1
|
Shuai W, Cao J, Qian M, Tang Z. Physiologically Based Pharmacokinetic Modeling of Vancomycin in Critically Ill Neonates: Assessing the Impact of Pathophysiological Changes. J Clin Pharmacol 2024. [PMID: 39092894 DOI: 10.1002/jcph.6107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Dosing vancomycin for critically ill neonates is challenging owing to substantial alterations in pharmacokinetics (PKs) caused by variability in physiology, disease, and clinical interventions. Therefore, an adequate PK model is needed to characterize these pathophysiological changes. The intent of this study was to develop a physiologically based pharmacokinetic (PBPK) model that reflects vancomycin PK and pathophysiological changes in neonates under intensive care. PK-sim software was used for PBPK modeling. An adult model (model 0) was established and verified using PK profiles from previous studies. A neonatal model (model 1) was then extrapolated from model 0 by scaling age-dependent parameters. Another neonatal model (model 2) was developed based not only on scaled age-dependent parameters but also on quantitative information on pathophysiological changes obtained via a comprehensive literature search. The predictive performances of models 1 and 2 were evaluated using a retrospectively collected dataset from neonates under intensive care (chictr.org.cn, ChiCTR1900027919), comprising 65 neonates and 92 vancomycin serum concentrations. Integrating literature-based parameter changes related to hypoalbuminemia, small-for-gestational-age, and co-medication, model 2 offered more optimized precision than model 1, as shown by a decrease in the overall mean absolute percentage error (50.6% for model 1; 37.8% for model 2). In conclusion, incorporating literature-based pathophysiological changes effectively improved PBPK modeling for critically ill neonates. Furthermore, this model allows for dosing optimization before serum concentration measurements can be obtained in clinical practice.
Collapse
Affiliation(s)
- Weiwei Shuai
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| | - Jing Cao
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| | - Miao Qian
- Department of Neonatology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| | - Zhe Tang
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
2
|
Gadsby J, Stachow L, Mulla H. Age-Related Changes in Vancomycin Protein Binding: Is It Time to Take It Seriously? Ther Drug Monit 2024; 46:543-547. [PMID: 38648651 DOI: 10.1097/ftd.0000000000001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Vancomycin (VAN) protein binding in plasma is influenced by illness and age; hence, doses titrated according to total concentrations are fraught. In this study, model-estimated free VAN concentrations (EFVC) were compared with assumed free VAN concentrations (AFVC) in neonates, children, and adults in the intensive care unit and those on dialysis. METHODS Patient cohorts were identified from the hospital database. Demographics, clinical characteristics, total VAN concentrations, and laboratory variables were obtained from electronic health records. EFVC was derived from 6 models identified in the literature. For all models, total VAN concentration was the most important predictor; other predictors included albumin, total protein, and dialysis status. The AFVC was calculated as 50% of the total concentration (ie, assumption of 50% bound). RESULTS Differences between EFVC and AFVC in adults were insignificant; however, differences in pediatric intensive care unit patients, according to 2 different models, were significant: mean ± SD = 4.1 ± 1.58 mg/L and 4.7 ± 2.46 mg/L ( P < 0.001); the percentages within the free VAN trough range = 30.4% versus 55.1% and 30% versus 55.1%; and the supratherapeutic percentages = 65.2% versus 31.9% and 66.7% versus 31.9%, respectively. In neonates, the difference between EFVC and AFVC was mean ± SD = 6.9 ± 1.95 mg/L ( P < 0.001); the percentages within the free VAN trough range for continuous and intermediate dosing were 0% versus 81.3% and 14.3% versus 71.4%, and the supratherapeutic percentages were 100% versus 6.25% and 71.4% versus 0%, respectively. CONCLUSIONS The fraction of free unbound VAN is higher in sick children and neonates than in adults. Therefore, total VAN concentrations do not correlate with the pharmacologically active free VAN concentrations in the same manner as in adults. Adjusting VAN doses in neonates and children to target the same total VAN concentration as the recommended therapeutic range for adults may result in toxicfree concentrations.
Collapse
Affiliation(s)
- Jessica Gadsby
- Department of Pharmacy, University Hospitals of Leicester, Leicester, United Kingdom; and
| | - Lucy Stachow
- Department of Pharmacy, University Hospitals of Leicester, Leicester, United Kingdom; and
| | - Hussain Mulla
- Department of Pharmacy, University Hospitals of Leicester and College of Life Sciences, University of Leicester, United Kingdom
| |
Collapse
|
3
|
Nachiappa Ganesh R, Edwards A, El Zaatari Z, Gaber L, Barrios R, Truong LD. Vancomycin nephrotoxicity: A comprehensive clinico-pathological study. PLoS One 2024; 19:e0295136. [PMID: 38452051 PMCID: PMC10919848 DOI: 10.1371/journal.pone.0295136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION Vancomycin, a commonly prescribed antibiotic particularly in the setting of multi-drug resistant infections, is limited by its nephrotoxicity. Despite its common occurrence, much remains unknown on the clinicopathologic profile as well as the pathogenesis of vancomycin nephrotoxicity. Clinical studies included patients often with severe comorbidities and concomitant polypharmacy confounding the causal pathogenesis. Animal models cannot recapitulate this complex clinical situation. Kidney biopsy was not commonly performed. METHODS To address this limitation, we studied 36 patients who had renal biopsies for acute kidney injury (AKI) for suspicion of vancomycin nephrotoxicity. Detailed renal biopsy evaluation, meticulous evaluation of clinical profiles, and up-to-date follow-up allowed for a diagnostic categorization of vancomycin nephrotoxicity (VNT) in 25 patients and absence of vancomycin nephrotoxicity (NO-VNT) in 11 patients. For careful comparison of these two groups, we proceeded to compile a clinicopathologic and morphologic profiles characteristic for each group. RESULTS Patients with VNT had a characteristic clinical profile including a common clinical background, a high serum trough level of vancomycin, a rapidly developed and severe acute kidney injury, and a recovery of renal function often shortly after discontinuation of vancomycin. This clinical course was correlated with characteristic renal biopsy findings including acute tubulointerstitial nephritis of allergic type, frequent granulomatous inflammation, concomitant and pronounced acute tubular necrosis of nephrotoxic type, and vancomycin casts, in the absence of significant tubular atrophy and interstitial fibrosis. This clinico-pathologic profile was different from that of patients with NO-VNT, highlighting its role in the diagnosis, management and pathogenetic exploration of vancomycin nephrotoxicity. CONCLUSION Vancomycin nephrotoxicity has a distinctive morphologic and clinical profile, which should facilitate diagnosis, guide treatment and prognostication, and confer pathogenetic insights.
Collapse
Affiliation(s)
- Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, United States of America
| | - Angelina Edwards
- Division of Nephrology, Department of Medicine, Houston Methodist Hospital, Houston, Texas, United States of America
| | - Ziad El Zaatari
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, United States of America
| | - Lillian Gaber
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, United States of America
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, United States of America
| | - Luan D. Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, United States of America
| |
Collapse
|
4
|
Smits A, Annaert P, Cavallaro G, De Cock PAJG, de Wildt SN, Kindblom JM, Lagler FB, Moreno C, Pokorna P, Schreuder MF, Standing JF, Turner MA, Vitiello B, Zhao W, Weingberg AM, Willmann R, van den Anker J, Allegaert K. Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br J Clin Pharmacol 2022; 88:4965-4984. [PMID: 34180088 PMCID: PMC9787161 DOI: 10.1111/bcp.14958] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022] Open
Abstract
Developmental pharmacology describes the impact of maturation on drug disposition (pharmacokinetics, PK) and drug effects (pharmacodynamics, PD) throughout the paediatric age range. This paper, written by a multidisciplinary group of experts, summarizes current knowledge, and provides suggestions to pharmaceutical companies, regulatory agencies and academicians on how to incorporate the latest knowledge regarding developmental pharmacology and innovative techniques into neonatal and paediatric drug development. Biological aspects of drug absorption, distribution, metabolism and excretion throughout development are summarized. Although this area made enormous progress during the last two decades, remaining knowledge gaps were identified. Minimal risk and burden designs allow for optimally informative but minimally invasive PK sampling, while concomitant profiling of drug metabolites may provide additional insight in the unique PK behaviour in children. Furthermore, developmental PD needs to be considered during drug development, which is illustrated by disease- and/or target organ-specific examples. Identifying and testing PD targets and effects in special populations, and application of age- and/or population-specific assessment tools are discussed. Drug development plans also need to incorporate innovative techniques such as preclinical models to study therapeutic strategies, and shift from sequential enrolment of subgroups, to more rational designs. To stimulate appropriate research plans, illustrations of specific PK/PD-related as well as drug safety-related challenges during drug development are provided. The suggestions made in this joint paper of the Innovative Medicines Initiative conect4children Expert group on Developmental Pharmacology and the European Society for Developmental, Perinatal and Paediatric Pharmacology, should facilitate all those involved in drug development.
Collapse
Affiliation(s)
- Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neonatal intensive Care unit, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Giacomo Cavallaro
- Neonatal intensive care unit, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Pieter A J G De Cock
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Saskia N de Wildt
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jenny M Kindblom
- Pediatric Clinical Research Center, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian B Lagler
- Institute for Inherited Metabolic Diseases and Department of Pediatrics, Paracelsus Medical University, Clinical Research Center Salzburg, Salzburg, Austria
| | - Carmen Moreno
- Institute of Psychiatry and Mental Health, Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Paula Pokorna
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Physiology and Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Joseph F Standing
- UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Mark A Turner
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - Benedetto Vitiello
- Division of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China.,Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Clinical Research Centre, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | | | | | - John van den Anker
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Nooreddeen EA, Alzahrani RM, Alshanqiti NM. Severe Vancomycin Intoxication in an Infant Not Needing Dialysis: A Case Report and Literature Review. Cureus 2022; 14:e31950. [DOI: 10.7759/cureus.31950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
|
6
|
Wei S, Zhang D, Zhao Z, Mei S. Population pharmacokinetic model of vancomycin in postoperative neurosurgical patients. Front Pharmacol 2022; 13:1005791. [PMID: 36225566 PMCID: PMC9548544 DOI: 10.3389/fphar.2022.1005791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Objective: Vancomycin is commonly used in postoperative neurosurgical patients for empirical anti-infective treatment due to the low success rate of bacterial culture in cerebrospinal fluid (about 20%) and the high mortality of intracranial infection. At conventional doses, the rate of target achievement for vancomycin trough concentration is low and the pharmacokinetics of vancomycin varies greatly in these patients, which often leads to treatment failure. The objective of this study was to establish a population pharmacokinetic (PPK) model of vancomycin in postoperative neurosurgical patients for precision medicine. Method: A total of 895 vancomycin plasma concentrations from 560 patients (497 postoperative neurosurgical patients) were retrospectively collected. The model was analyzed by nonlinear mixed effects modeling method. One-compartment model and mixed residual model was employed. The influence of covariates on model parameters was tested by forward addition and backward elimination. Goodness-of-fit, bootstrap and visual predictive check were used for model evaluation. Monte Carlo simulations were employed for dosing strategies with AUC24 targets 400–600. Result: Estimated glomerular filtration rate (eGFR), body weight (BW) and mannitol had significant influence on vancomycin clearance (CL). eGFR(mL/min)=144×(Scr/a)b×0.993age, for female, a = 0.7, Scr ≤ 0.7 mg/dl, b = −0.329, Scr > 0.7 mg/dl, b = −1.209; for male, a = 0.9, Scr ≤ 0.9 mg/dl, b = −0.411, Scr > 0.9 mg/dl, b = −1.210. Vancomycin clearance was accelerated when co-medicated with mannitol and increased with eGFR and BW. In the final model, the population typical value is 7.98 L/h for CL and 60.2 L for apparent distribution volume, CL (L/h)=7.98×(eGFR/115.2)0.8×(BW/70)0.3×eA, where A = 0.13 when co-medicated with mannitol, otherwise A = 0. The model is stable and effective, with good predictability. Conclusion: In postoperative neurosurgical patients, a higher dose of vancomycin may be required due to the augmented renal function and the commonly used mannitol, especially in those with high body weight. Our vancomycin PPK model could be used for individualized treatment in postoperative neurosurgical patients.
Collapse
Affiliation(s)
- Shifeng Wei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Dongjie Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Zhigang Zhao, ; Shenghui Mei,
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Zhigang Zhao, ; Shenghui Mei,
| |
Collapse
|
7
|
Wong S, Reuter SE, Jones GR, Stocker SL. Review and evaluation of vancomycin dosing guidelines for obese individuals. Expert Opin Drug Metab Toxicol 2022; 18:323-335. [PMID: 35815356 DOI: 10.1080/17425255.2022.2098106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vancomycin dosing decisions are informed by factors such as body weight and renal function. It is important to understand the impact of obesity on vancomycin pharmacokinetics and how this may influence dosing decisions. Vancomycin dosing guidelines use varied descriptors of body weight and renal function. There is uncertainty whether current dosing guidelines result in attainment of therapeutic targets in obese individuals. AREAS COVERED Literature was explored using PubMed, Embase and Google Scholar for articles from January 1980 to July 2021 regarding obesity-driven physiological changes, their influence on vancomycin pharmacokinetics and body size descriptors and renal function calculations in vancomycin dosing. Pharmacokinetic simulations reflective of international vancomycin dosing guidelines were conducted to evaluate the ability of using total, ideal and adjusted body weight, as well as Cockcroft-Gault and CKD-EPI equations to attain an area-under-the-curve to minimum inhibitory concentration ratio (AUC24/MIC) target (400-650) in obese individuals. EXPERT OPINION Vancomycin pharmacokinetics in obese individuals remains debated. Guidelines that determine loading doses using total body weight, and maintenance doses adjusted based on renal function and adjusted body weight, may be most appropriate for obese individuals. Use of ideal body weight leads to subtherapeutic vancomycin exposure and underestimation of renal function.
Collapse
Affiliation(s)
- Sherilyn Wong
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Stephanie E Reuter
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Graham Rd Jones
- St Vincent's Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia.,Department of Chemical Pathology and Clinical Pharmacology, SydPath, St Vincent's Hospital, Darlinghurst, Australia
| | - Sophie L Stocker
- St Vincent's Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia.,Sydney School of Pharmacy, The University of Sydney, Sydney, Australia.,Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital Sydney, Darlinghurst, Australia
| |
Collapse
|
8
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
9
|
Ostroumova OD, Pereverzev AP. Hepatic impairment as a risk factor of adverse drug reactions. CONSILIUM MEDICUM 2021. [DOI: 10.26442/20751753.2021.12.201234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are a lot of clinical variants of hepatic impairment ranging from asymptomatic increase in transaminases to acute liver failure and fulminant hepatitis. Hepatic impairment is a polietiologic syndrome. According to the epidemiological study conducted in the United States (19982008), the main causes of hepatic impairment were paracetamol overdose (46%), idiopathic liver dysfunction (14%), other drugs (excluding paracetamol, 11%), viral hepatitis B (7%), other infectious and non-infectious diseases with liver damage (except for viral hepatitis) 7%, autoimmune hepatitis (5%), ischemic hepatitis (syn. hypoxic hepatitis, liver infarction) 4%, viral hepatitis A (3%) and Wilson's disease (2%). Hepatic impairment have a direct impact on the pharmacokinetics and pharmacodynamics of drugs decreasing clearance, elimination and excretion of drugs. Also Transjugular intrahepatic porto-systemic shunts, which are often used to treat portal hypertension in patients with liver cirrhosis, can significantly reduce the presystemic elimination of drugs, thereby increasing their absorption. Moreover, in patients with liver cirrhosis, concomitant renal dysfunction also requires an adjustment of the dose of drugs. Correction of pharmacotherapy in accordance to pharmacokinetic and pharmacodynamic changes of drugs ingested by patients with impaired liver function will improve the quality of medical care and reduce the risks of adverse drug reactions.
Collapse
|
10
|
Resztak M, Sobiak J, Czyrski A. Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics 2021; 13:1991. [PMID: 34959272 PMCID: PMC8707246 DOI: 10.3390/pharmaceutics13121991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
The review includes studies dated 2011-2021 presenting the newest information on voriconazole (VCZ), mycophenolic acid (MPA), and vancomycin (VAN) therapeutic drug monitoring (TDM) in children. The need of TDM in pediatric patients has been emphasized by providing the information on the differences in the drugs pharmacokinetics. TDM of VCZ should be mandatory for all pediatric patients with invasive fungal infections (IFIs). Wide inter- and intrapatient variability in VCZ pharmacokinetics cause achieving and maintaining therapeutic concentration during therapy challenging in this population. Demonstrated studies showed, in most cases, VCZ plasma concentrations to be subtherapeutic, despite the updated dosages recommendations. Only repeated TDM can predict drug exposure and individualizing dosing in antifungal therapy in children. In children treated with mycophenolate mofetil (MMF), similarly as in adult patients, the role of TDM for MMF active form, MPA, has not been well established and is undergoing continued debate. Studies on the MPA TDM have been carried out in children after renal transplantation, other organ transplantation such as heart, liver, or intestine, in children after hematopoietic stem cell transplantation or cord blood transplantation, and in children with lupus, nephrotic syndrome, Henoch-Schönlein purpura, and other autoimmune diseases. MPA TDM is based on the area under the concentration-time curve; however, the proposed values differ according to the treatment indication, and other approaches such as pharmacodynamic and pharmacogenetic biomarkers have been proposed. VAN is a bactericidal agent that requires TDM to prevent an acute kidney disease. The particular group of patients is the pediatric one. For this group, the general recommendations of the dosing may not be valid due to the change of the elimination rate and volume of distribution between the subjects. The other factor is the variability among patients that concerns the free fraction of the drug. It may be caused by both the patients' population and sample preconditioning. Although VCZ, MMF, and VAN have been applied in pediatric patients for many years, there are still few issues to be solve regarding TDM of these drugs to ensure safe and effective treatment. Except for pharmacokinetic approach, pharmacodynamics and pharmacogenetics have been more often proposed for TDM.
Collapse
Affiliation(s)
- Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (J.S.); (A.C.)
| | | | | |
Collapse
|
11
|
Akunne OO, Mugabo P, Argent AC. Pharmacokinetics of Vancomycin in Critically Ill Children: A Systematic Review. Eur J Drug Metab Pharmacokinet 2021; 47:31-48. [PMID: 34750740 PMCID: PMC8574943 DOI: 10.1007/s13318-021-00730-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/26/2022]
Abstract
Background and Objective Vancomycin is often used in the ICU for the treatment of Gram-positive bacterial infection. In critically ill children, there are pathophysiologic changes that affect the pharmacokinetics of vancomycin. A systematic review of vancomycin pharmacokinetics and pharmacodynamics in critically ill children was performed. Methods Pharmacokinetic studies of vancomycin in critically ill children published up to May 2021 were included in the review provided they included children aged > 1 month. Studies including neonates were excluded. A search was performed using the PubMed, Scopus, and Google Scholar databases. The Risk of Bias Assessment Tool for Systematic Reviews (ROBIS) was used to check for quality and reduce bias. Data on study characteristics, patient demographics, clinical parameters, pharmacokinetic parameters, outcomes, and study limitations were collected. Results Thirteen studies were included in this review. A wide variety of dosing and sampling strategies were used in the studies. Methods for estimating vancomycin pharmacokinetics, especially the area under the curve over 24 h, varied. Vancomycin doses of 20–60 mg/kg were given daily. This resulted in high variability in pharmacokinetic parameters. Vancomycin trough level was less than 15 μg/mL in most of the studies. Vancomycin clearance ranged from 0.05 to 0.38 L/h/kg. Volume of distribution ranged from 0.1 to 1.16 L/kg. Half-life was between 2.4 and 23.6 h. Patients in the study receiving continuous vancomycin infusion had AUC24 < 400 µg·h/mL. Conclusion There is large variability in the pharmacokinetics of vancomycin among critically ill patients. Studies to assess the factors responsible for this variability in vancomycin pharmacokinetics are needed.
Collapse
Affiliation(s)
- Onyinye Onyeka Akunne
- Discipline of Pharmacology, School of Pharmacy, University of the Western Cape, Bellville, Cape Town, 7535 South Africa
| | - Pierre Mugabo
- Discipline of Pharmacology, School of Pharmacy, University of the Western Cape, Bellville, Cape Town, 7535 South Africa
| | - Andrew C Argent
- Paediatrics and Child Health, University of Cape Town, Rondebosch, Cape Town, 7700 South Africa
- Paediatric Intensive Care Unit, Red Cross War Memorial Children Hospital, Rondebosch, Cape Town, 7700 South Africa
| |
Collapse
|
12
|
Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics (Basel) 2021; 10:antibiotics10101182. [PMID: 34680763 PMCID: PMC8532953 DOI: 10.3390/antibiotics10101182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Children show important developmental and maturational changes, which may contribute greatly to pharmacokinetic (PK) variability observed in pediatric patients. These PK alterations are further enhanced by disease-related, non-maturational factors. Specific to the intensive care setting, such factors include critical illness, inflammatory status, augmented renal clearance (ARC), as well as therapeutic interventions (e.g., extracorporeal organ support systems or whole-body hypothermia [WBH]). This narrative review illustrates the relevance of both maturational and non-maturational changes in absorption, distribution, metabolism, and excretion (ADME) applied to antibiotics. It hereby provides a focused assessment of the available literature on the impact of critical illness—in general, and in specific subpopulations (ARC, extracorporeal organ support systems, WBH)—on PK and potential underexposure in children and neonates. Overall, literature discussing antibiotic PK alterations in pediatric intensive care is scarce. Most studies describe antibiotics commonly monitored in clinical practice such as vancomycin and aminoglycosides. Because of the large PK variability, therapeutic drug monitoring, further extended to other antibiotics, and integration of model-informed precision dosing in clinical practice are suggested to optimise antibiotic dose and exposure in each newborn, infant, or child during intensive care.
Collapse
|
13
|
Kondo M, Nakagawa S, Orii S, Itohara K, Sugimoto M, Omura T, Sato Y, Imai S, Yonezawa A, Nakagawa T, Matsubara K. Association of Initial Trough Concentrations of Vancomycin with Outcomes in Pediatric Patients with Gram-Positive Bacterial Infection. Biol Pharm Bull 2021; 43:1463-1468. [PMID: 32999156 DOI: 10.1248/bpb.b19-01003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vancomycin is a glycopeptide antibiotic used for the treatment of Gram-positive infections. For adult patients, treatment with vancomycin requires effective therapeutic drug-monitoring (TDM) to achieve clinical outcomes and reduce the incidence of adverse effects. However, it remains still unclear whether the TDM with vancomycin is beneficial in yielding better clinical outcomes in pediatrics. The objective of our study was to evaluate whether the clinical response to treatment was associated with initial trough concentrations of vancomycin in pediatric patients. A retrospective observation study of 60 patients (age: 1 month-15 years) who had completed and qualified for analysis was conducted at Kyoto University Hospital. The response to treatment was assessed by the time to resolution of fever and time to 50% decline in C-reactive protein (CRP). In addition, we explored whether vancomycin trough level was associated with the baseline characteristics. Trend analysis showed that there were significant correlations between vancomycin trough level and age, body weight, estimated glomerular filtration rate, and serum albumin levels. The time to resolution of fever of the patients with higher initial trough level (≥ 5 µg/mL) was significantly lower than that of the patients with lower trough level (< 5 µg/mL). The higher vancomycin concentration tended to be associated with the shorter time to 50% decline in CRP. The findings suggest that initial trough concentration is important in achieving better outcomes with vancomycin treatment in pediatrics.
Collapse
Affiliation(s)
- Miko Kondo
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Satoru Orii
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Kotaro Itohara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Mitsuhiro Sugimoto
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | | | - Yuki Sato
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| |
Collapse
|
14
|
Li X, Xu W, Li R, Guo Q, Li X, Sun J, Sun S, Li J. Prediction of Unbound Vancomycin Levels in Intensive Care Unit and Nonintensive Care Unit Patients: Total Bilirubin May Play an Important Role. Infect Drug Resist 2021; 14:2543-2554. [PMID: 34239310 PMCID: PMC8259942 DOI: 10.2147/idr.s311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background The mean unbound vancomycin fraction and whether the unbound vancomycin level could be predicted from the total vancomycin level are still controversial, especially for patients in different groups, such as intensive care unit (ICU) versus non-ICU patients. Other relevant potential patient characteristics that may predict unbound vancomycin levels have yet to be clearly determined. Methods We enrolled a relatively large study population and included widely comprehensive potential covariates to evaluate the unbound vancomycin fractions in a cohort of ICU (n=117 samples) and non-ICU patients (n=73 samples) by using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Results The mean unbound vancomycin fraction was 45.80% ± 18.69% (median, 46.01%; range: 2.13–99.45%) in the samples from the total population. No significant differences in the unbound vancomycin fraction were found between the ICU patients and the non-ICU patients (P=0.359). A significant correlation was established between the unbound and total vancomycin levels. The unbound vancomycin level can be predicted with the following equations: unbound vancomycin level=0.395×total vancomycin level+0.019×total bilirubin level+0.468 (R2=0.771) for the ICU patients and unbound vancomycin level=0.526×total vancomycin level-0.527 (R2=0.749) for the non-ICU patients. Overall, the observed-versus-predicted plots were acceptable. Conclusion A significant correlation between the total and unbound vancomycin levels was found, and measurement of the unbound vancomycin level seems to have no added value over measurement of the total vancomycin level. The study developed parsimonious equations for predicting the unbound vancomycin level and provides a reference for clinicians to predict the unbound vancomycin level in adult populations.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Ran Li
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Xiangpeng Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Jialin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Shuhong Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Jing Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| |
Collapse
|
15
|
Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S. The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development. Pharmaceutics 2020; 13:44. [PMID: 33396805 PMCID: PMC7823749 DOI: 10.3390/pharmaceutics13010044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored.
Collapse
Affiliation(s)
- Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Marina Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Hospital Pharmacy, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Neonatal Intensive Care Unit, University Hospitals UZ Leuven, 3000 Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
| | - Antonius Mulder
- Department of Neonatology, University Hospital Antwerp, 2650 Edegem, Belgium;
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| |
Collapse
|
16
|
Prediction of Unbound Ceftriaxone Concentration in Children: Simple Bioanalysis Method and Basic Mathematical Equation. Antimicrob Agents Chemother 2020; 65:AAC.00779-20. [PMID: 33020163 DOI: 10.1128/aac.00779-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/01/2020] [Indexed: 01/29/2023] Open
Abstract
The pharmacological activity of ceftriaxone depends on the unbound concentration. However, direct measurement of unbound concentrations is obstructive, and high individual variability of the unbound fraction of ceftriaxone was shown in children. We aim to evaluate and validate a method to predict unbound ceftriaxone concentrations in pediatric patients. Ninety-five pairs of concentrations (total and unbound) from 92 patients were measured by the bioanalysis method that we developed. The predictive performance of the three equations (empirical in vivo equation, disease-adapted equation, and multiple linear regression equation) was assessed by the mean absolute prediction error (MAPE), the mean prediction error (MPE), the proportions of the prediction error within ±30% (P 30) and ±50% (P 50), and linear regression of predicted versus actual unbound levels (R 2). The average total and unbound ceftriaxone concentrations were 126.18 ± 81.46 μg/ml and 18.82 ± 21.75 μg/ml, and the unbound fraction varied greatly from 4.75% to 39.97%. The MPE, MAPE, P 30, P 50, and R 2 of the empirical in vivo equation, disease equation, and multiple linear equation were 0.17 versus 0.00 versus 0.06, 0.24 versus 0.15 versus 0.27, 63.2% versus 89.5% versus 74.7%, 96.8% versus 97.9% versus 86.3%, and 0.8730 versus 0.9342 versus 0.9315, respectively. The disease-adapted equation showed the best predictive performance. We have developed and validated a bioanalysis method with one-step extraction pretreatment for the determination of total ceftriaxone concentrations, and a prediction equation of the unbound concentration is recommended. The proposed method can facilitate clinical practice and research on unbound ceftriaxone in children. (This study has been registered at ClinicalTrials.gov under identifier NCT03113344.).
Collapse
|
17
|
Esmaeili A, Salehi M, Makhdoomi N, H. Ardakani Y, Rajabi M, Namazi S. Evaluation of the Association between Trough and Area Under the Curve to Minimum Inhibitory Concentration Ratio (AUC24/MIC) of Vancomycin in Infected Patients with Methicillin Resistant Staphylococcus aureus (MRSA). PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: The recent studies emphasized on the correlation of vancomycin antibacterial effect with pharmacokinetics properties such as the area under the curve/minimum inhibitory concentration (AUC24/MIC) ≥400 and serum trough level 15-20 mg /L in the patients with severe infection with methicillin-resistant Staphylococcus aureus (MRSA). The purpose is to assay the vancomycin pharmacokinetic properties in our population and evaluates the correlation between AUC24/MIC and trough serum level of vancomycin in given patients. Methods: The patients with a positive MRSA culture, treated with vancomycin, were enrolled in this cross-sectional study. Three plasma samples were obtained during the study including 30 min before fourth and the fifth dose as trough levels and 1 hour after the fourth dose as peak level to determine AUC24. E-TEST determined the MIC of vancomycin. Results: Thirty-eight patients with an average age of 48.33±16.44 were enrolled in this study. The mean ± SD of MIC was 0.99±0.30 mg/L. Thirty-four patients reached the adequate therapeutic range of AUC24/MIC ≥ 400 due to the standard vancomycin dosing method. In comparison, only 7 and 10 patients had the first and second trough levels in target intervals of 15-20 mg/L, respectively. Due to the receiver operating characteristic curve test (ROC test), the trough level after the fourth dose had a strong correlation with target AUC24/MIC with a sensitivity of 94.1%and specificity of 75.0%. Conclusion: This study concluded using only a trough level is not appropriate for therapeutic drug monitoring (TDM) of vancomycin. In our population, target AUC24/MIC (≥ 400) had a reasonably strong correlation with the trough level before the fifth dose which achieved with trough level ≥10.81 mg/L and MIC< 1 mg/L.
Collapse
Affiliation(s)
- Ayda Esmaeili
- Clinical Pharmacy Department, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammadreza Salehi
- Department of Infectious Diseases and Tropical Medicines, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nava Makhdoomi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda H. Ardakani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rajabi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Clinical Pharmacy, University Hospitals of North Midlands NHS Trust, United Kingdom
| | - Soha Namazi
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences,Tehran, Iran
| |
Collapse
|
18
|
Kan M, Wu YE, Li X, Dong YN, Du B, Guo ZX, Shi HY, Huang X, Su LQ, Wang WQ, Zheng Y, Zhao W. An adapted LC-MS/MS method for the determination of free plasma concentration of cefoperazone in children: Age-dependent protein binding. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1144:122081. [DOI: 10.1016/j.jchromb.2020.122081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/14/2023]
|
19
|
Sridharan K, Al Daylami A, Ajjawi R, Al-Ajooz H, Veeramuthu S. Clinical Pharmacokinetics of Vancomycin in Critically Ill Children. Eur J Drug Metab Pharmacokinet 2020; 44:807-816. [PMID: 31301023 DOI: 10.1007/s13318-019-00568-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Critically ill children exhibit altered pharmacokinetic parameters of vancomycin, mainly due to altered renal excretion and volume of distribution (as a result of altered plasma protein concentrations). We assessed the pharmacokinetic parameters of vancomycin in this subpopulation. METHODS Vancomycin trough concentrations in critically ill children were obtained following first dose and at steady state. Using a one-compartment model, clearance (CL), volume of distribution (Vd), elimination half-life (t1/2), and area under the time-concentration curve for 24 h (AUC0-24) were estimated. Subgroup analyses were carried out, with patients differentiated based on age, renal clearance, outcome, and renal dysfunction. Protein-free vancomycin concentrations were calculated using a previously reported formula. RESULTS Twenty-two samples were evaluated for first-dose and 182 for steady-state pharmacokinetics, and similar pharmacokinetic parameter values were observed at first dose and at steady state. Only 36.4% and 47.3% of the samples attained the recommended AUC0-24 (mg·hr/L) of > 400 at first dose and at steady state, while 62.5% of the patients with renal dysfunction achieved this target. Nearly 40% of the patients had augmented renal clearance (ARC), which was associated with higher CL, shorter t1/2, and lower AUC values. Amongst the patients with ARC, none had AUC0-24 (mg·hr/L) > 400 at first dose, while 16% achieved this target at steady state. Volume of distribution was significantly higher in infants and a decreasing trend was observed in toddlers, children, and older children at steady state. Children with renal dysfunction had lower CL, prolonged t1/2, and higher AUC values than patients with normal renal clearance at first dose. A good correlation was observed between trough concentration and AUC0-24, as corroborated by the area under the receiver operating characteristic curve. The median fraction of protein-free vancomycin was around 77%. CONCLUSION Vancomycin dosing strategies in younger children should be revisited, and increased doses should be considered for critically ill children with ARC in order to achieve therapeutic concentrations of AUC0-24.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
| | - Amal Al Daylami
- Department of Pediatrics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.,Pediatric Intensive Care Unit, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| | - Reema Ajjawi
- Pediatric Intensive Care Unit, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| | - Husain Al-Ajooz
- Pediatric Intensive Care Unit, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| | - Sindhan Veeramuthu
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
20
|
Le J, Bradley JS. Optimizing Antibiotic Drug Therapy in Pediatrics: Current State and Future Needs. J Clin Pharmacol 2019; 58 Suppl 10:S108-S122. [PMID: 30248202 DOI: 10.1002/jcph.1128] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022]
Abstract
The selection of the right antibiotic and right dose necessitates clinicians understand the contribution of pharmacokinetic variability stemming from age-related physiologic maturation and the pharmacodynamics to optimize drug exposure for clinical response. The complexity of selecting the right dose arises from the multiplicity of pediatric age groups, from premature neonates to adolescents. Body size and age (which relate to organ function) must be incorporated to optimize antibiotic dosing in this vulnerable population. In the effort to optimize and individualize drug dosing regimens, clinical pharmacometrics that incorporate population-based pharmacokinetic modeling, Bayesian estimation, and Monte Carlo simulations are utilized as a quantitative approach to understanding and predicting the pharmacology and clinical and microbiologic efficacy of antibiotics. In addition, opportunistic study designs and alternative blood sampling strategies can serve as practical approaches to ensure successful conduct of pediatric studies. This review article examines relevant literature on optimization of antibiotic pharmacotherapy in pediatric populations published within the last decade. Specific pediatric antibiotic data, including beta-lactam antibiotics, aminoglycosides, and vancomycin, are critically evaluated.
Collapse
Affiliation(s)
- Jennifer Le
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - John S Bradley
- Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, CA, USA.,Rady Children's Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
21
|
Sridharan K, Al-Daylami A, Ajjawi R, Ajooz HAA. Vancomycin Use in a Paediatric Intensive Care Unit of a Tertiary Care Hospital. Paediatr Drugs 2019; 21:303-312. [PMID: 31218605 DOI: 10.1007/s40272-019-00343-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vancomycin is one of the commonly used anti-microbial drugs in intensive care units (ICUs). Guidelines recommend maintaining therapeutic trough levels of vancomycin (10-20 mg/L). The success of achieving the recommended therapeutic concentration of vancomycin is influenced by several factors, and this is even more complex in children, particularly those admitted in the ICU. Hence, we carried out the present study in children admitted in the ICU who were administered vancomycin. METHODS We carried out a chart review of children admitted in the paediatric ICU unit of a tertiary care hospital over a period of 3 years. Information on their demographic factors, diagnoses, duration of hospital stay, vancomycin treatment (dose, frequency and time of administration) and concomitant drugs, and vancomycin trough levels were retrieved. Descriptive statistics were used for representing the demographic factors, and multivariable logistic regression analyses were carried out to assess the determining factors. RESULTS One-hundred and two children were identified, of whom 13 had renal dysfunction. Two-hundred and fifty-two vancomycin trough levels were available, of which only 25% were observed in the recommended range (10-20 mg/L) amongst patients without any renal dysfunction and 22% amongst patients with renal dysfunction. Vancomycin was administered intravenously at an average [standard deviation (SD)] dose (mg/dose) of 13 (3.9) mostly either thrice or four times daily. Even in patients receiving vancomycin as a definitive therapy, only 40.9% achieved the recommended trough levels. Lower trough levels were associated with an increased risk of mortality. Nearly 4% of the levels were above 20 mg/L (toxic range). Seven children were suspected to have acute kidney injury (AKI) during the course of therapy where the cumulative vancomycin dose and mortality rate was higher. Only one serum vancomycin level during augmented renal clearance was observed in the recommended range. All the patients received at least one concomitant drug that either had nephrotoxic potential or predominant renal elimination, and use of a greater number of such drugs was associated with an increased risk of AKI. CONCLUSION The current vancomycin dosing strategy is ineffective in achieving therapeutic trough levels in children admitted to the ICU. Sub-therapeutic vancomycin trough levels significantly increase the risk of mortality.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
| | - Amal Al-Daylami
- Department of Paediatrics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.,Paediatric Intensive Care Unit, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| | - Reema Ajjawi
- Paediatric Intensive Care Unit, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| | - Husain Am Al Ajooz
- Paediatric Intensive Care Unit, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| |
Collapse
|
22
|
van der Mast JE, Nijsten MW, Alffenaar JC, Touw DJ, Bult W. In vitro evaluation of an intravenous microdialysis catheter for therapeutic drug monitoring of gentamicin and vancomycin. Pharmacol Res Perspect 2019; 7:e00483. [PMID: 31333845 PMCID: PMC6594919 DOI: 10.1002/prp2.483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 01/06/2023] Open
Abstract
A central venous catheter with a built-in microdialysis membrane is available for continuous lactate and glucose monitoring in the intensive care unit (ICU). As this catheter might also be suitable for repeated measurements of unbound drug levels, we studied in vitro the feasibility of monitoring unbound antibiotic concentrations. The catheter was placed in various media at 37°C spiked with gentamicin or vancomycin. Dialysate fractions were repeatedly collected over 3 hours with a NaCl 0.9% perfusate flow of 5 μL/min. Total and unbound drug concentrations in medium and perfusate were measured by immunoassay. After 60 minutes stable recovery for both drugs was observed, with mean ±SD relative recoveries of vancomycin and gentamicin in human serum of 64% ±0.4% and 73% ±3%. The recoveries of the unbound concentrations were 91% ±3% and 91% ±4%. This intravenous microdialysis system may be a very useful platform for therapeutic drug monitoring in the ICU.
Collapse
Affiliation(s)
- Jackelien E. van der Mast
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Clinical PharmacyMáxima Medical CenterVeldhovenThe Netherlands
| | - Maarten W. Nijsten
- Department of Critical CareUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jan‐Willem C. Alffenaar
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Pharmacy, section Pharmacokinetics, toxicology and targetingUniversity of GroningenGroningenThe Netherlands
| | - Wouter Bult
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Critical CareUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
23
|
Rodvold KA. 60 Plus Years Later and We Are Still Trying to Learn How to Dose Vancomycin. Clin Infect Dis 2019; 70:1546-1549. [DOI: 10.1093/cid/ciz467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Keith A Rodvold
- University of Illinois at Chicago, Colleges of Pharmacy and Medicine
| |
Collapse
|
24
|
Brencic T, Nikolac N. Gentamicin and Vancomycin Interference on Results of Clinical Chemistry Parameters on Abbott Architect c8000. Arch Pathol Lab Med 2019; 143:738-747. [PMID: 30645155 DOI: 10.5858/arpa.2017-0462-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Gentamicin and vancomycin are nephrotoxic antibiotics. Little is known about the influence of drug concentrations on results of clinical chemistry tests. OBJECTIVE.— To investigate gentamicin and vancomycin interference on results of 33 commonly measured biochemistry tests. DESIGN.— The study was carried out in the University Department of Chemistry, Medical School University Hospital Sestre Milosrdnice (Zagreb, Croatia). For each drug, 10 aliquots of pooled serum were prepared. In order to cover toxic concentrations, pool serum samples were spiked with drugs to obtain 0 to 50 μg/mL of gentamicin and 0 to 200 μg/mL of vancomycin. Biochemistry tests were measured in duplicate on the Architect c8000 analyzer, and drug concentrations were measured on Architect i2000 SR (both Abbott Laboratories, Abbott Park, Illinois). For each tested concentration, bias was calculated against the initial measurement. Acceptance criteria were defined as measurement uncertainty of the commercial control with the value close to the measured range of the pool sample. RESULTS.— For gentamicin, all bias values were below established criteria. For vancomycin, significant changes were observed for potassium, direct bilirubin, and immunoglobulin A. Significant bias was already detected at low vancomycin concentration (2.98 μg/mL) for direct bilirubin (bias = 9.7%; acceptable = 8%). Potassium bias at the highest vancomycin concentration (204.4 μg/mL) exceeded acceptance criteria (bias = 4.5%; acceptable = 4%). For immunoglobulin A, no apparent trend was observed, and bias is attributed to increased method imprecision. CONCLUSIONS.— Gentamicin did not interfere with the results of clinical chemistry tests. Direct bilirubin concentration is falsely increased in the presence of vancomycin, and potassium is affected at high concentrations.
Collapse
Affiliation(s)
- Tina Brencic
- From the University Department of Chemistry, Medical School University Hospital Sestre Milosrdnice Zagreb, Zagreb, Croatia. Dr Brencic is now with the Department of Laboratory Diagnostics, General Hospital Pula, Pula, Croatia
| | - Nora Nikolac
- From the University Department of Chemistry, Medical School University Hospital Sestre Milosrdnice Zagreb, Zagreb, Croatia. Dr Brencic is now with the Department of Laboratory Diagnostics, General Hospital Pula, Pula, Croatia
| |
Collapse
|
25
|
Allegaert K, van den Anker J. Neonates are not just little children and need more finesse in dosing of antibiotics. Acta Clin Belg 2019; 74:157-163. [PMID: 29745792 DOI: 10.1080/17843286.2018.1473094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVES Neonates are not just little children. They need more finesse in decisions on when to treat, which antibiotics to use and how to dose these antibiotics. METHODS Representative compounds of three major classes of antibiotics (beta-lactams, aminoglycosides, glycopeptides) are discussed in a narrative review to illustrate the recent progress in the knowledge on PK and its covariates (how to dose). RESULTS This knowledge can subsequently be converted to targeted exposure dosing regimens. This is because it is reasonable to postulate that pharmacodynamics (PD) of antibiotics are similar in neonates to that in other populations if a similar concentration-time profile and targeted exposure are attained. However, this approach has its limitations, since the clinical response may be different in neonates because of maturational differences in innate immunity or toxicity. These dosing regimens should at least be validated. CONCLUSION Relevant information on the PK of antibiotics and its covariates have been generated, but the next steps are to validate the dosing regimens suggested, and consider more sophisticated dosing regimens. This approach should subsequently pave the way to conduct comparative studies to assess the efficacy and safety of these commonly used drugs in neonates.
Collapse
Affiliation(s)
- Karel Allegaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands
- Department of Neonatology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands
- Department of Development and Regeneration, KU, Leuven, Belgium
| | - John van den Anker
- Intensive Care and Department of Pediatric Surgery, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands
- Paediatric Pharmacology and Pharmacometrics, University of Basel Children’s Hospital, Basel, Switzerland
- Division of Clinical Pharmacology, Children’s National Health System, Washington, DC, USA
| |
Collapse
|
26
|
The dosing and monitoring of vancomycin: what is the best way forward? Int J Antimicrob Agents 2018; 53:401-407. [PMID: 30599240 DOI: 10.1016/j.ijantimicag.2018.12.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 11/22/2022]
Abstract
We have evaluated the literature to review optimal dosing and monitoring of intravenous vancomycin in adults, in response to evolving understanding of targets associated with efficacy and toxicity. The area under the total concentration-time curve (0-24 h) divided by the minimum inhibitory concentration (AUC24/MIC) is the most commonly accepted index to guide vancomycin dosing for the treatment of Staphylococcus aureus infections, with a value of 400 h a widely recommended target for efficacy. Upper limits of AUC24 exposure of around 700 (mg/L).h have been proposed, based on the hypothesis that higher exposures of vancomycin are associated with an unacceptable risk of nephrotoxicity. If AUC24/MIC targets are used, sources of variability in the assessment of both AUC24 and MIC need to be considered. Current consensus guidelines recommend measuring trough vancomycin concentrations during intermittent dosing as a surrogate for the AUC24. Trough concentrations are a misleading surrogate for AUC24 and a poor end-point in themselves. AUC24 estimation using log-linear pharmacokinetic methods based on two plasma concentrations, or Bayesian methods are superior. Alternatively, a single concentration measured during continuous infusion allows simple AUC24 estimation and dose-adjustment. All of these methods have logistical challenges which must be overcome if they are to be adopted successfully.
Collapse
|
27
|
Lee B, Kim SJ, Park JD, Park J, Jung AH, Jung SH, Choi YH, Kang HG, Ha IS, Cheong HI. Factors affecting serum concentration of vancomycin in critically ill oliguric pediatric patients receiving continuous venovenous hemodiafiltration. PLoS One 2018; 13:e0199158. [PMID: 29927988 PMCID: PMC6013195 DOI: 10.1371/journal.pone.0199158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/02/2018] [Indexed: 12/02/2022] Open
Abstract
Vancomycin is known to be unintentionally eliminated by continuous renal replacement therapy, and the protein bound fraction of vancomycin is also known to be different in adults and children. However, there are only a few studies investigating the relationship between the dose of continuous venovenous hemodiafiltration (CVVHDF) parameters and serum concentration of vancomycin in pediatric patients. The aim of this study was to determine clinical and demographic parameters that significantly affect serum vancomycin concentrations. This retrospective cohort study was conducted at a pediatric intensive care unit in a tertiary university children’s hospital. Data from oliguric patients who underwent CVVHDF and vancomycin therapeutic drug monitoring were collected. The correlation between factors affecting serum concentration of vancomycin was analyzed using mixed effect model. A total of 177 serum samples undergoing vancomycin therapeutic drug monitoring were analyzed. The median age of study participants was 2.23 (interquartile range, 0.3–11.84) years, and 126 (71.19%) were male patients. Serum concentration of vancomycin decreased significantly as the effluent flow rate (EFR; P < 0.001), dialysate flow rate (DFR; P = 0.009), replacement fluid flow rate (RFFR; P = 0.008), the proportion of RFFR in the sum of DFR and RFFR (P = 0.025), and residual urine output increased. The adjusted R2 of the multivariate regression model was 0.874 (P < 0.001) and the equation was as follows: Vancomycin trough level (mg/L) = (0.283 × daily dose of vancomycin [mg/kg/d]) + (365.139 / EFR [mL/h/kg])–(15.842 × residual urine output [mL/h/kg]). This study demonstrated that the serum concentration of vancomycin was associated with EFR, DFR, RFFR, the proportion of RFFR, and residual urine output in oliguric pediatric patients receiving CVVHDF.
Collapse
Affiliation(s)
- Bongjin Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Soo Jung Kim
- Department of Pharmacy, Seoul National University Hospital, Seoul, Republic of Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| | - Jiun Park
- Department of Pharmacy, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ae Hee Jung
- Department of Pharmacy, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun Hoi Jung
- Department of Pharmacy, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Hyeon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Il Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Factors impacting unbound vancomycin concentrations in neonates and young infants. Eur J Clin Microbiol Infect Dis 2018; 37:1503-1510. [DOI: 10.1007/s10096-018-3277-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023]
|
29
|
Diep U, Chudow M, Sunjic KM. Pharmacokinetic Changes in Liver Failure and Impact on Drug Therapy. AACN Adv Crit Care 2018; 28:93-101. [PMID: 28592464 DOI: 10.4037/aacnacc2017948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Uyen Diep
- Uyen Diep is Critical Care Clinical Pharmacist, Department of Pharmacy Services, Tampa General Hospital, Tampa, FL 33601 . Melissa Chudow is Assistant Professor, Department of Pharmacotherapeutics and Clinical Research, University of South Florida College of Pharmacy, Tampa, Florida. Katlynd M. Sunjic is Assistant Professor, Department of Pharmacotherapeutics and Clinical Research, University of South Florida College of Pharmacy, Tampa, Florida
| | - Melissa Chudow
- Uyen Diep is Critical Care Clinical Pharmacist, Department of Pharmacy Services, Tampa General Hospital, Tampa, FL 33601 . Melissa Chudow is Assistant Professor, Department of Pharmacotherapeutics and Clinical Research, University of South Florida College of Pharmacy, Tampa, Florida. Katlynd M. Sunjic is Assistant Professor, Department of Pharmacotherapeutics and Clinical Research, University of South Florida College of Pharmacy, Tampa, Florida
| | - Katlynd M Sunjic
- Uyen Diep is Critical Care Clinical Pharmacist, Department of Pharmacy Services, Tampa General Hospital, Tampa, FL 33601 . Melissa Chudow is Assistant Professor, Department of Pharmacotherapeutics and Clinical Research, University of South Florida College of Pharmacy, Tampa, Florida. Katlynd M. Sunjic is Assistant Professor, Department of Pharmacotherapeutics and Clinical Research, University of South Florida College of Pharmacy, Tampa, Florida
| |
Collapse
|
30
|
Emoto C, Johnson TN, McPhail BT, Vinks AA, Fukuda T. Using a Vancomycin PBPK Model in Special Populations to Elucidate Case-Based Clinical PK Observations. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:237-250. [PMID: 29446256 PMCID: PMC5915605 DOI: 10.1002/psp4.12279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/15/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
Simultaneous changes in several physiological factors may contribute to the large pharmacokinetic (PK) variability of vancomycin. This study was designed to systematically characterize the effects of multiple physiological factors to the altered PK of vancomycin observed in special populations. A vancomycin physiologically based pharmacokinetic (PBPK) model was developed as a PK simulation platform to quantitatively assess the effects of changes in physiologies to the PK profiles. The developed model predicted the concentration-time profiles in healthy adults and diseased patients. The implementation of developmental changes in both renal and non-renal elimination pathways to the pediatric model improved the predictability of vancomycin clearance. Simulated PK profiles with a 50% decrease in cardiac output (peak plasma concentration (Cmax ), 59.9 ng/mL) were similar to those observed in patients before bypass surgery (Cmax , 55.1 ng/mL). The PBPK modeling of vancomycin demonstrated its potential to provide mechanistic insights into the altered disposition observed in patients who have changes in multiple physiological factors.
Collapse
Affiliation(s)
- Chie Emoto
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Brooks T McPhail
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
De Cock PAJG, Desmet S, De Jaeger A, Biarent D, Dhont E, Herck I, Vens D, Colman S, Stove V, Commeyne S, Vande Walle J, De Paepe P. Impact of vancomycin protein binding on target attainment in critically ill children: back to the drawing board? J Antimicrob Chemother 2017; 72:801-804. [PMID: 27999035 DOI: 10.1093/jac/dkw495] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 11/14/2022] Open
Abstract
Objectives The objectives of this observational study were to investigate plasma protein binding and to evaluate target attainment rates of vancomycin therapy in critically ill children. Patients and methods Paediatric ICU patients, in whom intravenous intermittent dosing (ID) or continuous dosing (CD) with vancomycin was indicated, were included. Covariates on unbound vancomycin fraction and concentration were tested using a linear mixed model analysis and attainment of currently used pharmacokinetic/pharmacodynamic (PK/PD) targets was evaluated. Clinicaltrials.gov: NCT02456974. Results One hundred and eighty-eight plasma samples were collected from 32 patients. The unbound vancomycin fraction (median = 71.1%; IQR = 65.4%-79.7%) was highly variable within and between patients and significantly correlated with total protein and albumin concentration, which were both decreased in our population. Total trough concentration (ID) and total concentration (CD) were within the aimed target concentrations in 8% of patients. The targets of AUC/MIC ≥400 and f AUC/MIC ≥200 were achieved in 54% and 83% of patients, respectively. Unbound vancomycin concentrations were adequately predicted using the following equation: unbound vancomycin concentration (mg/L) = 5.38 + [0.71 × total vancomycin concentration (mg/L)] - [0.085 × total protein concentration (g/L)]. This final model was externally validated using 51 samples from another six patients. Conclusions The protein binding of vancomycin in our paediatric population was lower than reported in non-critically ill adults and exhibited large variability. Higher target attainment rates were achieved when using PK/PD indices based on unbound concentrations, when compared with total concentrations. These results highlight the need for protein binding assessment in future vancomycin PK/PD research.
Collapse
Affiliation(s)
- Pieter A J G De Cock
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Paediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Sarah Desmet
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | - Annick De Jaeger
- Department of Paediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Dominique Biarent
- Department of Paediatric Intensive Care, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Evelyn Dhont
- Department of Paediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Ingrid Herck
- Department of Cardiac Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Daphné Vens
- Department of Paediatric Intensive Care, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Sofie Colman
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Veronique Stove
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sabrina Commeyne
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Johan Vande Walle
- Department of Paediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Peter De Paepe
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Emergency Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
32
|
Plasma and cerebrospinal fluid population pharmacokinetics of vancomycin in postoperative neurosurgical patients after combined intravenous and intraventricular administration. Eur J Clin Pharmacol 2017; 73:1599-1607. [DOI: 10.1007/s00228-017-2313-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|