1
|
Tan Y, Scornet AL, Yap MNF, Zhang D. Machine learning-based classification reveals distinct clusters of non-coding genomic allelic variations associated with Erm-mediated antibiotic resistance. mSystems 2024; 9:e0043024. [PMID: 38953319 PMCID: PMC11264731 DOI: 10.1128/msystems.00430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
The erythromycin resistance RNA methyltransferase (erm) confers cross-resistance to all therapeutically important macrolides, lincosamides, and streptogramins (MLS phenotype). The expression of erm is often induced by the macrolide-mediated ribosome stalling in the upstream co-transcribed leader sequence, thereby triggering a conformational switch of the intergenic RNA hairpins to allow the translational initiation of erm. We investigated the evolutionary emergence of the upstream erm regulatory elements and the impact of allelic variation on erm expression and the MLS phenotype. Through systematic profiling of the upstream regulatory sequences across all known erm operons, we observed that specific erm subfamilies, such as ermB and ermC, have independently evolved distinct configurations of small upstream ORFs and palindromic repeats. A population-wide genomic analysis of the upstream ermB regions revealed substantial non-random allelic variation at numerous positions. Utilizing machine learning-based classification coupled with RNA structure modeling, we found that many alleles cooperatively influence the stability of alternative RNA hairpin structures formed by the palindromic repeats, which, in turn, affects the inducibility of ermB expression and MLS phenotypes. Subsequent experimental validation of 11 randomly selected variants demonstrated an impressive 91% accuracy in predicting MLS phenotypes. Furthermore, we uncovered a mixed distribution of MLS-sensitive and MLS-resistant ermB loci within the evolutionary tree, indicating repeated and independent evolution of MLS resistance. Taken together, this study not only elucidates the evolutionary processes driving the emergence and development of MLS resistance but also highlights the potential of using non-coding genomic allele data to predict antibiotic resistance phenotypes. IMPORTANCE Antibiotic resistance (AR) poses a global health threat as the efficacy of available antibiotics has rapidly eroded due to the widespread transmission of AR genes. Using Erm-dependent MLS resistance as a model, this study highlights the significance of non-coding genomic allelic variations. Through a comprehensive analysis of upstream regulatory elements within the erm family, we elucidated the evolutionary emergence and development of AR mechanisms. Leveraging population-wide machine learning (ML)-based genomic analysis, we transformed substantial non-random allelic variations into discernible clusters of elements, enabling precise prediction of MLS phenotypes from non-coding regions. These findings offer deeper insight into AR evolution and demonstrate the potential of harnessing non-coding genomic allele data for accurately predicting AR phenotypes.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Alexandre Le Scornet
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mee-Ngan Frances Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Hu Y, Ouyang L, Li D, Deng X, Xu H, Yu Z, Fang Y, Zheng J, Chen Z, Zhang H. The antimicrobial activity of cethromycin against Staphylococcus aureus and compared with erythromycin and telithromycin. BMC Microbiol 2023; 23:109. [PMID: 37081393 PMCID: PMC10116812 DOI: 10.1186/s12866-023-02858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/08/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND This study aims to explore the antibacterial activity of cethromycin against Staphylococcus aureus (S. aureus), and its relationship with multilocus sequence typing (MLST), erythromycin ribosomal methylase (erm) genes and macrolide-lincosamide-streptogramin B (MLSB) phenotypes of S. aureus. RESULTS The minimum inhibitory concentrations (MICs) of cethromycin against 245 S. aureus clinical isolates ranged from 0.03125 to ≥ 8 mg/L, with the resistance of 38.8% in 121 methicillin-resistant S. aureus (MRSA). This study also found that cethromycin had strong antibacterial activity against S. aureus, with the MIC ≤ 0.5 mg/L in 55.4% of MRSA and 60.5% of methicillin-sensitive S. aureus (MSSA), respectively. The main MLSTs of 121 MRSA were ST239 and ST59, and the resistance of ST239 isolates to cethromycin was higher than that in ST59 isolates (P = 0.034). The top five MLSTs of 124 MSSA were ST7, ST59, ST398, ST88 and ST120, but there was no difference in the resistance of MSSA to cethromycin between these STs. The resistance of ermA isolates to cethromycin was higher than that of ermB or ermC isolates in MRSA (P = 0.016 and 0.041, respectively), but the resistance of ermB or ermC isolates to cethromycin was higher than that of ermA isolates in MSSA (P = 0.019 and 0.026, respectively). The resistance of constitutive MLSB (cMLSB) phenotype isolates to cethromycin was higher than that of inducible MLSB (iMLSB) phenotype isolates in MRSA (P < 0.001) or MSSA (P = 0.036). The ermA, ermB and ermC genes was mainly found in ST239, ST59 and ST1 isolates in MRSA, respectively. Among the MSSA, the ermC gene was more detected in ST7, ST88 and ST120 isolates, but more ermB genes were detected in ST59 and ST398 isolates. The cMLSB phenotype was more common in ST239 and ST59 isolates of MRSA, and was more frequently detected in ST59, ST398, and ST120 isolates of MSSA. CONCLUSION Cethromycin had strong antibacterial activity against S. aureus. The resistance of MRSA to cethromycin may had some clonal aggregation in ST239. The resistance of S. aureus carrying various erm genes or MLSB phenotypes to cethromycin was different.
Collapse
Affiliation(s)
- Yuechen Hu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Lili Ouyang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
- Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Xiangbin Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Hongbo Xu
- Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Yeqing Fang
- Department of Cardiology, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China.
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China.
| | - Haigang Zhang
- Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China.
| |
Collapse
|
3
|
Abu Lila AS, Alharby TN, Alanazi J, Alanazi M, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Al Balushi AA, Hegazy WAH. Clinical Resistant Strains of Enterococci and Their Correlation to Reduced Susceptibility to Biocides: Phenotypic and Genotypic Analysis of Macrolides, Lincosamides, and Streptogramins. Antibiotics (Basel) 2023; 12:antibiotics12030461. [PMID: 36978327 PMCID: PMC10044631 DOI: 10.3390/antibiotics12030461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Enterococci are troublesome nosocomial, opportunistic Gram-positive cocci bacteria showing enhanced resistance to many commonly used antibiotics. This study aims to investigate the prevalence and genetic basis of antibiotic resistance to macrolides, lincosamides, and streptogramins (MLS) in Enterococci, as well as the correlation between MLS resistance and biocide resistance. From 913 clinical isolates collected from King Khalid Hospital, Hail, Saudi Arabia, 131 isolates were identified as Enterococci spp. The susceptibility of the clinical enterococcal isolates to several MLS antibiotics was determined, and the resistance phenotype was detected by the triple disk method. The MLS-involved resistance genes were screened in the resistant isolates. The current results showed high resistance rates to MLS antibiotics, and the constitutive resistance to all MLS (cMLS) was the most prevalent phenotype, observed in 76.8% of resistant isolates. By screening the MLS resistance-encoding genes in the resistant isolates, the erythromycin ribosome methylase (erm) genes that are responsible for methylation of bacterial 23S rRNA were the most detected genes, in particular, ermB. The ereA esterase-encoding gene was the most detected MLS modifying-encoding genes, more than lnuA (adenylation) and mphC (phosphorylation). The minimum inhibitory concentrations (MICs) of commonly used biocides were detected in resistant isolates and correlated with the MICs of MLS antibiotics. The present findings showed a significant correlation between MLS resistance and reduced susceptibility to biocides. In compliance with the high incidence of the efflux-encoding genes, especially mefA and mefE genes in the tolerant isolates with higher MICs to both MLS antibiotics and biocides, the efflux of resistant isolates was quantified, and there was a significant increase in the efflux of resistant isolates with higher MICs as compared to those with lower MICs. This could explain the crucial role of efflux in developing cross-resistance to both MLS antibiotics and biocides.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Tareq Nafea Alharby
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Muteb Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah Ali Al Balushi
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
4
|
Descriptive Analysis of Circulating Antimicrobial Resistance Genes in Vancomycin-Resistant Enterococcus (VRE) during the COVID-19 Pandemic. Biomedicines 2022; 10:biomedicines10051122. [PMID: 35625861 PMCID: PMC9138224 DOI: 10.3390/biomedicines10051122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023] Open
Abstract
COVID-19 offers ideal premises for bacteria to develop antimicrobial resistance. In this study, we evaluated the presence of several antimicrobial resistance genes (ARG) in vancomycin-resistant Enterococcus (VRE) isolated from rectal swabs from patients at a hospital in Cluj-Napoca, Romania. Rectal swabs were cultivated on CHROMID® VRE (bioMérieux, Marcy—l’ Étoile, France) and positive isolates were identified using MALDI-TOF Mass Spectrometry (Bruker Daltonics, Bremen, Germany) and further analyzed using the PCR technique for the presence of the following ARGs: van A, van B, tet(M), tet(L), ermB, msrA, mefA, aac(6′)-Im, aph(2)-Ib, ant(4′)-Ia, sul1, sul2, sul3, and NDM1. We isolated and identified 68 isolates of Enterococcus faecium and 11 isolates of Enterococcus faecalis. The molecular analysis showed 66 isolates positive for the vanA gene and eight positive for vanB. The most frequent association of ARG in VRE was vanA-tet(M)-ermB. There was no statistically significant difference between Enterococcus faecium and Enterococcus faecalis regarding ARGs. Our work proves that during the COVID-19 pandemic, highly resistant isolates of Enterococcus were present in patients in the intensive care unit; thus, better healthcare policies should be implemented for the management and control of these highly resistant isolates in the future.
Collapse
|
5
|
Wang H, Wu D, Di L, Zhu F, Wang Z, Sun L, Chen Y, Jiang S, Zhuang H, Chen M, Ji S, Chen Y. Genetic Characteristics of Multiple Copies of Tn1546-Like Elements in ermB-Positive Methicillin-Resistant Staphylococcus aureus From Mainland China. Front Microbiol 2022; 13:814062. [PMID: 35295307 PMCID: PMC8919048 DOI: 10.3389/fmicb.2022.814062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To determine the genetic structure of ermB-positive Tn1546-like mobile elements in methicillin-resistant Staphylococcus aureus (MRSA) from mainland China. Methods A total of 271 erythromycin-resistant MRSA isolates were isolated from Sir Run Run Shaw Hospital (SRRSH) from 2013 to 2015. Whole-genome sequencing was performed for the ermB-positive strains, and the genetic environment of the ermB genes was analyzed. Southern hybridization analysis and transformation tests were performed to confirm the location of the ermB gene. Results A total of 64 isolates (64/271, 23.6%) were ermB-positive strains, with 62 strains (62/64, 96.9%) belonging to the CC59 clone. The other two strains, SR130 and SR231, belonging to CC5-ST965, both harbored 14,567 bp ermB-positive Tn1546-like elements and displayed multidrug-resistant profiles. PFGE followed by Southern blot demonstrated that the ermB genes were located on the plasmids of both SR130 and SR231, while two copies of ermB were located on the chromosome of SR231. Further sequencing demonstrated that SR231 carried one Tn1546-ermB elements in the plasmid and two identical copies integrated on the chromosome, which had 99.99% identity to the element in the plasmid of SR130. The Tn1546-ermB elements were highly similar (100% coverage, >99.9% identity) to the element Tn6636 reported in a previous study from Taiwan. The plasmids (pSR130 and pSR231) harboring ermB-positive Tn1546-like elements were also identical to the mosaic plasmid pNTUH_5066148. However, conjugation of ermB-carrying plasmids of SR130 and SR231 were failed after triple repeats. Conclusion Multiple copies of ermB-positive Tn1546-like mobile elements were found in CC5-ST965 MRSA from mainland China, showing the wide dissemination of these Enterococcus faecium-originated ermB-positive Tn1546-like elements. Molecular epidemiological study of Tn1546-like elements is essential to avoid the spreading of resistant determinants.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Di
- Department of Clinical Laboratory, Tongxiang First people’s hospital, Tongxiang, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shujuan Ji,
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hospital Epidemiology and Infection Control, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Yan Chen,
| |
Collapse
|
6
|
Farias BOD, Bianco K, Nascimento APA, Gonçalves de Brito AS, Moreira TC, Clementino MM. Genomic Analysis of Multidrug-Resistant Enterococcus faecium Harboring vanA Gene from Wastewater Treatment Plants. Microb Drug Resist 2022; 28:444-452. [PMID: 35172112 DOI: 10.1089/mdr.2021.0254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence of vancomycin-resistant Enterococcus faecium (Efm) harboring vanA gene and multidrug-resistant determinants is a relevant public health concern. It is an opportunistic pathogen responsible for nosocomial infections widely distributed in the environment, including wastewater treatment plants (WWTPs). Our study addresses a genomic investigation of vanA-carrying Efm from WWTPs in Brazil. Samples from five WWTPs supplied with sewage from different sources were evaluated. Here we present whole-genome sequencing of eight vanA-Efm isolates performed on Illumina MiSeq platform. All these isolates presented multidrug-resistant profile, and five strains were from treated wastewater. Multiple antimicrobial resistance genes (ARGs) were found, such as aph(3')-IIIa, ant(6')-Ia, erm(B), and msrC, some of them being allocated in plasmids. The virulence profile was predominantly constituted by efaAfm and acm genes and all isolates, except for one, were predicted as human pathogens. Multilocus sequence typing analysis revealed a new allele and five different STs, three previously described (ST32, ST168, and ST253) and two novel ones (ST1893 and ST1894). Six strains belonged to CC17, often associated with hospital outbreaks. As far as our knowledge, no genomic studies of vanA-Efm recovered from WWTPs revealed isolates belonging to CC17 in Brazil. Therefore, our findings point to the environmental spread of Efm carrying multiple ARGs.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Kayo Bianco
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Alves Nascimento
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Thais Costa Moreira
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Maysa Mandetta Clementino
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
7
|
Wang H, Zhuang H, Ji S, Sun L, Zhao F, Wu D, Shen P, Jiang Y, Yu Y, Chen Y. Distribution of erm genes among MRSA isolates with resistance to clindamycin in a Chinese teaching hospital. INFECTION GENETICS AND EVOLUTION 2021; 96:105127. [PMID: 34718190 DOI: 10.1016/j.meegid.2021.105127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/20/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
The objective of this study was to analyze erythromycin and clindamycin resistance patterns among different MRSA lineages in China. Antimicrobial susceptibility testing, resistance determinant screening, plasmid electroporation and sequence comparisons were performed. High rates of clindamycin (92.5%, 270/292) and erythromycin (92.8%, 271/292) resistance were observed. Additionally, 88.2% (60/68) of the ST59 MRSA isolates and 78.9% (15/19) of the ST239 MRSA isolates had constitutive resistance to clindamycin, while 82.0% (123/150) of the ST5 MRSA isolates showed inducible clindamycin resistance. The ermB gene was identified in 80.9% (55/68) of the ST59 isolates but was not detected in ST5 and ST239 MRSA isolates. Detection rates of ermA were high in the ST5 (99.3%, 149/150) and ST239 (89.5%, 17/19) MRSA isolates, but no ermA-positive ST59 MRSA isolates were identified. The ermC gene, observed to be harbored on similar, transmissible plasmids ranging in size from 2402 to 2473 bp, were found in different MRSA lineages. Summarily, high erythromycin and clindamycin resistance rates were observed in MRSA isolates. ST59 and ST239 MRSA isolates primarily exhibited constitutive resistance, while ST5 MRSA isolates showed inducible resistance phenotypes. ermA and ermB genes were frequently carried by specific MRSA clones, while ermC gene was present within small transmissible plasmids in all lineages. Erythromycin and clindamycin resistance genes transfer between MRSA isolates in healthcare settings remains a problem, and infection control procedures should be applied.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Asgharzadeh Marghmalek S, Valadan R, Gholami M, Nasrolahei M, Goli HR. Survey on antimicrobial resistance and virulence-related genes in Enterococcus faecium and Enterococcus faecalis collected from hospital environment in the north of Iran. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Yan XM, Wang J, Tao XX, Jia HB, Meng FL, Yang H, You YH, Zheng B, Hu Y, Bu XX, Zhang JZ. A Conjugative MDR pMG1-Like Plasmid Carrying the lsa(E) Gene of Enterococcus faecium With Potential Transmission to Staphylococcus aureus. Front Microbiol 2021; 12:667415. [PMID: 34149653 PMCID: PMC8212935 DOI: 10.3389/fmicb.2021.667415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
lsa(E) is a pleuromutilin, lincosamide, and streptogramin A (PLSA phenotype) resistance gene that was first described in S. aureus and was thought to have been transferred from Enterococcus sp. This study aimed to elucidate the prevalence of the lsa(E) gene among E. faecium isolates at a tertiary teaching hospital and to evaluate the transferability of the lsa(E) gene from E. faecium to S. aureus in vitro. A total of 96 E. faecium strains isolated from one hospital in Beijing in 2013 were analysed for quinupristin-dalfopristin (QDA) resistance genes, and multilocus sequence typing (MLST) was performed. The transferability of QDA resistance between ten E. faecium strains and four S. aureus strains was determined by filter mating. Genome sequencing of the transconjugant was performed. A total of 46 E. faecium isolates (46/96, 47.92%) tested positive for lsa(E), while two isolates (2/96, 2.08%) tested positive for lsa(A). Thirty-six lsa(E)-positive strains (36/46, 78.3%) belonged to ST78. Among 40 mating tests, lsa(E) was successfully transferred through one conjugation at a frequency of 1.125 × 10-7 transconjugants per donor. The QDA resistance of the transconjugant N7435-R3645 was expressed at a higher level (MIC = 16 mg/L) than that of the parent S. aureus strain (MIC = 0.38 mg/L). Next-generation sequencing (NGS) analysis of the transconjugant N7435-R3645 showed that the complete sequence of the lsa(E)-carrying plasmid pN7435-R3645 had a size of 92,396 bp and a G + C content of 33% (accession no. MT022086). The genetic map of pN7435-R3645 had high nucleotide similarity and shared the main open reading frame (ORF) features with two plasmids: E. faecium pMG1 (AB206333.1) and E. faecium LS170308 (CP025078.1). The rep gene of pN7435-R3645 showed 100% identity with that of pMG1, although it did not belong to the rep1-19 family but instead a unique rep family. Multiple antibiotic resistance genes, including lsa(E), aadE and lnu(B), erm(B), ant6-Ia, and lnu(B), were present on the plasmid. In conclusion, an lsa(E)-carrying plasmid that can be transferred by conjugation from E. faecium to S. aureus in vitro was identified. This multidrug resistance (MDR) pMG1-like plasmid may act as a vector in the dissemination of antimicrobial resistance among species.
Collapse
Affiliation(s)
- Xiao-Mei Yan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Wang
- Department of Clinical Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Xiao-Xia Tao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong-Bing Jia
- Department of Clinical Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Fan-Liang Meng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Yang
- Department of Clinical Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Yuan-Hai You
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Xia Bu
- Department of Clinical Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Jian-Zhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
10
|
Wan TW, Liu YJ, Wang YT, Lin YT, Hsu JC, Tsai JC, Chiu HC, Hsueh PR, Hung WC, Teng LJ. Potentially conjugative plasmids harboring Tn6636, a multidrug-resistant and composite mobile element, in Staphylococcus aureus. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:225-233. [PMID: 33840606 DOI: 10.1016/j.jmii.2021.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES This study aimed to provide detailed genetic characterization of Tn6636, a multidrug-resistant and composite mobile element, in clinical isolates of Staphylococcus aureus. METHODS A total of 112 ermB-positive methicillin-susceptible S. aureus (MSSA) and 224 ermB-positive methicillin-resistant S. aureus (MRSA) isolates collected from 2000 to 2015 were tested for the presence of Tn6636. Detection of the plasmids harboring Tn6636 was performed by S1 nuclease digestion pulsed-field gel electrophoresis (PFGE) analysis, conjugation test, and whole genome sequencing (WGS). RESULTS Prevalence of Tn6636 in MSSA is higher than that in MRSA. Ten MSSA isolates and 10 MRSA isolates carried Tn6636. The 10 MSSA isolates belonged to three sequence types (ST), including ST7 (n = 6), ST5 (n = 3), and ST59 (n = 1). The 10 MRSA isolates belonged to ST188 (n = 8) and ST965 (n = 2). Analysis of plasmid sequences revealed that Tn6636 was harbored by six different mosaic plasmids. In addition to resistance genes, some plasmids also harbored toxin genes. CONCLUSION The presence of multi-resistant Tn6636 in plasmids of both MSSA and MRSA with various STs suggests its broad dissemination. Results indicate that Tn6636 has existed for at least 16 years in Taiwan. The mosaic plasmids harboring Tn6636 can be transferred by conjugation. Ongoing surveillance of Tn6636 is essential to avoid continued spreading of resistant plasmids.
Collapse
Affiliation(s)
- Tsai-Wen Wan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityCollege of Medicine, Taipei, Taiwan
| | - Yu-Jung Liu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityCollege of Medicine, Taipei, Taiwan
| | - Yu-Ting Wang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jia-Chuan Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityCollege of Medicine, Taipei, Taiwan
| | - Jui-Chang Tsai
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityCollege of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityCollege of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Gast KB, van Oudheusden AJG, Murk JL, Stohr JJJM, Buiting AG, Verweij JJ. Successful containment of two vancomycin-resistant Enterococcus faecium (VRE) outbreaks in a Dutch teaching hospital using environmental sampling and whole-genome sequencing. J Hosp Infect 2021; 111:132-139. [PMID: 33582200 DOI: 10.1016/j.jhin.2021.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) may cause nosocomial outbreaks. This article describes all VRE carriers that were identified in 2018 at Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands. AIM To investigate the genetic relatedness of VRE isolates and the possibility of a common environmental reservoir using environmental sampling and whole-genome sequencing (WGS). METHODS Infection control measures consisted of contact isolation, contact surveys, point prevalence screening, environmental sampling, cleaning and disinfection. VRE isolates were sequenced using a MiSeq sequencer (Illumina, San Diego, CA, USA), and assembled using SPAdes v.3.10.1. A minimal spanning tree and a neighbour joining tree based on allelic diversity of core-genome multi-locus sequence typing and accessory genes were created using Ridom SeqSphere+ software (Ridom GmbH, Münster, Germany). FINDINGS Over a 1-year period, 19 VRE carriers were identified; of these, 17 were part of two outbreaks. Before environmental cleaning and disinfection, 55 (14%) environmental samples were VRE-positive. Fifty-one isolates (23 patient samples and 28 environmental samples) were available for WGS analysis. Forty-four isolates were assigned to ST117-vanB, five were assigned to ST17-vanB, and two were assigned to ST80-vanB. Isolates from Outbreak 1 (N=22) and Outbreak 2 (N=22) belonged to ST117-vanB; however, WGS showed a different cluster type with 257 allelic differences. CONCLUSION WGS of two outbreak strains provided discriminatory information regarding genetic relatedness, and rejected the hypothesis of a common environmental reservoir. A high degree of environmental contamination was associated with higher VRE transmission. Quantification of environmental contamination may reflect the potential for VRE transmission and could therefore support the infection control measures.
Collapse
Affiliation(s)
- K B Gast
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.
| | - A J G van Oudheusden
- Department of Infection Prevention, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - J L Murk
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - J J J M Stohr
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - A G Buiting
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands; Department of Infection Prevention, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - J J Verweij
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
12
|
Wang YT, Lin YT, Wan TW, Wang DY, Lin HY, Lin CY, Chen YC, Teng LJ. Distribution of antibiotic resistance genes among Staphylococcus species isolated from ready-to-eat foods. J Food Drug Anal 2019; 27:841-848. [PMID: 31590755 PMCID: PMC9306985 DOI: 10.1016/j.jfda.2019.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022] Open
Abstract
We investigated antibiotic resistance of staphylococci isolated from 1128 samples of high-circulating RTE foods in Taiwan. A total of 111 Staphylococcus aureus and 709 coagulase-negative staphylococci (CoNS) comprising 23 species were isolated. The prevalence of S. aureus differed in various category of RTE foods, highest in fresh-cut fruits/vegetables (20.5%) and lowest in low-water activity (LWA) foods (0.7%). The overall staphylococcal contamination was highest in fresh-cut fruits/vegetables (62.2%), in which multiple isolates (up to 10) or species (up to 6) in single sample were frequently found. Distinct distribution of species contributed to unique feature in each category. Prevalence of antibiotic-resistant S. aureus was higher in fresh-cut fruits/vegetables samples (14.2% in 127) compared to other food categories (0–7.1%). A total of 4 MRSA carrying SCCmec type IV or VT were identified (3.6% in 111), in which 3 belonged to sequence type ST59 and one was ST5. Among CoNS, S. epidermidis and S. warneri exhibited higher non-intrinsic antibiotic resistance than other species. Of 41 methicillin-resistant CoNS (5.8% in 709) isolates, SCCmec type IV (n = 16) and type VT (n = 6) were most frequent. Isolates of S. saprophyticus, S. xylosus and S. sciuri displayed high rates of resistance to fusidic acid. Novel fusB-family determinants were identified in S. xylosus, S. sciuri and S. kloosii, which may contribute to their intrinsic resistance to fusidic acid. Compared to other food categories, fresh-cut fruits/vegetables were more contaminated by staphylococci carrying non-intrinsic resistance determinants including methicillin resistance. This nation-wide study demonstrated that some categories may have potential risk for transmitting antibiotic resistance, in which S. epidermidis and S. warneri should be gotten more attention.
Collapse
Affiliation(s)
- Yu-Ting Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Tzu Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsai-Wen Wan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Der-Yuan Wang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hsu-Yang Lin
- Division of Food Safety, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Che-Yang Lin
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Chih Chen
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
13
|
Sun X, Lin ZW, Hu XX, Yao WM, Bai B, Wang HY, Li DY, Chen Z, Cheng H, Pan WG, Deng MG, Xu GJ, Tu HP, Chen JW, Deng QW, Yu ZJ, Zheng JX. Biofilm formation in erythromycin-resistant Staphylococcus aureus and the relationship with antimicrobial susceptibility and molecular characteristics. Microb Pathog 2018; 124:47-53. [PMID: 30118805 DOI: 10.1016/j.micpath.2018.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/09/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE In this study, we aimed to investigate biofilm formation characteristics in clinical Staphylococcus aureus (S. aureus) isolates with erythromycin (ERY) resistance from China and further analyze their correlations with antimicrobial susceptibility and molecular characteristics. METHODOLOGY A total of 276 clinical isolates of ERY-resistant S. aureus, including 142 methicillin-resistant S. aureus (MRSA) strains and 134 methicillin-susceptible S. aureus (MSSA) strains, were retrospectively collected in China. Biofilms were determined by crystal violet staining and ERY resistance genes (ermA, ermB and ermC) were detected by polymerase chain reaction. Inducible clindamycin resistance was examined by D test and multilocus sequence typing, and clonal complexes (CCs) based on housekeeping genes were further determined. RESULTS The frequency of biofilm formation among ERY-resistant S. aureus was 40.9% (113/276) in total and no significant difference was found for the frequency of biofilm formation between ERY-resistant MRSA and ERY-resistant MSSA (44.4% vs 37.3%, P > 0.05). In ERY-resistant MRSA isolates, the frequency of biofilm formation in ermA-positive, gentamicin-resistant and ciprofloxacin-resistant isolates was higher than that in ermA-negative, gentamicin-sensitive and ciprofloxacin-sensitive isolates, respectively (63.9% vs 23.6%, P < 0.01; 60.3% vs 27.5%, P < 0.01; 65.2% vs 26.3%, P < 0.01). In addition, tetracycline resistance facilitated biofilm formation in both ERY-resistant MRSA and MSSA and the frequency of biofilm formation in CC239- or CC7S. aureus isolates with ERY resistance was significantly higher compared with that in CC59S. aureus (both P < 0.01). CONCLUSION The ermA gene, and gentamicin, ciprofloxacin and tetracycline resistance facilitate biofilm formation in ERY-resistant MRSA isolates and, moreover, ERY-resistant S. aureus isolates with positive biofilm formation exhibited clonality clustering regarding CC239 and CC7.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Zhi-Wei Lin
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Xiao-Xiong Hu
- Department of Infectious Diseases, The People's Hospital of Yichun City, Yichun University, Yichun, 336000, China.
| | - Wei-Ming Yao
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Bing Bai
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Hong-Yan Wang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Duo-Yun Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Hang Cheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Wei-Guang Pan
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Ming-Gui Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Guang-Jian Xu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Hao-Peng Tu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Jun-Wen Chen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Qi-Wen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China.
| | - Jin-Xin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Quality Control Center of Hospital Infection Management of Shenzhen City, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Colocation of the Multiresistance Gene cfr and the Fosfomycin Resistance Gene fosD on a Novel Plasmid in Staphylococcus arlettae from a Chicken Farm. Antimicrob Agents Chemother 2017; 61:AAC.01388-17. [PMID: 28923876 DOI: 10.1128/aac.01388-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023] Open
Abstract
The novel 63,558-bp plasmid pSA-01, which harbors nine antibiotic resistance genes, including cfr, erm(C), tet(L), erm(T), aadD, fosD, fexB, aacA-aphD, and erm(B), was characterized in Staphylococcus arlettae strain SA-01, isolated from a chicken farm in China. The colocation of cfr and fosD genes was detected for the first time in an S. arlettae plasmid. The detection of two IS431-mediated circular forms containing resistance genes in SA-01 suggested that IS431 may facilitate dissemination of antibiotic resistance genes.
Collapse
|