite the clinical significance and strong association with high-profile antimicrobial resistance (AMR) genes, the TA system of IncC plasmids remains largely uncharacterized. In this study, we present evidence that IncC plasmids encode a bona fide HigB-like toxin that strongly inhibits bacterial growth and results in cell elongation in Escherichia coli. IncC HigB toxin acts as a ribosome-dependent endoribonuclease that significantly reduces the transcript abundance of a subset of adenine-rich mRNA transcripts. A glycine residue at amino acid position 64 is highly conserved in HigB toxins from different bacterial species, and its replacement with valine (G64V) abolishes the toxicity and the mRNA cleavage activity of the IncC HigB toxin. The IncC plasmid higBA TA system functions as an effective addiction module that maintains plasmid stability in an antibiotic-free environment. This higBA addiction module is the only TA system that we identified in the IncC backbone and appears essential for the stable maintenance of IncC plasmids. We also observed that exposure to subinhibitory concentrations of ciprofloxacin, a DNA-damaging fluoroquinolone antibiotic, results in elevated higBA expression, which raises interesting questions about its regulatory mechanisms. A better understanding of this higBA-type TA module potentially allows for its subversion as part of an AMR eradication strategy. IMPORTANCE Toxin-antitoxin (TA) systems play vital roles in maintaining plasmids in bacteria. Plasmids with incompatibility group C are large plasmids that disseminate via conjugation and carry high-profile antibiotic resistance genes. We present experimental evidence that IncC plasmids carry a TA system that functions as an effective addiction module and maintains plasmid stability in an antibiotic-free environment. The toxin of IncC plasmids acts as an endoribonuclease that targets a subset of mRNA transcripts. Overexpressing the IncC toxin gene strongly inhibits bacterial growth and results in cell elongation in Escherichia coli hosts. We also identify a conserved amino acid residue in the toxin protein that is essential for its toxicity and show that the expression of this TA system is activated by a DNA-damaging antibiotic, ciprofloxacin. This mobile TA system may contribute to managing bacterial stress associated with DNA-damaging antibiotics.
Collapse
|
9
|
Ducarmon QR, Terveer EM, Nooij S, Bloem MN, Vendrik KEW, Caljouw MAA, Sanders IMJG, van Dorp SM, Wong MC, Zwittink RD, Kuijper EJ. Microbiota-associated risk factors for asymptomatic gut colonisation with multi-drug-resistant organisms in a Dutch nursing home. Genome Med 2021; 13:54. [PMID: 33827686 PMCID: PMC8028076 DOI: 10.1186/s13073-021-00869-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background Nursing home residents have increased rates of intestinal colonisation with multidrug-resistant organisms (MDROs). We assessed the colonisation and spread of MDROs among this population, determined clinical risk factors for MDRO colonisation and investigated the role of the gut microbiota in providing colonisation resistance against MDROs. Methods We conducted a prospective cohort study in a Dutch nursing home. Demographical, epidemiological and clinical data were collected at four time points with 2-month intervals (October 2016–April 2017). To obtain longitudinal data, faecal samples from residents were collected for at least two time points. Ultimately, twenty-seven residents were included in the study and 93 faecal samples were analysed, of which 27 (29.0%) were MDRO-positive. Twelve residents (44.4%) were colonised with an MDRO at at least one time point throughout the 6-month study. Results Univariable generalised estimating equation logistic regression indicated that antibiotic use in the previous 2 months and hospital admittance in the previous year were associated with MDRO colonisation. Characterisation of MDRO isolates through whole-genome sequencing revealed Escherichia coli sequence type (ST)131 to be the most prevalent MDRO and ward-specific clusters of E. coli ST131 were identified. Microbiota analysis by 16S rRNA gene amplicon sequencing revealed no differences in alpha or beta diversity between MDRO-positive and negative samples, nor between residents who were ever or never colonised. Three bacterial taxa (Dorea, Atopobiaceae and Lachnospiraceae ND3007 group) were more abundant in residents never colonised with an MDRO throughout the 6-month study. An unexpectedly high abundance of Bifidobacterium was observed in several residents. Further investigation of a subset of samples with metagenomics showed that various Bifidobacterium species were highly abundant, of which B. longum strains remained identical within residents over time, but were different between residents. Conclusions Our study provides new evidence for the role of the gut microbiota in colonisation resistance against MDROs in the elderly living in a nursing home setting. Dorea, Atopobiaceae and Lachnospiraceae ND3007 group may be associated with protection against MDRO colonisation. Furthermore, we report a uniquely high abundance of several Bifidobacterium species in multiple residents and excluded the possibility that this was due to probiotic supplementation. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00869-z.
Collapse
Affiliation(s)
- Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands. .,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sam Nooij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michelle N Bloem
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karuna E W Vendrik
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Monique A A Caljouw
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid M J G Sanders
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sofie M van Dorp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Internal Medicine and Geriatrics, Onze Lieve Vrouwe Gasthuis (OLVG Hospital), Amsterdam, The Netherlands
| | - Man C Wong
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy D Zwittink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
10
|
Liu W, Dong H, Yan T, Liu X, Cheng J, Liu C, Zhang S, Feng X, Liu L, Wang Z, Qin S. Molecular Characterization of bla IMP - 4 -Carrying Enterobacterales in Henan Province of China. Front Microbiol 2021; 12:626160. [PMID: 33679645 PMCID: PMC7925629 DOI: 10.3389/fmicb.2021.626160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) pose a serious threat to clinical management and public health. We investigated the molecular characteristics of 12 IMP-4 metallo-β-lactamase-producing strains, namely, 5 Enterobacter cloacae, 3 Escherichia coli, 2 Klebsiella pneumoniae, and 2 Citrobacter freundii. These strains were collected from a tertiary teaching hospital in Zhengzhou from 2013 to 2015. The minimum inhibitory concentration (MIC) results showed that each blaIMP–4-positive isolate was multidrug-resistant (MDR) but susceptible to colistin. All of the E. coli belonged to ST167, two C. freundii isolates belonged to ST396, and diverse ST types were identified in E. cloacae and K. pneumoniae. S1-PFGE, Southern blotting, and PCR-based replicon typing assays showed that the blaIMP–4-carrying plasmids ranged from ∼52 to ∼360 kb and belonged to FII, FIB, HI2/HI2A, and N types. N plasmids were the predominant type (8/12, 66.7%). Plasmid stability testing indicated that the blaIMP–4-carrying N-type plasmid is more stable than the other types of plasmids. Conjugative assays revealed that three of the blaIMP–4-carrying N plasmids were transferrable. Complete sequence analysis of a representative N type (pIMP-ECL14–57) revealed that it was nearly identical to pIMP-FJ1503 (KU051710) (99% nucleotide identity and query coverage), an N-type blaIMP–4-carrying epidemic plasmid in a C. freundii strain. PCR mapping indicated that a transposon-like structure [IS6100-mobC-intron (K1.pn.I3)-blaIMP–4-IntI1-IS26] was highly conserved in all of the N plasmids. IS26 involved recombination events that resulted in variable structures of this transposon-like module in FII and FIB plasmids. The blaIMP–4 gene was captured by a sul1-type integron In1589 on HI2/HI2A plasmid pIMP-ECL-13–46.
Collapse
Affiliation(s)
- Wentian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Huiyue Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Tingting Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Xuchun Liu
- Department of Medical Laboratory, Yicheng District Central Hospital, Zhumadian, China
| | - Jing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Congcong Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Songxuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Xiang Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Luxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Characterization of a novel class 1 integron InSW39 and a novel transposon Tn5393k identified in an imipenem-nonsusceptible Salmonella Typhimurium strain in Sichuan, China. Diagn Microbiol Infect Dis 2020; 99:115263. [PMID: 33248418 DOI: 10.1016/j.diagmicrobio.2020.115263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/30/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
This study aimed to characterize molecular mechanism of 3 Salmonella enterica strains and novel mobile genetic elements identified in them. The strains, designated SW1, SW39, and SW109084, were obtained from diarrhea patients. The results of susceptibility testing showed SW39 was nonsusceptible to imipenem and cefotaxime. Whole genome sequencing was performed on Illumina HiSeq platform. Multilocus-sequence typing revealed SW1 belonged to ST2529 which was first confirmed in S. enterica, SW109084 was ST34 which was first reported in Enteritidis and SW39 was ST19. Resistome analysis showed SW1, SW109084, and SW39 carried 14, 19, and 17 antibiotic resistance genes. Seven transposons and 4 integrons were confirmed in these strains. Notably, a novel In6- and In7-like class 1 integron designated InSW39 and a novel transposon Tn5393k were identified in plasmid pSW39. The study of genomics and resistance in S. enterica plays a significant role in prevention and treatment of Salmonella infections.
Collapse
|
12
|
Zhang Y, Lei CW, Chen X, Yao TG, Yu JW, Hu WL, Mao X, Wang HN. Characterization of IncC Plasmids in Enterobacterales of Food-Producing Animals Originating From China. Front Microbiol 2020; 11:580960. [PMID: 33193210 PMCID: PMC7652850 DOI: 10.3389/fmicb.2020.580960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 01/13/2023] Open
Abstract
Incompatibility group C (IncC) plasmids have received attention due to their broad host range and because they harbor key antibiotic resistance genes. Because these resistance genes can spread from food-producing animals to human, the proliferation of these plasmids represents a public health risk. In this study, a total of 20 IncC plasmids were collected from food-producing animals in China, and characterized by Oxford Nanopore Technologies long-read sequencing. Based on four key differences of the IncC backbone, 4 IncC plasmids were classified as type 1, 15 were classified as type 1/2 hybrid, and one was classified as type 2. The 15 type 1/2 hybrids were further divided into 13 type 1/2a and 2 type 1/2b, based on sequence differences arising from different homologous recombination events between type 1 and type 2 IncC backbones. Genome comparison of accessory resistance modules showed that different IncC plasmids exhibited various phenotypes via loss and gain of diverse modules, mainly within the blaCMY-carrying region, and two antibiotic resistance islands designated ARI-A and ARI-B. Interestingly, in addition to insertion and deletion events, IS26 or IS1294-mediated large sequence inversions were found in the IncC genome of the 4 type1/2a plasmids, suggesting that insertion sequence-mediated rearrangements also promote the diversity of the IncC genome. This study provides insight into the structural diversification and multidrug resistance of IncC plasmids identified from food-producing animals in China.
Collapse
Affiliation(s)
- Yu Zhang
- College of Life Sciences, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Chang-Wei Lei
- College of Life Sciences, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuan Chen
- College of Life Sciences, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Tian-Ge Yao
- College of Life Sciences, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jing-Wen Yu
- College of Life Sciences, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Wan-Long Hu
- College of Life Sciences, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuan Mao
- College of Life Sciences, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Hong-Ning Wang
- College of Life Sciences, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Ambrose SJ, Hall RM. Novel trimethoprim resistance gene, dfrA35, in IncC plasmids from Australia. J Antimicrob Chemother 2020; 74:1863-1866. [PMID: 30989199 DOI: 10.1093/jac/dkz148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In Gram-negative bacteria, over 30 different genes are known to encode a trimethoprim-insensitive dihydrofolate reductase that confers resistance to trimethoprim. OBJECTIVES To determine whether a gene encoding a putative dihydrofolate reductase found in type 2 IncC plasmids isolated between 2002 and 2013 in healthcare facilities in Melbourne, Australia, confers trimethoprim resistance. METHODS Conjugation was used to transfer plasmids into a laboratory Escherichia coli. A PCR-amplified fragment was cloned into pUC19 using Gibson Assembly and transformed into E. coli. The level of resistance to trimethoprim was determined using broth microdilution. MEGA (7.0.26) and Geneious Prime (7.0.9) were used to examine the relationship to known Dfr proteins. RESULTS The conjugative IncC plasmid pEc158 from a 2002 Melbourne clinical E. coli isolate was shown to transfer trimethoprim resistance. The putative DfrA protein encoded by a dfrA gene in pEc158 shares <40% amino acid identity with any previously identified DfrA protein. This gene was cloned and found to confer trimethoprim resistance. The gene and protein were named dfrA35/DfrA35. In pEc158 the dfrA35 gene is located near the ori end of a partial copy of the CR1 element, within a complex resistance island. It is found in the same location in further closely-related type 2 IncC plasmids from Klebsiella pneumoniae (Melbourne, 2013), which were not transfer proficient. CONCLUSIONS Resistance determinants continue to be found and will be missed using website-associated databases to infer phenotypes from genome sequences rather than direct phenotypic testing.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
The Salmonella enterica Plasmidome as a Reservoir of Antibiotic Resistance. Microorganisms 2020; 8:microorganisms8071016. [PMID: 32650601 PMCID: PMC7409225 DOI: 10.3390/microorganisms8071016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of multidrug-resistant bacterial strains worldwide has become a serious problem for public health over recent decades. The increase in antimicrobial resistance has been expanding via plasmids as mobile genetic elements encoding antimicrobial resistance (AMR) genes that are transferred vertically and horizontally. This study focuses on Salmonella enterica, one of the leading foodborne pathogens in industrialized countries. S. enterica is known to carry several plasmids involved not only in virulence but also in AMR. In the current paper, we present an integrated strategy to detect plasmid scaffolds in whole genome sequencing (WGS) assemblies. We developed a two-step procedure to predict plasmids based on i) the presence of essential elements for plasmid replication and mobility, as well as ii) sequence similarity to a reference plasmid. Next, to confirm the accuracy of the prediction in 1750 S. enterica short-read sequencing data, we combined Oxford Nanopore MinION long-read sequencing with Illumina MiSeq short-read sequencing in hybrid assemblies for 84 isolates to evaluate the proportion of plasmid that has been detected. At least one scaffold with an origin of replication (ORI) was predicted in 61.3% of the Salmonella isolates tested. The results indicated that IncFII and IncI1 ORIs were distributed in many S. enterica serotypes and were the most prevalent AMR genes carrier, whereas IncHI2A/IncHI2 and IncA/C2 were more serotype restricted but bore several AMR genes. Comparison between hybrid and short-read assemblies revealed that 81.1% of plasmids were found in the short-read sequencing using our pipeline. Through this process, we established that plasmids are prevalent in S. enterica and we also substantially expand the AMR genes in the resistome of this species.
Collapse
|
15
|
LMB-1 producing Citrobacter freundii from Argentina, a novel player in the field of MBLs. Int J Antimicrob Agents 2020; 55:105857. [DOI: 10.1016/j.ijantimicag.2019.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 01/02/2023]
|
16
|
ANTIBIOTIC RESISTANT BACTERIA IN WILDLIFE: PERSPECTIVES ON TRENDS, ACQUISITION AND DISSEMINATION, DATA GAPS, AND FUTURE DIRECTIONS. J Wildl Dis 2020. [DOI: 10.7589/2019-04-099] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Assessing genetic diversity and similarity of 435 KPC-carrying plasmids. Sci Rep 2019; 9:11223. [PMID: 31375735 PMCID: PMC6677891 DOI: 10.1038/s41598-019-47758-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The global spread and diversification of multidrug-resistant Gram-negative (MRGN) bacteria poses major challenges to healthcare. In particular, carbapenem-resistant Klebsiella pneumoniae strains have been frequently identified in infections and hospital-wide outbreaks. The most frequently underlying resistance gene (blaKPC) has been spreading over the last decade in the health care setting. blaKPC seems to have rapidly diversified and has been found in various species and on different plasmid types. To review the progress and dynamics of this diversification, all currently available KPC plasmids in the NCBI database were analysed in this work. Plasmids were grouped into 257 different representative KPC plasmids, of which 79.4% could be clearly assigned to incompatibility (Inc) group or groups. In almost half of all representative plasmids, the KPC gene is located on Tn4401 variants, emphasizing the importance of this transposon type for the transmission of KPC genes to other plasmids. The transposons also seem to be responsible for the occurrence of altered or uncommon fused plasmid types probably due to incomplete transposition. Moreover, many KPC plasmids contain genes that encode proteins promoting recombinant processes and mutagenesis; in consequence accelerating the diversification of KPC genes and other colocalized resistance genes.
Collapse
|
18
|
Characterization of Carbapenemase-Producing Klebsiella oxytoca in Spain, 2016-2017. Antimicrob Agents Chemother 2019; 63:AAC.02529-18. [PMID: 30936106 DOI: 10.1128/aac.02529-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/23/2019] [Indexed: 11/20/2022] Open
Abstract
There is little information about carbapenemase-producing (CP) Klebsiella oxytoca, an important nosocomial pathogen. We characterized CP K. oxytoca isolates collected from different Spanish hospitals between January 2016 and October 2017. During the study period, 139 nonduplicate CP K. oxytoca isolates were identified; of these, 80 were studied in detail. Carbapenemase and extended-spectrum β-lactamase genes were identified by PCR and sequencing. Genetic relatedness was studied by pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing (WGS), carried out on 12 representative isolates, was used to identify the resistome, to elucidate the phylogeny, and to determine the plasmids harboring carbapenemase genes. Forty-eight (60%) isolates produced VIM-1, 30 (37.5%) produced OXA-48, 3 (3.7%) produced KPC-2, 2 (2.5%) produced KPC-3, and 1 (1.2%) produced NDM-1; 4 isolates coproduced two carbapenemases. By PFGE, 69 patterns were obtained from the 80 CP K. oxytoca isolates, and four well-defined clusters were detected: cluster 1 consisted of 11 OXA-48-producing isolates, and the other three clusters included VIM-1-producing isolates (5, 3, and 3 isolates, respectively). In the 12 sequenced isolates, the average number of acquired resistance genes was significantly higher in VIM-1-producing isolates (10.8) than in OXA-48-producing isolates (2.3). All 12 isolates had chromosomally encoded genes of the bla OXY-2 genotype, and by multilocus sequence typing, most belonged to sequence type 2 (ST2). Carbapenemase genes were carried by IncL, IncHI2, IncFII, IncN, IncC, and IncP6 plasmid types. The emergence of CP K. oxytoca was principally due to the spread of VIM-1- and OXA-48-producing isolates in which VIM-1- and OXA-48 were carried by IncL, IncHI2, IncFII, and IncN plasmids. ST2 and the genotype bla OXY-2 predominated among the 12 sequenced isolates.
Collapse
|
19
|
Complete Genome Sequence of Escherichia coli MT102, a Plasmid-Free Recipient Resistant to Rifampin, Azide, and Streptomycin, Used in Conjugation Experiments. Microbiol Resour Announc 2019; 8:8/20/e00383-19. [PMID: 31097507 PMCID: PMC6522792 DOI: 10.1128/mra.00383-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We present here the complete genome sequence of Escherichia coli MT102, which is resistant to rifampin, azide, and streptomycin and is used as a recipient in plasmid transfer experiments. The sequence will be utilized for chromosomal read removal in plasmid sequence analyses obtained from transconjugants within this strain and in comprehensive genetic studies. We present here the complete genome sequence of Escherichia coli MT102, which is resistant to rifampin, azide, and streptomycin and is used as a recipient in plasmid transfer experiments. The sequence will be utilized for chromosomal read removal in plasmid sequence analyses obtained from transconjugants within this strain and in comprehensive genetic studies.
Collapse
|
20
|
Papagiannitsis CC, Bitar I, Malli E, Tsilipounidaki K, Hrabak J, Petinaki E. IncC bla KPC-2-positive plasmid characterised from ST648 Escherichia coli. J Glob Antimicrob Resist 2019; 19:73-77. [PMID: 31077860 DOI: 10.1016/j.jgar.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES This study describes the characterisation of type 2 IncC plasmids pC-Ec20-KPC and pC-Ec2-KPC, carrying theblaKPC-2 gene, from two multiresistant Escherichia coli recovered in University Hospital of Larissa (Greece) in 2018. METHODS E. coli strains Ec-2Lar and Ec-20Lar were recovered from rectal swabs of two patients during monthly surveillance cultures. Transfer experiments by conjugation were carried out using rifampicin-resistant E. coli A15 laboratory strain as recipient. blaKPC-carrying plasmids were characterised by S1 profiling. Isolates were typed by MLST. Whole-genome sequencing was performed using the Sequel platform. RESULTS Both E. coli isolates, belonging to ST648, transferred blaKPC-2 to E. coli A15 by conjugation. Plasmid analysis revealed that the transconjugants harboured blaKPC-positive plasmids of different sizes. Analysis of plasmid sequences showed that in both isolates the blaKPC-2 gene was carried on a type 2 IncC plasmid (pC-Ec20-KPC and pC-Ec2-KPC, respectively). Both plasmids carried the ARI-B resistance island consisting of several resistance genes, intact and truncated copies of several mobile elements, and a 25 571-bp segment harbouring coding sequences for an iron transporter. The blaKPC-2 gene was part of transposon Tn4401a, which was bounded by 5-bp direct repeats (TCCTT) suggesting its transposition into the IncC plasmids. CONCLUSION To our knowledge, this is the first report on complete nucleotide sequences of type 2 IncC plasmids. These findings, which hypothesise the acquisition of KPC-2-encoding transposon Tn4401a by an IncC replicon, indicate the ongoing need for molecular surveillance studies of multidrug-resistant pathogens. In addition, they underline the increasing clinical importance of the IncC plasmid family.
Collapse
Affiliation(s)
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Plzen, Czech Republic
| | - Ergina Malli
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| | | | - Jaroslav Hrabak
- Biomedical Center, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Plzen, Czech Republic
| | - Efthimia Petinaki
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece.
| |
Collapse
|
21
|
Dolejska M, Papagiannitsis CC. Plasmid-mediated resistance is going wild. Plasmid 2018; 99:99-111. [PMID: 30243983 DOI: 10.1016/j.plasmid.2018.09.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/08/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Multidrug resistant (MDR) Gram-negative bacteria have been increasingly reported in humans, companion animals and farm animals. The growing trend of plasmid-mediated resistance to antimicrobial classes of critical importance is attributed to the emergence of epidemic plasmids, rapidly disseminating resistance genes among the members of Enterobacteriaceae family. The use of antibiotics to treat humans and animals has had a significant impact on the environment and on wild animals living and feeding in human-influenced habitats. Wildlife can acquire MDR bacteria selected in hospitals, community or livestock from diverse sources, including wastewater, sewage systems, landfills, farm facilities or agriculture fields. Therefore, wild animals are considered indicators of environmental pollution by antibiotic resistant bacteria, but they can also act as reservoirs and vectors spreading antibiotic resistance across the globe. The level of resistance and reported plasmid-mediated resistance mechanisms observed in bacteria of wildlife origin seem to correlate well with the situation described in humans and domestic animals. Additionaly, the identification of epidemic plasmids in samples from different human, animal and wildlife sources underlines the role of horizontal gene transfer in the dissemination of resistance genes. The present review focuses on reports of plasmid-mediated resistance to critically important antimicrobial classes such as broad-spectrum beta-lactams and colistin in Enterobacteriaceae isolates from samples of wildlife origin. The role of plasmids in the dissemination of ESBL-, AmpC- and carbapenemase-encoding genes as well as plasmid-mediated colistin resistance determinants in wildlife are discussed, and their similarities to plasmids previously identified in samples of human clinical or livestock origin are highlighted. Furthermore, we present features of completely sequenced plasmids reported from wildlife Enterobacteriaceae isolates, with special focus on genes that could be associated with the plasticity and stable maintenance of these molecules in antibiotic-free environments.
Collapse
Affiliation(s)
- Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Costas C Papagiannitsis
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
22
|
Ambrose SJ, Harmer CJ, Hall RM. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid 2018; 99:40-55. [PMID: 30081066 DOI: 10.1016/j.plasmid.2018.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 01/14/2023]
Abstract
The large, broad host range IncC plasmids are important contributors to the spread of key antibiotic resistance genes and over 200 complete sequences of IncC plasmids have been reported. To track the spread of these plasmids accurate typing to identify the closest relatives is needed. However, typing can be complicated by the high variability in resistance gene content and various typing methods that rely on features of the conserved backbone have been developed. Plasmids can be broadly typed into two groups, type 1 and type 2, using four features that differentiate the otherwise closely related backbones. These types are found in many different countries in bacteria from humans and animals. However, hybrids of type 1 and type 2 are also occasionally seen, and two further types, each represented by a single plasmid, were distinguished. Generally, the antibiotic resistance genes are located within a small number of resistance islands, only one of which, ARI-B, is found in both type 1 and type 2. The introduction of each resistance island generates a new lineage and, though they are continuously evolving via the loss of resistance genes or introduction of new ones, the island positions serve as valuable lineage-specific markers. A current type 2 lineage of plasmids is derived from an early type 2 plasmid but the sequences of early type 1 plasmids include features not seen in more recent type 1 plasmids, indicating a shared ancestor rather than a direct lineal relationship. Some features, including ones essential for maintenance or for conjugation, have been examined experimentally.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Gorrie CL, Mirceta M, Wick RR, Judd LM, Wyres KL, Thomson NR, Strugnell RA, Pratt NF, Garlick JS, Watson KM, Hunter PC, McGloughlin SA, Spelman DW, Jenney AWJ, Holt KE. Antimicrobial-Resistant Klebsiella pneumoniae Carriage and Infection in Specialized Geriatric Care Wards Linked to Acquisition in the Referring Hospital. Clin Infect Dis 2018; 67:161-170. [PMID: 29340588 PMCID: PMC6030810 DOI: 10.1093/cid/ciy027] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Background Klebsiella pneumoniae is a leading cause of extended-spectrum β-lactamase (ESBL)-producing hospital-associated infections, for which elderly patients are at increased risk. Methods We conducted a 1-year prospective cohort study, in which a third of patients admitted to 2 geriatric wards in a specialized hospital were recruited and screened for carriage of K. pneumoniae by microbiological culture. Clinical isolates were monitored via the hospital laboratory. Colonizing and clinical isolates were subjected to whole-genome sequencing and antimicrobial susceptibility testing. Results K. pneumoniae throat carriage prevalence was 4.1%, rectal carriage 10.8%, and ESBL carriage 1.7%, and the incidence of K. pneumoniae infection was 1.2%. The isolates were diverse, and most patients were colonized or infected with a unique phylogenetic lineage, with no evidence of transmission in the wards. ESBL strains carried blaCTX-M-15 and belonged to clones associated with hospital-acquired ESBL infections in other countries (sequence type [ST] 29, ST323, and ST340). One also carried the carbapenemase blaIMP-26. Genomic and epidemiological data provided evidence that ESBL strains were acquired in the referring hospital. Nanopore sequencing also identified strain-to-strain transmission of a blaCTX-M-15 FIBK/FIIK plasmid in the referring hospital. Conclusions The data suggest the major source of K. pneumoniae was the patient's own gut microbiome, but ESBL strains were acquired in the referring hospital. This highlights the importance of the wider hospital network to understanding K. pneumoniae risk and infection prevention. Rectal screening for ESBL organisms on admission to geriatric wards could help inform patient management and infection control in such facilities.
Collapse
Affiliation(s)
- Claire L Gorrie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mirjana Mirceta
- Microbiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Ryan R Wick
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria, Australia
| | - Louise M Judd
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria, Australia
| | - Kelly L Wyres
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria, Australia
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom, Melbourne, Victoria, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nigel F Pratt
- Infectious Diseases Clinical Research Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jill S Garlick
- Infectious Diseases Clinical Research Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Kerrie M Watson
- Infectious Diseases Clinical Research Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Peter C Hunter
- Aged Care, Caulfield Hospital, Alfred Health, Melbourne, Victoria, Australia
| | | | - Denis W Spelman
- Microbiology Unit & Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Adam W J Jenney
- Microbiology Unit & Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Complete Sequence of the IncA/C 1 Plasmid pCf587 Carrying blaPER-2 from Citrobacter freundii. Antimicrob Agents Chemother 2018; 62:AAC.00006-18. [PMID: 29463531 DOI: 10.1128/aac.00006-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/13/2018] [Indexed: 12/29/2022] Open
Abstract
The blaPER-2-harboring plasmid pCf587 (191,541 bp) belongs to lineage IncA/C1 and is closely related to pRA1. It contains a large resistance island including the blaPER-2 gene between two copies of ISKox2-like elements, the toxin-antitoxin module pemK-pemI, several other resistance genes inserted within a Tn2 transposon, a Tn21-like structure, and a class 1 integron. pCf587 belongs to sequence type 13 (ST13), a new plasmid multilocus sequence typing (pMLST) ST.
Collapse
|
25
|
Characterization of the Complete Nucleotide Sequences of IMP-4-Encoding Plasmids, Belonging to Diverse Inc Families, Recovered from Enterobacteriaceae Isolates of Wildlife Origin. Antimicrob Agents Chemother 2018; 62:AAC.02434-17. [PMID: 29483121 DOI: 10.1128/aac.02434-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/29/2018] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequences of six IMP-4-encoding plasmids recovered from Enterobacteriaceae isolates of wildlife origin were characterized. Sequencing data showed that plasmids of different incompatibility groups (IncM, IncI1, IncF, and nontypeable [including an IncX5_2 and two pPrY2001-like]) carried the blaIMP-4-carrying integrons In809 or In1460. Most of the plasmids carried an mph(A) region, and chrA-like, aac(3)-IId, and blaTEM-1b genes. Finally, plasmid analysis revealed the involvement of two different IS26- and Tn1696-associated mechanisms in the mobilization of IMP-4-encoding integrons.
Collapse
|
26
|
Compatibility and entry exclusion of IncA and IncC plasmids revisited: IncA and IncC plasmids are compatible. Plasmid 2018; 96-97:7-12. [DOI: 10.1016/j.plasmid.2018.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 11/17/2022]
|