1
|
Valiauga B, Bagdžiūnas G, Sharrock AV, Ackerley DF, Čėnas N. The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies. Int J Mol Sci 2024; 25:4413. [PMID: 38673999 PMCID: PMC11049802 DOI: 10.3390/ijms25084413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
E. coli nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO2). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO2 and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO2 increases with their electron affinity (single-electron reduction potential, E17) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on E17, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO2 reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.
Collapse
Affiliation(s)
- Benjaminas Valiauga
- Institute of Biochemistry of Life Sciences Center of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (B.V.); (G.B.)
| | - Gintautas Bagdžiūnas
- Institute of Biochemistry of Life Sciences Center of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (B.V.); (G.B.)
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand; (A.V.S.); (D.F.A.)
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand; (A.V.S.); (D.F.A.)
| | - Narimantas Čėnas
- Institute of Biochemistry of Life Sciences Center of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (B.V.); (G.B.)
| |
Collapse
|
2
|
Menozzi CAC, França RRF, Luccas PH, Baptista MDS, Fernandes TVA, Hoelz LVB, Sales Junior PA, Murta SMF, Romanha A, Galvão BVD, Macedo MDO, Goldstein ADC, Araujo-Lima CF, Felzenszwalb I, Nonato MC, Castelo-Branco FS, Boechat N. Anti- Trypanosoma cruzi Activity, Mutagenicity, Hepatocytotoxicity and Nitroreductase Enzyme Evaluation of 3-Nitrotriazole, 2-Nitroimidazole and Triazole Derivatives. Molecules 2023; 28:7461. [PMID: 38005183 PMCID: PMC10672842 DOI: 10.3390/molecules28227461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Chagas disease (CD), which is caused by Trypanosoma cruzi and was discovered more than 100 years ago, remains the leading cause of death from parasitic diseases in the Americas. As a curative treatment is only available for the acute phase of CD, the search for new therapeutic options is urgent. In this study, nitroazole and azole compounds were synthesized and underwent molecular modeling, anti-T. cruzi evaluations and nitroreductase enzymatic assays. The compounds were designed as possible inhibitors of ergosterol biosynthesis and/or as substrates of nitroreductase enzymes. The in vitro evaluation against T. cruzi clearly showed that nitrotriazole compounds are significantly more potent than nitroimidazoles and triazoles. When their carbonyls were reduced to hydroxyl groups, the compounds showed a significant increase in activity. In addition, these substances showed potential for action via nitroreductase activation, as the substances were metabolized at higher rates than benznidazole (BZN), a reference drug against CD. Among the compounds, 1-(2,4-difluorophenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanol (8) is the most potent and selective of the series, with an IC50 of 0.39 µM and selectivity index of 3077; compared to BZN, 8 is 4-fold more potent and 2-fold more selective. Moreover, this compound was not mutagenic at any of the concentrations evaluated, exhibited a favorable in silico ADMET profile and showed a low potential for hepatotoxicity, as evidenced by the high values of CC50 in HepG2 cells. Furthermore, compared to BZN, derivative 8 showed a higher rate of conversion by nitroreductase and was metabolized three times more quickly when both compounds were tested at a concentration of 50 µM. The results obtained by the enzymatic evaluation and molecular docking studies suggest that, as planned, nitroazole derivatives may utilize the nitroreductase metabolism pathway as their main mechanism of action against Trypanosoma cruzi. In summary, we have successfully identified and characterized new nitrotriazole analogs, demonstrating their potential as promising candidates for the development of Chagas disease drug candidates that function via nitroreductase activation, are considerably selective and show no mutagenic potential.
Collapse
Affiliation(s)
- Cheyene Almeida Celestino Menozzi
- Programa de Pós-Graduação em Farmacologia e Química Medicinal—PPGFQM-Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil (R.R.F.F.)
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Rodolfo Rodrigo Florido França
- Programa de Pós-Graduação em Farmacologia e Química Medicinal—PPGFQM-Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil (R.R.F.F.)
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Pedro Henrique Luccas
- Laboratório de Cristalografia de Proteínas—LCP-RP, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo FCFRP-USP, Monte Alegre, Ribeirão Preto 14040-903, Brazil
| | - Mayara dos Santos Baptista
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Tácio Vinício Amorim Fernandes
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Lucas Villas Bôas Hoelz
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | | | | | - Alvaro Romanha
- Centro de Pesquisas René Rachou/CPqRR—Fiocruz, Belo Horizonte 30190-009, Brazil
| | - Bárbara Verena Dias Galvão
- Laboratório de Mutagênese Ambiental, Programa de Pós-Graduação em Biociências—PPGB—Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Marcela de Oliveira Macedo
- Programa de Pós-Graduação em Biologia Molecular e Celular—PPGBMC—Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil
| | - Alana da Cunha Goldstein
- Laboratório de Mutagênese Ambiental, Programa de Pós-Graduação em Biociências—PPGB—Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Carlos Fernando Araujo-Lima
- Laboratório de Mutagênese Ambiental, Programa de Pós-Graduação em Biociências—PPGB—Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular—PPGBMC—Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil
| | - Israel Felzenszwalb
- Laboratório de Mutagênese Ambiental, Programa de Pós-Graduação em Biociências—PPGB—Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas—LCP-RP, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo FCFRP-USP, Monte Alegre, Ribeirão Preto 14040-903, Brazil
| | - Frederico Silva Castelo-Branco
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Nubia Boechat
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
3
|
Pimviriyakul P, Kapaothong Y, Tangsupatawat T. Heterologous Expression and Characterization of a Full-length Protozoan Nitroreductase from Leishmania orientalis isolate PCM2. Mol Biotechnol 2023; 65:556-569. [PMID: 36042106 DOI: 10.1007/s12033-022-00556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
Leishmaniasis, a parasitic disease found in parts of the tropics and subtropics, is caused by Leishmania protozoa infection. Nitroreductases (NTRs), enzymes involved in nitroaromatic prodrug activation, are attractive targets for leishmaniasis treatment development. In this study, a full-length recombinant NTR from the Leishmania orientalis isolate PCM2 (LoNTR), which causes severe leishmaniasis in Thailand, was successfully expressed in soluble form using chaperone co-expression in Escherichia coli BL21(DE3). The purified histidine-tagged enzyme (His6-LoNTR) had a subunit molecular mass of 36 kDa with no cofactor bound; however, the addition of exogenous flavin (either FMN or FAD) readily increased its enzyme activity. Bioinformatics analysis found that the unique N-terminal sequences of LoNTR is only present in Leishmania where the addition of this region might result in the loss of flavin binding. Either NADH or NADPH can serve as an electron donor to transfer electrons to nitrofurazone; however, NADPH was preferred. Molecular oxygen was identified as an additional electron acceptor resulting in wasteful electrons from NADPH for the main catalysis. Steady-state kinetic experiments revealed a ping-pong mechanism for His6-LoNTR with Km,NADPH, Km,NFZ, and kcat of 28 µM, 68 µM, and 0.84 min-1, respectively. Besides nitroreductase activity, His6-LoNTR also has the ability to reduce quinone derivatives. The properties of full-length His6-LoNTR were different from previously reported protozoa and bacterial NTRs in many respects. This study provides information of NTR catalysis to be developed as a potential future therapeutic target to treat leishmaniasis.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Yuvarun Kapaothong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Theerapat Tangsupatawat
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
Cirqueira ML, Bortot LO, Bolean M, Aleixo MAA, Luccas PH, Costa-Filho AJ, Ramos AP, Ciancaglini P, Nonato MC. Trypanosoma cruzi nitroreductase: Structural features and interaction with biological membranes. Int J Biol Macromol 2022; 221:891-899. [PMID: 36100001 DOI: 10.1016/j.ijbiomac.2022.09.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Due to its severe burden and geographic distribution, Chagas disease (CD) has a significant social and economic impact on low-income countries. Benznidazole and nifurtimox are currently the only drugs available for CD. These are prodrugs activated by reducing the nitro group, a reaction catalyzed by nitroreductase type I enzyme from Trypanosoma cruzi (TcNTR), with no homolog in the human host. The three-dimensional structure of TcNTR, and the molecular and chemical bases of the selective activation of nitro drugs, are still unknown. To understand the role of TcNTR in the basic parasite biology, investigate its potential as a drug target, and contribute to the fight against neglected tropical diseases, a combined approach using multiple biophysical and biochemical methods together with in silico studies was employed in the characterization of TcNTR. For the first time, the interaction of TcNTR with membranes was demonstrated, with a preference for those containing cardiolipin, a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane in eukaryotic cells. Prediction of TcNTR's 3D structure suggests that a 23-residue long insertion (199 to 222), absent in the homologous bacterial protein and identified as conserved in protozoan sequences, mediates enzyme specificity, and is involved in protein-membrane interaction.
Collapse
Affiliation(s)
- Marília L Cirqueira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Leandro O Bortot
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil; Laboratory of Computational Biology (LBC), Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Maytê Bolean
- Chemistry Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Mariana A A Aleixo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Pedro H Luccas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Physics Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Ana Paula Ramos
- Chemistry Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Chemistry Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - M Cristina Nonato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
6
|
Dickie EA, Giordani F, Gould MK, Mäser P, Burri C, Mottram JC, Rao SPS, Barrett MP. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop Med Infect Dis 2020; 5:tropicalmed5010029. [PMID: 32092897 PMCID: PMC7157223 DOI: 10.3390/tropicalmed5010029] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing priorities associated with other medical crises ravaging the continent. A series of dedicated interventions and the introduction of innovative routes to develop drugs, involving Product Development Partnerships, has led to a dramatic turnaround in the fight against HAT caused by Trypanosoma brucei gambiense. The World Health Organization have been able to optimize the use of existing tools to monitor and intervene in the disease. A promising new oral medication for stage 1 HAT, pafuramidine maleate, ultimately failed due to unforeseen toxicity issues. However, the clinical trials for this compound demonstrated the possibility of conducting such trials in the resource-poor settings of rural Africa. The Drugs for Neglected Disease initiative (DNDi), founded in 2003, has developed the first all oral therapy for both stage 1 and stage 2 HAT in fexinidazole. DNDi has also brought forward another oral therapy, acoziborole, potentially capable of curing both stage 1 and stage 2 disease in a single dosing. In this review article, we describe the remarkable successes in combating HAT through the twenty first century, bringing the prospect of the elimination of this disease into sight.
Collapse
Affiliation(s)
- Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Matthew K. Gould
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
- University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA;
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
- Correspondence:
| |
Collapse
|
7
|
Talevi A, Carrillo C, Comini M. The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies. Curr Med Chem 2019; 26:6614-6635. [PMID: 30259812 DOI: 10.2174/0929867325666180926151059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Chagas´ disease continues to be a challenging and neglected public health problem in many American countries. The etiologic agent, Trypanosoma cruzi, develops intracellularly in the mammalian host, which hinders treatment efficacy. Progress in the knowledge of parasite biology and host-pathogen interaction has not been paralleled by the development of novel, safe and effective therapeutic options. It is then urgent to seek for novel therapeutic candidates and to implement drug discovery strategies that may accelerate the discovery process. The most appealing targets for pharmacological intervention are those essential for the pathogen and, whenever possible, absent or significantly different from the host homolog. The thiol-polyamine metabolism of T. cruzi offers interesting candidates for a rational design of selective drugs. In this respect, here we critically review the state of the art of the thiolpolyamine metabolism of T. cruzi and the pharmacological potential of its components. On the other hand, drug repurposing emerged as a valid strategy to identify new biological activities for drugs in clinical use, while significantly shortening the long time and high cost associated with de novo drug discovery approaches. Thus, we also discuss the different drug repurposing strategies available with a special emphasis in their applications to the identification of drug candidates targeting essential components of the thiol-polyamine metabolism of T. cruzi.
Collapse
Affiliation(s)
- Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata, La Plata, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein) - CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Comini
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
8
|
Petravicius PO, Costa-Martins AG, Silva MN, Reis-Cunha JL, Bartholomeu DC, Teixeira MM, Zingales B. Mapping benznidazole resistance in trypanosomatids and exploring evolutionary histories of nitroreductases and ABCG transporter protein sequences. Acta Trop 2019; 200:105161. [PMID: 31494121 DOI: 10.1016/j.actatropica.2019.105161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
The nitro-heterocyclic compound benznidazole (BZ) is the first-line drug for the treatment of Chagas disease, caused by the protozoan Trypanosoma cruzi. However, therapeutic failures are common for reasons that include the influences of parasite and host genetics, the effects of toxicity on adherence to treatment, and difficulties in demonstrating parasitological cure. To obtain information on the origin of the resistance to BZ and eliminate from the scenery the participation of the host, initially we mapped the susceptibility to the drug in thirteen species of seven genera of the family Trypanosomatidae. We verified that all Trypanosoma species are sensitive to low concentrations of the drug (IC50 2.7 to 25 µM) while Non-Trypanosoma species are highly resistant to these concentrations. The two groups of parasites correspond to the major phylogenetic lineages of trypanosomatids. Next, we searched in the trypanosomatid genome databases homologs of two type-I nitroreductases (NTR-1 and OYE) and an ABC transporter (ABCG1) that have been associated with BZ resistance in T. cruzi. The predicted proteins were characterized regarding domains and used for phylogenetic analyses. Homologous NTR-1 genes were found in all trypanosomatids investigated and the structural characteristics of the enzyme suggest that it may be functional. OYE genes were absent in BZ-sensitive African trypanosomes, which excludes the participation of this enzyme in BZ bio-activation. Two copies of ABCG1 genes were observed in most BZ resistant species, while Trypanosoma species exhibit only one copy per haploid genome. Functional studies are required to verify the involvement of these genes in BZ resistance. In addition, since multiple mechanisms can contribute to BZ susceptibility, our study poses a range of organisms highly resistant to BZ in which these aspects can be investigated. Preliminary studies on BZ uptake indicate marked differences between BZ-sensitive and BZ-resistant species.
Collapse
|
9
|
Din ZU, Lazarin-Bidóia D, Kaplum V, Garcia FP, Nakamura CV, Rodrigues-Filho E. The structure design of biotransformed unsymmetrical nitro-contained 1,5-diaryl-3-oxo-1,4-pentadienyls for the anti-parasitic activities. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Evaluation of the multispecies coalescent method to explore intra-Trypanosoma cruzi I relationships and genetic diversity. Parasitology 2019; 146:1063-1074. [PMID: 31046857 DOI: 10.1017/s0031182019000428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chagas Disease is a zoonosis caused by the parasite Trypanosoma cruzi. Several high-resolution markers have subdivided T. cruzi taxon into at least seven lineages or Discrete Typing Units (DTUs) (TcI-TcVI and TcBat). Trypanosoma cruzi I is the most diverse and geographically widespread DTU. Recently a TcI genotype related to domestic cycles was proposed and named as TcIDOM. Herein, we combined traditional markers and housekeeping genes and applied a Multispecies Coalescent method to explore intra-TcI relationships, lineage boundaries and genetic diversity in a random set of isolates and DNA sequences retrieved from Genbank from different countries in the Americas. We found further evidence supporting TcIDOM as an independent and emerging genotype of TcI at least in Colombia and Venezuela. We also found evidence of high phylogenetic incongruence between parasite's gene trees (including introgression) and embedded species trees, and a lack of genetic structure among geography and hosts, illustrating the complex dynamics and epidemiology of TcI across the Americas. These findings provide novel insights into T. cruzi systematics and epidemiology and support the need to assess parasite diversity and lineage boundaries through hypothesis testing using different approaches to those traditionally employed, including the Bayesian Multispecies coalescent method.
Collapse
|
11
|
Zeng Y, Ma J, Zhan Y, Xu X, Zeng Q, Liang J, Chen X. Hypoxia-activated prodrugs and redox-responsive nanocarriers. Int J Nanomedicine 2018; 13:6551-6574. [PMID: 30425475 PMCID: PMC6202002 DOI: 10.2147/ijn.s173431] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is one of the marked features of malignant tumors, which is associated with several adaptation changes in the microenvironment of tumor cells. Therefore, targeting tumor hypoxia is a research hotspot for cancer therapy. In this review, we summarize the developing chemotherapeutic drugs for targeting hypoxia, including quinones, nitroaromatic/nitroimidazole, N-oxides, and transition metal complexes. In addition, redox-responsive bonds, such as nitroimidazole groups, azogroups, and disulfide bonds, are frequently used in drug delivery systems for targeting the redox environment of tumors. Both hypoxia-activated prodrugs and redox-responsive drug delivery nanocarriers have significant effects on targeting tumor hypoxia for cancer therapy. Hypoxia-activated prodrugs are commonly used in clinical trials with favorable prospects, while redox-responsive nanocarriers are currently at the experimental stage.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jingwen Ma
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, People's Republic of China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| |
Collapse
|
12
|
Díaz-Viraqué F, Chiribao ML, Trochine A, González-Herrera F, Castillo C, Liempi A, Kemmerling U, Maya JD, Robello C. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F 2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility. Front Immunol 2018; 9:456. [PMID: 29563916 PMCID: PMC5845897 DOI: 10.3389/fimmu.2018.00456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/20/2018] [Indexed: 01/26/2023] Open
Abstract
The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host-parasite interaction.
Collapse
Affiliation(s)
| | - María Laura Chiribao
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | - Andrea Trochine
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica - ICBM, Facultad de Medicina Universidad de Chile, Santiago de Chile, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica - ICBM, Facultad de Medicina Universidad de Chile, Santiago de Chile, Chile
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
13
|
Meredith EL, Kumar A, Konno A, Szular J, Alsford S, Seifert K, Horn D, Wilkinson SR. Distinct activation mechanisms trigger the trypanocidal activity of DNA damaging prodrugs. Mol Microbiol 2017; 106:207-222. [PMID: 28792090 PMCID: PMC5656836 DOI: 10.1111/mmi.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 02/02/2023]
Abstract
Quinone-based compounds have been exploited to treat infectious diseases and cancer, with such chemicals often functioning as inhibitors of key metabolic pathways or as prodrugs. Here, we screened an aziridinyl 1,4-benzoquinone (ABQ) library against the causative agents of trypanosomiasis, and cutaneous leishmaniasis, identifying several potent structures that exhibited EC50 values of <100 nM. However, these compounds also displayed significant toxicity towards mammalian cells indicating that they are not suitable therapies for systemic infections. Using anti-T. brucei ABQs as chemical probes, we demonstrated that these exhibit different trypanocidal modes of action. Many functioned as type I nitroreductase (TbNTR) or cytochrome P450 reductase (TbCPR) dependent prodrugs that, following activation, generate metabolites which promote DNA damage, specifically interstrand crosslinks (ICLs). Trypanosomes lacking TbSNM1, a nuclease that specifically repairs ICLs, are hypersensitive to most ABQ prodrugs, a phenotype exacerbated in cells also engineered to express elevated levels of TbNTR or TbCPR. In contrast, ABQs that contain substituent groups on the biologically active aziridine do not function as TbNTR or TbCPR-activated prodrugs and do not promote DNA damage. By unravelling how ABQs mediate their activities, features that facilitate the desired anti-parasitic growth inhibitory effects could be incorporated into new, safer compounds targeting these neglected tropical diseases.
Collapse
Affiliation(s)
- Emma Louise Meredith
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Ambika Kumar
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Aya Konno
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Joanna Szular
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Sam Alsford
- Department of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUK
| | - Karin Seifert
- Department of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUK
| | - David Horn
- The Wellcome Trust Centre for Anti‐Infectives Research, School of Life SciencesUniversity of DundeeDundeeUK
| | - Shane R. Wilkinson
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| |
Collapse
|
14
|
Montenegro M, Cuervo C, Cardenas C, Duarte S, Díaz JR, Thomas MC, Lopez MC, Puerta CJ. Identification of a type I nitroreductase gene in non-virulent Trypanosoma rangeli. Mem Inst Oswaldo Cruz 2017; 112:504-509. [PMID: 28591312 PMCID: PMC5452488 DOI: 10.1590/0074-02760160532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/22/2017] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatid type I nitroreductases (NTRs), i.e., mitochondrial enzymes that metabolise nitroaromatic pro-drugs, are essential for parasite growth, infection, and survival. Here, a type I NTR of non-virulent protozoan Trypanosoma rangeli is described and compared to those of other trypanosomatids. The NTR gene was isolated from KP1(+) and KP1(-) strains, and its corresponding transcript and 5’ untranslated region (5’UTR) were determined. Bioinformatics analyses and nitro-drug activation assays were also performed. The results indicated that the type I NTR gene is present in both KP1(-) and KP1(+) strains, with 98% identity. However, the predicted subcellular localisation of the protein differed among the strains (predicted as mitochondrial in the KP1(+) strain). Comparisons of the domains and 3D structures of the NTRs with those of orthologs demonstrated that the nitroreductase domain of T. rangeli NTR is conserved across all the strains, including the residues involved in the interaction with the FMN cofactor and in the tertiary structure characteristics of this oxidoreductase protein family. mRNA processing and expression were also observed. In addition, T. rangeli was shown to be sensitive to benznidazole and nifurtimox in a concentration-dependent manner. In summary, T. rangeli appears to have a newly discovered functional type I NTR.
Collapse
Affiliation(s)
- Marjorie Montenegro
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia.,Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López Neyra, Granada, Spain
| | - Claudia Cuervo
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - Constanza Cardenas
- Pontificia Universidad Católica de Valparaíso, Núcleo de Biotecnología Curauma, Valparaíso, Chile
| | - Silvia Duarte
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - Jenny R Díaz
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - M Carmen Thomas
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López Neyra, Granada, Spain
| | - Manuel C Lopez
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López Neyra, Granada, Spain
| | - Concepcion J Puerta
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| |
Collapse
|
15
|
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Wilkinson SR, Szular J, Kaiser M. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur J Med Chem 2016; 123:895-904. [PMID: 27543881 PMCID: PMC5049494 DOI: 10.1016/j.ejmech.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023]
Abstract
3-Nitro-1H-1,2,4-triazole-based acetamides bearing a biphenyl- or a phenoxyphenyl moiety have shown remarkable antichagasic activity both in vitro and in an acute murine model, as well as substantial in vitro antileishmanial activity but lacked activity against human African trypanosomiasis. We have shown now that by inserting a methylene group in the linkage to obtain the corresponding propanamides, both antichagasic and in particular anti-human African trypanosomiasis potency was increased. Therefore, IC50 values at low nM concentrations against both T. cruzi and T. b. rhodesiense, along with huge selectivity indices were obtained. Although several propanamides were active against Leishmania donovani, they were slightly less potent than their corresponding acetamides. There was a good correlation between lipophilicity (clogP value) and trypanocidal activity, for all new compounds. Type I nitroreductase, an enzyme absent from the human host, played a role in the activation of the new compounds, which may function as prodrugs. Antichagasic activity in vivo was also demonstrated with representative propanamides.
Collapse
Affiliation(s)
| | | | | | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Joanna Szular
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Parasite Chemotherapy, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Wilkinson SR, Szular J, Kaiser M. Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds. Eur J Med Chem 2016; 117:179-86. [PMID: 27092415 PMCID: PMC4876673 DOI: 10.1016/j.ejmech.2016.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/27/2022]
Abstract
A small series of 5-nitro-2-aminothiazole-based amides containing arylpiperazine-, biphenyl- or aryloxyphenyl groups in their core were synthesized and evaluated as antitrypanosomatid agents. All tested compounds were active or moderately active against Trypanosoma cruzi amastigotes in infected L6 cells and Trypanosoma brucei brucei, four of eleven compounds were moderately active against Leishmania donovani axenic parasites while none were deemed active against T. brucei rhodesiense. For the most active/moderately active compounds a moderate selectivity against each parasite was observed. There was good correlation between lipophilicity (clogP value) and antileishmanial activity or toxicity against L6 cells. Similarly, good correlation existed between clogP values and IC50 values against T. cruzi in structurally related subgroups of compounds. Three compounds were more potent as antichagasic agents than benznidazole but were not activated by the type I nitrorectusase (NTR).
Collapse
Affiliation(s)
| | | | | | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Joanna Szular
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Parasite Chemotherapy, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism. Antimicrob Agents Chemother 2016; 60:2664-70. [PMID: 26856844 DOI: 10.1128/aac.02185-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases.
Collapse
|
18
|
Gamboa-Valero N, Astudillo PD, González-Fuentes MA, Leyva MA, Rosales-Hoz MDJ, González FJ. Hydrogen bonding complexes in the quinone-hydroquinone system and the transition to a reversible two-electron transfer mechanism. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation. Bioorg Med Chem 2015; 23:6467-76. [DOI: 10.1016/j.bmc.2015.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/05/2015] [Accepted: 08/13/2015] [Indexed: 12/17/2022]
|
20
|
Papadopoulou MV, Bloomer WD, Rosenzweig HS, O'Shea IP, Wilkinson SR, Kaiser M. 3-Nitrotriazole-based piperazides as potent antitrypanosomal agents. Eur J Med Chem 2015; 103:325-34. [PMID: 26363868 DOI: 10.1016/j.ejmech.2015.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/17/2015] [Accepted: 08/22/2015] [Indexed: 12/16/2022]
Abstract
Novel linear 3-nitro-1H-1,2,4-triazole-based piperazides were synthesized and evaluated as antitrypanosomal agents. In addition, some bisarylpiperazine-ethanones which were formed as by-products were also screened for antiparasitic activity. Most 3-nitrotriazole-based derivatives were potent and selective against Trypanosoma cruzi parasites, but only one displayed these desired properties against Trypanosoma brucei rhodesiense. Moreover, two 3-nitrotriazole-based chlorophenylpiperazides were moderately and selectively active against Leishmania donovani. Although the bisarylpiperazine-ethanones were active or moderately active against T. cruzi, none of them demonstrated an acceptable selectivity. In general, 3-nitrotriazole-based piperazides were less toxic to host L6 cells than the previously evaluated 3-nitrotriazole-based piperazines and seven of 13 were 1.54- to 31.2-fold more potent antichagasic agents than the reference drug benznidazole. Selected compounds showed good ADMET characteristics. One potent in vitro antichagasic compound (3) was tested in an acute murine model and demonstrated antichagasic activity after a 10-day treatment of 15 mg/kg/day. However, neither compound 3 nor benznidazole showed a statistically significant P value compared to control due to high variability in parasite burden among the untreated animals. Working as prodrugs, 3-nitrotriazole-based piperazides were excellent substrates of trypanosomal type I nitroreductases and constitute a novel class of potentially effective and more affordable antitrypanosomal agents.
Collapse
Affiliation(s)
| | | | | | - Ivan P O'Shea
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Parasite Chemotherapy, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Comparative characterisation of two nitroreductases from Giardia lamblia as potential activators of nitro compounds. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:37-43. [PMID: 27099829 PMCID: PMC4813764 DOI: 10.1016/j.ijpddr.2015.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 11/23/2022]
Abstract
G. lamblia has two nitroreductases with substrate specificities not only for nitro compounds, but also for quinones. GlNR1 rather activates nitro drugs by forming toxic intermediates, GlNR2 rather inactivates them.
Giardia lamblia is a protozoan parasite that causes giardiasis, a diarrhoeal disease affecting humans and various animal species. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for treatment of giardiasis. Nitroreductases such as GlNR1 and GlNR2 may play a role in activation or inactivation of these drugs. The aim of this work is to characterise these two enyzmes using functional assays. For respective analyses recombinant analogues from GlNR1 and GlNR2 were produced in Escherichia coli. E. coli expressing GlNR1 and GlNR2 alone or together were grown in the presence of nitro compounds. Furthermore, pull-down assays were performed using HA-tagged GlNR1 and GlNR2 as baits. As expected, E. coli expressing GlNR1 were more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions whereas E. coli expressing GlNR2 were susceptible to neither drug. Interestingly, expression of both nitroreductases gave the same results as expression of GlNR2 alone. In functional assays, both nitroreductases had their strongest activities on the quinone menadione (vitamin K3) and FAD, but reduction of nitro compounds including the nitro drugs metronidazole and nitazoxanide was clearly detected. Full reduction of 7-nitrocoumarin to 7-aminocoumarin was preferentially achieved with GlNR2. Pull-down assays revealed that GlNR1 and GlNR2 interacted in vivo forming a multienzyme complex. These findings suggest that both nitroreductases are multifunctional. Their main biological role may reside in the reduction of vitamin K analogues and FAD. Activation by GlNR1 or inactivation by GlNR2 of nitro drugs may be the consequence of a secondary enzymatic activity either yielding (GlNR1) or eliminating (GlNR2) toxic intermediates after reduction of these compounds.
Collapse
|
22
|
Sullivan JA, Tong JL, Wong M, Kumar A, Sarkar H, Ali S, Hussein I, Zaman I, Meredith EL, Helsby NA, Hu L, Wilkinson SR. Unravelling the role of SNM1 in the DNA repair system ofTrypanosoma brucei. Mol Microbiol 2015; 96:827-38. [DOI: 10.1111/mmi.12973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Affiliation(s)
- James A. Sullivan
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Jie Lun Tong
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Martin Wong
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Ambika Kumar
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Hajrah Sarkar
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Sarah Ali
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Ikran Hussein
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Iqra Zaman
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Emma Louise Meredith
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Nuala A. Helsby
- Department of Molecular Medicine and Pathology; University of Auckland; Private Bag 92019 Auckland New Zealand
| | - Longqin Hu
- Department of Medicinal Chemistry; Ernest Mario School of Pharmacy; Rutgers; The State University of New Jersey; Piscataway NJ 08854 USA
| | - Shane R. Wilkinson
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| |
Collapse
|
23
|
Papadopoulou MV, Bloomer WD, Lepesheva GI, Rosenzweig HS, Kaiser M, Aguilera-Venegas B, Wilkinson SR, Chatelain E, Ioset JR. Novel 3-nitrotriazole-based amides and carbinols as bifunctional antichagasic agents. J Med Chem 2015; 58:1307-19. [PMID: 25580906 DOI: 10.1021/jm5015742] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
3-Nitro-1H-1,2,4-triazole-based amides with a linear, rigid core and 3-nitrotriazole-based fluconazole analogues were synthesized as dual functioning antitrypanosomal agents. Such compounds are excellent substrates for type I nitroreductase (NTR) located in the mitochondrion of trypanosomatids and, at the same time, act as inhibitors of the sterol 14α-demethylase (T. cruzi CYP51) enzyme. Because combination treatments against parasites are often superior to monotherapy, we believe that this emerging class of bifunctional compounds may introduce a new generation of antitrypanosomal drugs. In the present work, the synthesis and in vitro and in vivo evaluation of such compounds is discussed.
Collapse
|
24
|
Trochine A, Alvarez G, Corre S, Faral-Tello P, Durán R, Batthyany CI, Cerecetto H, González M, Robello C. Trypanosoma cruzi chemical proteomics using immobilized benznidazole. Exp Parasitol 2014; 140:33-8. [PMID: 24632192 DOI: 10.1016/j.exppara.2014.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/11/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Benznidazole (Bzn) is a nitroimidazole drug currently used as first line treatment against Chagas disease, a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. Although the drug has been used since the late 1960s, its mechanism of action is not fully understood. In an attempt to study Bzn mode of action, a structurally modified derivative of the drug was synthesized and immobilized into a solid matrix. This allowed enrichment of T. cruzi proteins capable of binding immobilized Bzn, which were subsequently analysed by mass spectrometry. The proteins identified as specific non-covalent Bzn interactors were a homologue of the bacterial YjeF proteins, a Sec23A orthologue and the aldo-ketoreductase family member TcAKR. TcAKR is closely related to other enzymes previously associated with Bzn reductive activation such as NTRI and TcOYE. Thus, our untargeted search for Bzn binding partners allowed us to encounter proteins that could be related to drug reductive activation and/or resistance mechanisms.
Collapse
Affiliation(s)
- Andrea Trochine
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
| | - Guzmán Alvarez
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Sandra Corre
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
| | - Paula Faral-Tello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
| | - Rosario Durán
- Unidad de Proteómica y Bioquímica Analíticas, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| | - Carlos I Batthyany
- Unidad de Proteómica y Bioquímica Analíticas, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Mercedes González
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
25
|
Voak AA, Gobalakrishnapillai V, Seifert K, Balczo E, Hu L, Hall BS, Wilkinson SR. An essential type I nitroreductase from Leishmania major can be used to activate leishmanicidal prodrugs. J Biol Chem 2013; 288:28466-76. [PMID: 23946481 DOI: 10.1074/jbc.m113.494781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitroaromatic prodrugs are used to treat a range of microbial infections with selectivity achieved by specific activation reactions. For trypanosomatid parasites, this is mediated by type I nitroreductases. Here, we demonstrate that the causative agent of leishmaniasis, Leishmania major, expresses an FMN-containing nitroreductase (LmNTR) that metabolizes a wide range of substrates, and based on electron donor and acceptor preferences, it may function as an NADH:quinone oxidoreductase. Using gene deletion approaches, we demonstrate that this activity is essential to L. major promastigotes, the parasite forms found in the insect vector. Intriguingly, LmNTR(+/-) heterozygote promastigote parasites could readily differentiate into infectious metacyclic cells but these were unable to establish infections in cultured mammalian cells and caused delayed pathology in mice. Furthermore, we exploit the LmNTR activity evaluating a library of nitrobenzylphosphoramide mustards using biochemical and phenotypic screens. We identify a subset of compounds that display significant growth inhibitory properties against the intracellular parasite form found in the mammalian hosts. The leishmanicidal activity was shown to be LmNTR-specific as the LmNTR(+/-) heterozygote promastigotes displayed resistance to the most potent mustards. We conclude that LmNTR can be targeted for drug development by exploiting its prodrug activating property or by designing specific inhibitors to block its endogenous function.
Collapse
Affiliation(s)
- Andrew A Voak
- From the Queen Mary Pre-Clinical Drug Discovery Group, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|