1
|
Chauffour A, Morel F, Reibel F, Petrella S, Mayer C, Cambau E, Aubry A. A systematic review of Mycobacterium leprae DNA gyrase mutations and their impact on fluoroquinolone resistance. Clin Microbiol Infect 2021; 27:1601-1612. [PMID: 34265461 DOI: 10.1016/j.cmi.2021.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The fact that Mycobacterium leprae does not grow in vitro remains a challenge in the survey of its antimicrobial resistance (AMR). Mainly molecular methods are used to diagnose AMR in M. leprae to provide reliable data concerning mutations and their impact. Fluoroquinolones (FQs) are efficient for the treatment of leprosy and the main second-line drugs in case of multidrug resistance. OBJECTIVES This study aimed at performing a systematic review (a) to characterize all DNA gyrase gene mutations described in clinical isolates of M. leprae, (b) to distinguish between those associated with FQ resistance or susceptibility and (c) to delineate a consensus numbering system for M. leprae GyrA and GyrB. DATA SOURCES Data source was PubMed. STUDY ELIGIBILITY CRITERIA Publications reporting genotypic susceptibility-testing methods and gyrase gene mutations in M. leprae clinical strains. RESULTS In 25 studies meeting our inclusion criteria, 2884 M. leprae isolates were analysed (2236 for gyrA only (77%) and 755 for both gyrA and gyrB (26%)): 3.8% of isolates had gyrA mutations (n = 110), mostly at position 91 (n = 75, 68%) and 0.8% gyrB mutations (n = 6). Since we found discrepancies regarding the location of substitutions associated with FQ resistance, we established a consensus numbering system to properly number the mutations. We also designed a 3D model of the M. leprae DNA gyrase to predict the impact of mutations whose role in FQ-susceptibility has not been demonstrated previously. CONCLUSIONS Mutations in DNA gyrase are observed in 4% of the M. leprae clinical isolates. To solve discrepancies among publications and to distinguish between mutations associated with FQ resistance or susceptibility, the consensus numbering system we proposed as well as the 3D model of the M. leprae gyrase for the evaluation of the impact of unknown mutations in FQ resistance, will provide help for resistance surveillance.
Collapse
Affiliation(s)
- Aurélie Chauffour
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France; AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Florence Reibel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France; AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France; Laboratoire de Biologie, Groupe Hospitalier Nord-Essonne, Site de Longjumeau, Longjumeau, France
| | - Stéphanie Petrella
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Claudine Mayer
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Emmanuelle Cambau
- AP-HP GHU Nord, Service de Mycobactériologie Spécialisée et de Référence, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France; Université de Paris, Paris Diderot, INSERM, IAME UMR1137, Paris, France
| | - Alexandra Aubry
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France; AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France.
| |
Collapse
|
2
|
Molecular Characterization of Fluoroquinolone-Resistant Bartonella bacilliformis. Pathogens 2021; 10:pathogens10070876. [PMID: 34358026 PMCID: PMC8308817 DOI: 10.3390/pathogens10070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of amino acid changes in GyrA, GyrB, ParC, ParE, and in a proposed chromosomal chloramphenicol acetyl transferase (CAT), as well as mutations at 23S rRNA, were established by PCR and sequencing in 38 B. bacilliformis clinical isolates from four different areas in Peru. Eighteen out of 24 (75%) isolates showing ciprofloxacin resistance for both disk-diffusion and e-test presented amino acid substitutions in GyrA (G89C, six isolates, A91V, 1 isolate) GyrB (S474F, 10 isolates) or both (GyrA D95N and GyrB S474F, one isolate). Two out of 14 susceptible isolates presented amino acid substitutions at GyrB (S474F) or a double substitution GyrA D95N and GyrB S474F. Of note, ciprofloxacin-resistant isolates were recovered in the four areas studied. No amino acid change was observed at ParC or ParE. Only one isolate showed chloramphenicol resistance, but no alteration was present in either 23S rRNA or CAT. B. bacilliformis resistant to quinolones are extended throughout Peru, with amino acid substitutions at GyrA or GyrB as the main, albeit not exclusive, cause. B. bacilliformis seems to have an apparent facility to develop mutations on GyrB outside the classical positions 91, 95 of GyrA and 85, 88 of ParC.
Collapse
|
3
|
Park JH, Yamaguchi T, Ouchi Y, Koide K, Pachanon R, Chizimu JY, Mori S, Kim H, Mukai T, Nakajima C, Suzuki Y. Interaction of Quinolones Carrying New R1 Group with Mycobacterium leprae DNA Gyrase. Microb Drug Resist 2021; 27:1616-1623. [PMID: 34077282 DOI: 10.1089/mdr.2020.0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Leprosy is a chronic infectious disease caused by Mycobacterium leprae and the treatment of choice is ofloxacin (OFX). Specific amino acid substitutions in DNA gyrase of M. leprae have been reported leading to resistance against the drug. In our previous study, WQ-3810, a fluoroquinolone with a new R1 group (6-amino-3,5-difluoropyridin-2-yl) was shown to have a strong inhibitory activity on OFX-resistant DNA gyrases of M. leprae, and the structural characteristics of its R1 group was predicted to enhance the inhibitory activity. Methodology/Principal Finding: To further understand the contribution of the R1 group, WQ-3334 with the same R1 group as WQ-3810, WQ-4064, and WQ-4065, but with slightly modified R1 group, were assessed on their activities against recombinant DNA gyrase of M. leprae. An in silico study was conducted to understand the molecular interactions between DNA gyrase and WQ compounds. WQ-3334 and WQ-3810 were shown to have greater inhibitory activity against M. leprae DNA gyrase than others. Furthermore, analysis using quinolone-resistant M. leprae DNA gyrases showed that WQ-3334 had greater inhibitory activity than WQ-3810. The R8 group was shown to be a factor for the linkage of the R1 groups with GyrB by an in silico study. Conclusions/Significance: The inhibitory effect of WQ compounds that have a new R1 group against M. leprae DNA gyrase can be enhanced by improving the binding affinity with different R8 group molecules. The information obtained by this work could be applied to design new fluoroquinolones effective for quinolone-resistant M. leprae and other bacterial pathogens.
Collapse
Affiliation(s)
- Jong-Hoon Park
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Tomoyuki Yamaguchi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Yuki Ouchi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Kentaro Koide
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Ruttana Pachanon
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Joseph Yamweka Chizimu
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| |
Collapse
|
4
|
Avanzi C, Singh P, Truman RW, Suffys PN. Molecular epidemiology of leprosy: An update. INFECTION GENETICS AND EVOLUTION 2020; 86:104581. [PMID: 33022427 DOI: 10.1016/j.meegid.2020.104581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Molecular epidemiology investigations are notoriously challenging in the leprosy field mainly because the inherent characteristics of the disease as well as its yet uncultivated causative agents, Mycobacterium leprae and M. lepromatosis. Despite significant developments in understanding the biology of leprosy bacilli through genomic approaches, the exact mechanisms of transmission is still unclear and the factors underlying pathological variation of the disease in different patients remain as major gaps in our knowledge about leprosy. Despite these difficulties, the last two decades have seen the development of genotyping procedures based on PCR-sequencing of target loci as well as by the genome-wide analysis of an increasing number of geographically diverse isolates of leprosy bacilli. This has provided a foundation for molecular epidemiology studies that are bringing a better understanding of strain evolution associated with ancient human migrations, and phylogeographical insights about the spread of disease globally. This review discusses the advantages and drawbacks of the main tools available for molecular epidemiological investigations of leprosy and summarizes various methods ranging from PCR-based genotyping to genome-typing techniques. We also describe their main applications in analyzing the short-range and long-range transmission of the disease. Finally, we summarise the current gaps and challenges that remain in the field of molecular epidemiology of leprosy.
Collapse
Affiliation(s)
- Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pushpendra Singh
- Indian Council of Medical Research - National Institute of Research in Tribal Health, Jabalpur, India
| | - Richard W Truman
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LO, USA
| | - Philip N Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria - Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Jassem AM, Dhumad AM, Almashal FA, Alshawi JM. Microwave-assisted synthesis, molecular docking and anti-HIV activities of some drug-like quinolone derivatives. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02546-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
WQ-3810 inhibits DNA gyrase activity in ofloxacin-resistant Mycobacterium leprae. J Infect Chemother 2019; 26:335-342. [PMID: 31839561 DOI: 10.1016/j.jiac.2019.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mycobacterium leprae causes leprosy and ofloxacin is used to control this bacterium. However, specific amino acid substitutions in DNA gyrases of M. leprae interferes with the effect of ofloxacin. METHODOLOGY/PRINCIPAL FINDINGS Here we tested the inhibitory effect of WQ-3810 on DNA gyrases in M. leprae, using recombinant gyrases. We theorized that WQ-3810 and DNA gyrases interacted, which was tested in silico. Compared with control drugs like ofloxacin, WQ-3810 showed a better inhibitory effect on ofloxacin-resistant DNA gyrases. The in-silico study showed that, unlike control drugs, a specific linkage between a R1 group in WQ-3810 and aspartic acid at position 464 in the subunit B of DNA gyrases existed, which would enhance the inhibitory effect of WQ-3810. This linkage was confirmed in a further experiment, using recombinant DNA gyrases with amino acid substitutions in subunits B instead. CONCLUSIONS/SIGNIFICANCE The inhibitory effect of WQ-3810 was likely enhanced by the specific linkage between a R1 group residue in its structure and DNA gyrases. Using interactions like the one found in the present work may help design new fluoroquinolones that contribute to halt the emergence of antibiotic-resistant pathogens.
Collapse
|
7
|
Yoshida M, Nakata N, Miyamoto Y, Fukano H, Ato M, Hoshino Y. A rapid and non-pathogenic assay for association of Mycobacterium tuberculosis gyrBA mutations and fluoroquinolone resistance using recombinant Mycobacterium smegmatis. FEMS Microbiol Lett 2019; 365:5173037. [PMID: 30418577 DOI: 10.1093/femsle/fny266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
We developed a method involving recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) and recombinant Mycobacterium smegmatis to determine which mutations in Mycobacterium tuberculosis (Mtb) gyrBA are associated with fluoroquinolone (FQ) resistance. The minimal inhibitory concentration (MIC) for FQ for recombinant strains with wild-type Mtb gyrBA was equivalent to that for strains with intrinsic gyrBA. Among 27 gyrBA mutations, the fold-changes in FQ MIC for M. smegmatis and M. bovis BCG backgrounds were comparable and were in part equivalent to those previously reported for recombinant Mtb strains. Mutations at position 90 or 94 of gyrA conferred strong and synergistic FQ resistance, which may be associated with the clinical observation that isolates carrying these mutations are the most or second most frequent. Sitafloxacin hydrate had the lowest MIC among the FQs tested in this study, which is similar to findings from a previous in vivo animal study. Most gyrBA mutations detected in clinical Mtb isolates could confer FQ resistance, but several mutations reduced bacterial growth rates. Overall, recombinant M. smegmatis appears to be a beneficial surrogate system to evaluate FQ susceptibility of virulent mycobacteria.
Collapse
Affiliation(s)
- Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noboru Nakata
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Yamaguchi T, Yokoyama K, Nakajima C, Suzuki Y. Quinolone resistance-associated amino acid substitutions affect enzymatic activity of Mycobacterium leprae DNA gyrase. Biosci Biotechnol Biochem 2017; 81:1343-1347. [PMID: 28417702 DOI: 10.1080/09168451.2017.1314757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Quinolones are important antimicrobials for treatment of leprosy, a chronic infectious disease caused by Mycobacterium leprae. Although it is well known that mutations in DNA gyrase are responsible for quinolone resistance, the effect of those mutations on the enzymatic activity is yet to be studied in depth. Hence, we conducted in vitro assays to observe supercoiling reactions of wild type and mutated M. leprae DNA gyrases. DNA gyrase with amino acid substitution Ala91Val possessed the highest activity among the mutants. DNA gyrase with Gly89Cys showed the lowest level of activity despite being found in clinical strains, but it supercoiled DNA like the wild type does if applied at a sufficient concentration. In addition, patterns of time-dependent conversion from relaxed circular DNA into supercoiled DNA by DNA gyrases with clinically unreported Asp95Gly and Asp95Asn were observed to be distinct from those by the other DNA gyrases.
Collapse
Affiliation(s)
- Tomoyuki Yamaguchi
- a Division of Bioresources , Hokkaido University Research Center for Zoonosis Control , Sapporo , Japan
| | - Kazumasa Yokoyama
- b Central Research Laboratory , Kissei Pharmaceutical Co., Ltd , Azumino , Japan
| | - Chie Nakajima
- a Division of Bioresources , Hokkaido University Research Center for Zoonosis Control , Sapporo , Japan.,c Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) , Hokkaido University , Sapporo , Japan
| | - Yasuhiko Suzuki
- a Division of Bioresources , Hokkaido University Research Center for Zoonosis Control , Sapporo , Japan.,c Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) , Hokkaido University , Sapporo , Japan
| |
Collapse
|
9
|
Beltrán-Alzate C, López Díaz F, Romero-Montoya M, Sakamuri R, Li W, Kimura M, Brennan P, Cardona-Castro N. Leprosy Drug Resistance Surveillance in Colombia: The Experience of a Sentinel Country. PLoS Negl Trop Dis 2016; 10:e0005041. [PMID: 27706165 PMCID: PMC5051701 DOI: 10.1371/journal.pntd.0005041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/14/2016] [Indexed: 12/02/2022] Open
Abstract
An active search for Mycobacterium leprae drug resistance was carried out, 243 multibacillary patients from endemic regions of Colombia were included from 2004 to 2013 in a surveillance program. This program was a World Health Organization initiative for drug resistance surveillance in leprosy, where Colombia is a sentinel country. M. leprae DNA from slit skin smear and/or skin biopsy samples was amplified and sequenced to identify mutations in the drug resistance determining region (DRDR) in rpoB, folP1, gyrA, and gyrB, the genes responsible for rifampicin, dapsone and ofloxacin drug-resistance, respectively. Three isolates exhibited mutations in the DRDR rpoB gene (Asp441Tyr, Ser456Leu, Ser458Met), two in the DRDR folP1 gene (Thr53Ala, Pro55Leu), and one isolate exhibited mutations in both DRDR rpoB (Ser456Met) and DRDR folP1 (Pro55Leu), suggesting multidrug resistance. One isolate had a double mutation in folP1 (Thr53Ala and Thr88Pro). Also, we detected mutations outside of DRDR that required in vivo evaluation of their association or not with drug resistance: rpoB Arg505Trp, folP1 Asp91His, Arg94Trp, and Thr88Pro, and gyrA Ala107Leu. Seventy percent of M. leprae mutations were related to drug resistance and were isolated from relapsed patients; the likelihood of relapse was significantly associated with the presence of confirmed resistance mutations (OR range 20.1-88.7, p < 0.05). Five of these relapsed patients received dapsone monotherapy as a primary treatment. In summary, the current study calls attention to M. leprae resistance in Colombia, especially the significant association between confirmed resistance mutations and relapse in leprosy patients. A high frequency of DRDR mutations for rifampicin was seen in a region where dapsone monotherapy was used extensively.
Collapse
Affiliation(s)
- Camilo Beltrán-Alzate
- Instituto Colombiano de Medicina Tropical–Universidad CES Sabaneta, Antioquia, Colombia
| | | | | | - Rama Sakamuri
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Wei Li
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Miyako Kimura
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Patrick Brennan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nora Cardona-Castro
- Instituto Colombiano de Medicina Tropical–Universidad CES Sabaneta, Antioquia, Colombia
- Facultad de Medicina. Universidad CES, Medellín, Colombia
| |
Collapse
|
10
|
DC-159a Shows Inhibitory Activity against DNA Gyrases of Mycobacterium leprae. PLoS Negl Trop Dis 2016; 10:e0005013. [PMID: 27681932 PMCID: PMC5040261 DOI: 10.1371/journal.pntd.0005013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fluoroquinolones are a class of antibacterial agents used for leprosy treatment. Some new fluoroquinolones have been attracting interest due to their remarkable potency that is reportedly better than that of ofloxacin, the fluoroquinolone currently recommended for treatment of leprosy. For example, DC-159a, a recently developed 8-methoxy fluoroquinolone, has been found to be highly potent against various bacterial species. Nonetheless, the efficacy of DC-159a against Mycobacterium leprae is yet to be examined. METHODOLOGY/PRINCIPAL FINDINGS To gather data that can support highly effective fluoroquinolones as candidates for new remedies for leprosy treatment, we conducted in vitro assays to assess and compare the inhibitory activities of DC-159a and two fluoroquinolones that are already known to be more effective against M. leprae than ofloxacin. The fluoroquinolone-inhibited DNA supercoiling assay using recombinant DNA gyrases of wild type and ofloxacin-resistant M. leprae revealed that inhibitory activities of DC-159a and sitafloxacin were at most 9.8- and 11.9-fold higher than moxifloxacin. Also the fluoroquinolone-mediated cleavage assay showed that potencies of those drugs were at most 13.5- and 9.8-fold higher than moxifloxacin. In addition, these two drugs retained their inhibitory activities even against DNA gyrases of ofloxacin-resistant M. leprae. CONCLUSIONS/SIGNIFICANCE The results indicated that DC-159a and sitafloxacin are more effective against wild type and mutant M. leprae DNA gyrases than moxifloxacin, suggesting that these antibacterial drugs can be good candidates that may supersede current fluoroquinolone remedies. DC-159a in particular is very promising because it is classified in a subgroup of fluoroquinolones that is known to be less likely to cause adverse effects. Our results implied that DC-159a is well worth further investigation to ascertain its in vivo effectiveness and clinical safety for humans.
Collapse
|
11
|
Changkwanyeun R, Yamaguchi T, Kongsoi S, Changkaew K, Yokoyama K, Kim H, Suthienkul O, Usui M, Tamura Y, Nakajima C, Suzuki Y. Impact of mutations in DNA gyrase genes on quinolone resistance in Campylobacter jejuni. Drug Test Anal 2016; 8:1071-1076. [PMID: 26857529 DOI: 10.1002/dta.1937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 11/05/2022]
Abstract
Amino acid substitutions providing quinolone resistance to Campyloabcter jejuni have been found in the quinolone resistance-determining region of protein DNA gyrase subunit A (GyrA), with the highest frequency at position 86 followed by position 90. In this study, wild-type and mutant recombinant DNA gyrase subunits were expressed in Escherichia coli and purified using Ni-NTA agarose column chromatography. Soluble 97 kDa GyrA and 87 kDa DNA gyrase subunit B were shown to reconstitute ATP-dependent DNA supercoiling activity. A quinolone-inhibited supercoiling assay demonstrated the roles of Thr86Ile, Thr86Ala, Thr86Lys, Asp90Asn, and Asp90Tyr amino acid substitutions in reducing sensitivity to quinolones. The marked effect of Thr86Ile on all examined quinolones suggested the advantage of this substitution in concordance with recurring isolation of quinolone-resistant C. jejuni. An analysis of the structure-activity relationship showed the importance of the substituent at position 8 in quinolones to overcome the effect of Thr86Ile. Sitafloxacin (SIT), which has a fluorinate cyclopropyl ring at R-1 and a chloride substituent at R-8, a characteristic not found in other quinolones, showed the highest inhibitory activity against all mutant C. jejuni gyrases including ciprofloxacin-resistant mutants. The results suggest SIT as a promising drug for the treatment of campylobacteriosis caused by CIP-resistant C. jejuni. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ruchirada Changkwanyeun
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Tomoyuki Yamaguchi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Siriporn Kongsoi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Kanjana Changkaew
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Kazumasa Yokoyama
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd, Nagano, Japan
| | - Hyun Kim
- Laboratory of Tuberculosis, Department of Bacteriology II, National Institute Infectious Diseases, Tokyo, Japan
| | - Orasa Suthienkul
- Faculty of Public Health, Thammasat University, Rangsit, Thailand
| | - Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Yutaka Tamura
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Hokkaido University The Global station for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan. .,Hokkaido University The Global station for Zoonosis Control, Sapporo, Japan.
| |
Collapse
|
12
|
Reibel F, Cambau E, Aubry A. Update on the epidemiology, diagnosis, and treatment of leprosy. Med Mal Infect 2015; 45:383-93. [DOI: 10.1016/j.medmal.2015.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/01/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
|
13
|
Changkwanyeun R, Usui M, Kongsoi S, Yokoyama K, Kim H, Suthienkul O, Changkaew K, Nakajima C, Tamura Y, Suzuki Y. Characterization of Campylobacter jejuni DNA gyrase as the target of quinolones. J Infect Chemother 2015; 21:604-9. [PMID: 26096494 DOI: 10.1016/j.jiac.2015.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
Quinolones have long been used as the first-line treatment for Campylobacter infections. However, an increased resistance to quinolones has raised public health concerns. The development of new quinolone-based antibiotics with high activity is critical for effective, as DNA gyrase, the target of quinolones, is an essential enzyme for bacterial growth in several mechanisms. The evaluation of antibiotic activity against Campylobacter jejuni largely relies on drug susceptibility tests, which require at least 2 days to produce results. Thus, an in vitro method for studying the activity of quinolones against the C. jejuni DNA gyrase is preferred. To identify potent quinolones, we investigated the interaction of C. jejuni DNA gyrase with a number of quinolones using recombinant subunits. The combination of purified subunits exhibited DNA supercoiling activity in an ATP dependent manner. Drug concentrations that inhibit DNA supercoiling by 50% (IC50s) of 10 different quinolones were estimated to range from 0.4 (sitafloxacin) to >100 μg/mL (nalidixic acid). Sitafloxacin showed the highest inhibitory activity, and the analysis of the quinolone structure-activity relationship demonstrated that a fluorine atom at R-6 might play the important role in the inhibitory activity against C. jejuni gyrase. Measured quinolone IC50s correlated well with minimum inhibitory concentrations (R = 0.9943). These suggest that the in vitro supercoiling inhibition assay on purified recombinant C. jejuni DNA gyrase is a useful and predictive technique to monitor the antibacterial potency of quinolones. And furthermore, these data suggested that sitafloxacin might be a good candidate for clinical trials on campylobacteriosis.
Collapse
Affiliation(s)
- Ruchirada Changkwanyeun
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Siriporn Kongsoi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Kazumasa Yokoyama
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd, Azumino, Japan
| | - Hyun Kim
- Laboratory of Tuberculosis Control, Department of Bacteriology II, National Institute of Infectious Diseases, Musashi Murayama, Japan
| | - Orasa Suthienkul
- Faculty of Public Health, Thammasat University, Rangsit, Thailand; Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Kanjana Changkaew
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, The Global Station for Zoonosis Control, Sapporo, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, The Global Station for Zoonosis Control, Sapporo, Japan.
| |
Collapse
|
14
|
Veziris N, Chauffour A, Escolano S, Henquet S, Matsuoka M, Jarlier V, Aubry A. Resistance of M. leprae to quinolones: a question of relativity? PLoS Negl Trop Dis 2013; 7:e2559. [PMID: 24244784 PMCID: PMC3828155 DOI: 10.1371/journal.pntd.0002559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED Multidrug resistant leprosy, defined as resistance to rifampin, dapsone and fluoroquinolones (FQ), has been described in Mycobacterium leprae. However, the in vivo impact of fluoroquinolone resistance, mainly mediated by mutations in DNA gyrase (GyrA2GyrB2), has not been precisely assessed. Our objective was to measure the impact of a DNA gyrase mutation whose implication in fluoroquinolone resistance has been previously demonstrated through biochemical studies, on the in vivo activity of 3 fluoroquinolones: ofloxacin, moxifloxacin and garenoxacin. METHODOLOGY/PRINCIPAL FINDINGS We used the proportional bactericidal method. 210 four-week-old immunodeficient female Nude mice (NMRI-Foxn1(nu) /Foxn1(nu) ) were inoculated in the left hind footpad with 0.03 ml of bacterial suspension containing 5 × 10(3), 5 × 10(2), 5 × 10(1), and 5 × 10(0) M. leprae AFB organisms of strain Hoshizuka-4 which is a multidrug resistant strain harboring a GyrA A91V substitution. An additional subgroup of 10 mice was inoculated with 5 × 10(-1) bacilli in the untreated control group. The day after inoculation, subgroups of mice were treated with a single dose of ofloxacin, moxifloxacin, garenoxacin or clarithromycin at 150 mg/kg dosing. 12 months later mice were sacrificed and M. leprae bacilli were numbered in the footpad. The results from the untreated control group indicated that the infective inoculum contained 23% of viable M. leprae. The results from the moxifloxacin and garenoxacin groups indicated that a single dose of these drugs reduced the percentage of viable M. leprae by 90%, similarly to the reduction observed after a single dose of the positive control drug clarithromycin. Conversely, ofloxacin was less active than clarithromycin. CONCLUSION/SIGNIFICANCE DNA gyrase mutation is not always synonymous of lack of in vivo fluoroquinolone activity in M. leprae. As for M. tuberculosis, in vivo studies allow to measure residual antibiotic activity in case of target mutations in M. leprae.
Collapse
Affiliation(s)
- Nicolas Veziris
- Université Pierre et Marie Curie-Paris 6, Paris, France
- Centre National de Référence de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Laboratoire de bactériologie-hygiène, Paris, France
| | | | - Sylvie Escolano
- Inserm, Centre for Research in Epidemiology and Population Health (CESP), U1018, Biostatistics, F-94807, Villejuif, France and Univ Paris-Sud, UMRS 1018, F-94807, Villejuif, France
| | - Sarah Henquet
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Laboratoire de bactériologie-hygiène, Paris, France
| | - Masanori Matsuoka
- Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama-shi, Tokyo, Japan
| | - Vincent Jarlier
- Université Pierre et Marie Curie-Paris 6, Paris, France
- Centre National de Référence de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Laboratoire de bactériologie-hygiène, Paris, France
| | - Alexandra Aubry
- Université Pierre et Marie Curie-Paris 6, Paris, France
- Centre National de Référence de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Laboratoire de bactériologie-hygiène, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Synthesis of gatifloxacin derivatives and their biological activities against Mycobacterium leprae and Mycobacterium tuberculosis. Bioorg Med Chem 2013; 21:948-56. [DOI: 10.1016/j.bmc.2012.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/23/2022]
|
16
|
Yokoyama K, Kim H, Mukai T, Matsuoka M, Nakajima C, Suzuki Y. Impact of amino acid substitutions in B subunit of DNA gyrase in Mycobacterium leprae on fluoroquinolone resistance. PLoS Negl Trop Dis 2012; 6:e1838. [PMID: 23071850 PMCID: PMC3469482 DOI: 10.1371/journal.pntd.0001838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ofloxacin is a fluoroquinolone (FQ) used for the treatment of leprosy. FQs are known to interact with both A and B subunits of DNA gyrase and inhibit supercoiling activity of this enzyme. Mutations conferring FQ resistance have been reported to be found only in the gene encoding A subunit of this enzyme (gyrA) of M. leprae, although there are many reports on the FQ resistance-associated mutation in gyrB in other bacteria, including M. tuberculosis, a bacterial species in the same genus as M. leprae. METHODOLOGY/PRINCIPAL FINDINGS To reveal the possible contribution of mutations in gyrB to FQ resistance in M. leprae, we examined the inhibitory activity of FQs against recombinant DNA gyrases with amino acid substitutions at position 464, 502 and 504, equivalent to position 461, 499 and 501 in M. tuberculosis, which are reported to contribute to reduced sensitivity to FQ. The FQ-inhibited supercoiling assay and FQ-induced cleavage assay demonstrated the important roles of these amino acid substitutions in reduced sensitivity to FQ with marked influence by amino acid substitution, especially at position 502. Additionally, effectiveness of sitafloxacin, a FQ, to mutant DNA gyrases was revealed by low inhibitory concentration of this FQ. SIGNIFICANCE Data obtained in this study suggested the possible emergence of FQ-resistant M. leprae with mutations in gyrB and the necessity of analyzing both gyrA and gyrB for an FQ susceptibility test. In addition, potential use of sitafloxacin for the treatment of problematic cases of leprosy by FQ resistant M. leprae was suggested.
Collapse
Affiliation(s)
- Kazumasa Yokoyama
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Hyun Kim
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tetsu Mukai
- Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Masanori Matsuoka
- Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Chie Nakajima
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
- JST/JICA-SATREPS, Tokyo, Japan
- * E-mail:
| |
Collapse
|
17
|
Cambau E, Chauffour-Nevejans A, Tejmar-Kolar L, Matsuoka M, Jarlier V. Detection of antibiotic resistance in leprosy using GenoType LepraeDR, a novel ready-to-use molecular test. PLoS Negl Trop Dis 2012; 6:e1739. [PMID: 22860144 PMCID: PMC3409109 DOI: 10.1371/journal.pntd.0001739] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although leprosy is efficiently treated by multidrug therapy, resistance to first-line (dapsone, rifampin) and to second-line drugs (fluoroquinolones) was described worldwide. Since Mycobacterium leprae is not growing in vitro, phenotypic susceptibility testing requires a one year experiment in the mouse model and this is rarely performed. Genetics on antibiotic resistance provide the basis for molecular tests able to detect for antibiotic resistance in leprosy. METHODOLOGY/PRINCIPAL FINDINGS A reverse hybridization DNA strip test was developed as the GenoType LepraeDR test. It includes DNA probes for the wild-type sequence of regions of rpoB, gyrA and folP genes and probes for the prevalent mutations involved in acquired resistance to rifampin, fluoroquinolones and dapsone, respectively. The performances of the GenoType LepraeDR test were evaluated by comparing its results on 120 M. leprae strains, previously studied for resistance by the reference drug in vivo susceptibility method in the mouse footpad and for mutations in the gene regions described above by PCR-sequencing. The results of the test were 100% concordant with those of PCR sequencing and the mouse footpad test for the resistant strains: 16 strains resistant to rifampin, 22 to dapsone and 4 to ofloxacin with mutations (numbering system of the M. leprae genome) in rpoB (10 S456L, 1 S456F, 1 S456M + L458V, 1 H451Y, 1 G432S + H451D, 1 T433I + D441Y and 1 Q438V), in folP1 (8 P55L, 3 P55R, 7 T53I, 3 T53A, 1 T53V) and gyrA (4 A91V), respectively. Concordance was 98.3% for the susceptible strains, two strains showing a mutation at the codon 447 that in fact was not conferring resistance as shown by the in vivo method. CONCLUSIONS/SIGNIFICANCE The GenoType LepraeDR test is a commercially available test that accurately detects for antibiotic resistance in leprosy cases. The test is easy to perform and could be implemented in endemic countries.
Collapse
|
18
|
Legendre DP, Muzny CA, Swiatlo E. Hansen's Disease (Leprosy): Current and Future Pharmacotherapy and Treatment of Disease-Related Immunologic Reactions. Pharmacotherapy 2012; 32:27-37. [DOI: 10.1002/phar.1009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Davey P. Legendre
- The Pharmacy Division; Health Management Associates; Jackson Mississippi
| | - Christina A. Muzny
- The Division of Infectious Diseases; University of Alabama at Birmingham; Birmingham Alabama
| | - Edwin Swiatlo
- The Division of Infectious Diseases; University of Mississippi Medical Center; Jackson Mississippi
| |
Collapse
|
19
|
Amino acid substitutions at position 95 in GyrA can add fluoroquinolone resistance to Mycobacterium leprae. Antimicrob Agents Chemother 2011; 56:697-702. [PMID: 22106221 DOI: 10.1128/aac.05890-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amino acid substitutions at position 89 or 91 in GyrA of fluoroquinolone-resistant Mycobacterium leprae clinical isolates have been reported. In contrast, those at position 94 in M. tuberculosis, equivalent to position 95 in M. leprae, have been identified most frequently. To verify the possible contribution of amino acid substitutions at position 95 in M. leprae to fluoroquinolone resistance, we conducted an in vitro assay using wild-type and mutant recombinant DNA gyrases. Fluoroquinolone-mediated supercoiling activity inhibition assay and DNA cleavage assay revealed the potent contribution of an amino acid substitution of Asp to Gly or Asn at position 95 to fluoroquinolone resistance. These results suggested the possible future emergence of quinolone-resistant M. leprae isolates with these amino acid substitutions and the usefulness of detecting these mutations for the rapid identification of fluoroquinolone resistance in leprosy.
Collapse
|
20
|
KIM H, SUZUKI H, MATSUOKA M, MATSUBA T, YOKOYAMA K, NAKAJIMA C, SUZUKI Y. Molecular mechanism of the acquisition of new-quinolone resistance in Mycobacterium leprae and M. tuberculosis and rapid differentiation methods for resistant bacilli. ACTA ACUST UNITED AC 2011; 80:17-27. [DOI: 10.5025/hansen.80.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hyun KIM
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
| | - Haruka SUZUKI
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
| | | | - Takashi MATSUBA
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University
| | - Kazumasa YOKOYAMA
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
| | - Chie NAKAJIMA
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
| | - Yasuhiko SUZUKI
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
- JST/JICA-SATREPS
| |
Collapse
|