1
|
Manaranche J, Laurent M, Tressieres R, Nguyen M, Salim M, Ouji M, Reyser T, Egwu CO, Robert A, Augereau JM, Benoit-Vical F, Paloque L. In vitro evaluation of ganaplacide/lumefantrine combination against Plasmodium falciparum in a context of artemisinin resistance. J Antimicrob Chemother 2024; 79:2877-2886. [PMID: 39206510 PMCID: PMC11531816 DOI: 10.1093/jac/dkae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Ganaplacide, also known as KAF156, is among the new antimalarial drug candidates that have successfully reached Phase III clinical trials, and is proposed in combination with lumefantrine. This combination could replace the current front-line artemisinin-based combination therapies (ACTs) in case of Plasmodium falciparum resistance to both artemisinins and partner drugs. Indeed, the African continent, where the malaria burden is the highest, is currently experiencing worrying multiple emergences and spread of artemisinin resistance, which urges for the exploration of the antiparasitic properties of KAF156 in this context. OBJECTIVES AND METHODS The objectives of this work were firstly to evaluate the risk of cross-resistance between artemisinins and KAF156 alone, and in combination with lumefantrine, using a panel of artemisinin-resistant strains carrying different pfk13 mutations and markers of other antiplasmodial drug resistances; secondly to explore in vitro the relevance of combining KAF156 and lumefantrine with artemisinins, based on the model of triple ACTs. RESULTS Our results highlighted that KAF156 activity was not impaired by mutations in pfk13, pfcrt, pfmdr1, pfmdr2, pfdhps and pfdhfr genes or by pfmdr1 amplification. Moreover, we demonstrated that KAF156 alone and in combination with lumefantrine was active against artemisinin-resistant parasites, including when they are quiescent. CONCLUSIONS All these in vitro results evidence that multi-drug resistant parasites currently in circulation in the field might not affect KAF156 efficacy, and are encouraging signs for KAF156 use in a triple ACT to preserve the use of artemisinins for as long as possible.
Collapse
Affiliation(s)
- Jeanne Manaranche
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Marion Laurent
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Roxane Tressieres
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Michel Nguyen
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Maryam Salim
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Manel Ouji
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Chinedu O Egwu
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Anne Robert
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
2
|
White NJ, Chotivanich K. Artemisinin-resistant malaria. Clin Microbiol Rev 2024:e0010924. [PMID: 39404268 DOI: 10.1128/cmr.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
SUMMARYThe artemisinin antimalarials are the cornerstone of current malaria treatment. The development of artemisinin resistance in Plasmodium falciparum poses a major threat to malaria control and elimination. Recognized first in the Greater Mekong subregion of Southeast Asia nearly 20 years ago, artemisinin resistance has now been documented in Guyana, South America, in Papua New Guinea, and most recently, it has emerged de novo in East Africa (Rwanda, Uganda, South Sudan, Tanzania, Ethiopia, Eritrea, and eastern DRC) where it has now become firmly established. Artemisinin resistance is associated with mutations in the propeller region of the PfKelch gene, which play a causal role, although the parasites' genetic background also makes an important contribution to the phenotype. Clinically, artemisinin resistance manifests as reduced parasiticidal activity and slower parasite clearance and thus an increased risk of treatment failure following artemisinin-based combination therapy (ACT). This results from the loss of artemisinin activity against the younger circulating ring stage parasites. This loss of activity is likely to diminish the life-saving advantage of artesunate in the treatment of severe falciparum malaria. Gametocytocidal and thus transmission blocking activities are also reduced. At current levels of resistance, artemisinin-resistant parasites still remain susceptible at the trophozoite stage of asexual development, and so, artemisinin still contributes to the therapeutic response. As ACTs are the most widely used antimalarial drugs in the world, it is essential from a malaria control perspective that ACT cure rates remain high. Better methods of identifying uncomplicated hyperparasitemia, the main cause of ACT treatment failure, are required so that longer courses of treatment can be given to these high-risk patients. Reducing the use of artemisinin monotherapies will reduce the continued selection pressure which could lead potentially to higher levels of artemisinin resistance. Triple artemisinin combination therapies should be deployed as soon as possible to protect the ACT partner drugs and thereby delay the emergence of higher levels of resistance. As new affordable antimalarial drugs are still several years away, the control of artemisinin resistance must depend on the better use of available tools.
Collapse
Affiliation(s)
- N J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - K Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Rosenthal PJ, Asua V, Conrad MD. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol 2024; 22:373-384. [PMID: 38321292 DOI: 10.1038/s41579-024-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.
Collapse
Affiliation(s)
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
- University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
4
|
de Aguiar-Barros J, Granja F, de Abreu-Fernandes R, de Queiroz LT, da Silva e Silva D, Citó AC, Mocelin NKADO, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Molecular Surveillance of Artemisinin-Resistant Plasmodium falciparum Parasites in Mining Areas of the Roraima Indigenous Territory in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:679. [PMID: 38928926 PMCID: PMC11203648 DOI: 10.3390/ijerph21060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Multidrug- and artemisinin-resistant (ART-R) Plasmodium falciparum (Pf) parasites represent a challenge for malaria elimination worldwide. Molecular monitoring in the Kelch domain region (pfk13) gene allows tracking mutations in parasite resistance to artemisinin. The increase in illegal miners in the Roraima Yanomami indigenous land (YIL) could favor ART-R parasites. Thus, this study aimed to investigate ART-R in patients from illegal gold mining areas in the YIL of Roraima, Brazil. A questionnaire was conducted, and blood was collected from 48 patients diagnosed with P. falciparum or mixed malaria (Pf + P. vivax). The DNA was extracted and the pfk13 gene was amplified by PCR. The amplicons were subjected to DNA-Sanger-sequencing and the entire amplified fragment was analyzed. Among the patients, 96% (46) were from illegal mining areas of the YIL. All parasite samples carried the wild-type genotypes/ART-sensitive phenotypes. These data reinforce the continued use of artemisinin-based combination therapies (ACTs) in Roraima, as well as the maintenance of systematic monitoring for early detection of parasite populations resistant to ART, mainly in regions with an intense flow of individuals from mining areas, such as the YIL. This is especially true when the achievement of falciparum malaria elimination in Brazil is planned and expected by 2030.
Collapse
Affiliation(s)
- Jacqueline de Aguiar-Barros
- Malaria Control Center, Epidemiological Surveillance Department, General Health Surveillance Coordination, SESAU-RR, Roraima 69305-080, Brazil;
- Postgraduate Program in Biodiversity and Biotechnology–BIONORTE Network/Roraima Federal University (UFRR), Roraima 69310-000, Brazil;
| | - Fabiana Granja
- Postgraduate Program in Biodiversity and Biotechnology–BIONORTE Network/Roraima Federal University (UFRR), Roraima 69310-000, Brazil;
- Biodiversity Research Centre, Roraima Federal University (UFRR), Roraima 69304-000, Brazil;
- Graduate Program in Natural Resources, Federal University of Roraima (UFRR), Roraima 69304-000, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | | | - Arthur Camurça Citó
- Research Support Center in Roraima (NAPRR) of the National Institute for Amazonian Research (INPA), Roraima 69301-150, Brazil;
| | - Natália Ketrin Almeida-de-Oliveira Mocelin
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
5
|
Ahmad T, Alhammadi BA, Almaazmi SY, Arafa S, Blatch GL, Dutta T, Gestwicki JE, Keyzers RA, Shonhai A, Singh H. Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update. Cell Stress Chaperones 2024; 29:326-337. [PMID: 38518861 PMCID: PMC10990865 DOI: 10.1016/j.cstres.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Bushra A Alhammadi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Shaikha Y Almaazmi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Sahar Arafa
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Gregory L Blatch
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.
| | - Tanima Dutta
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Robert A Keyzers
- Centre for Biodiscovery & School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| |
Collapse
|
6
|
Casanova D, Baptista V, Costa M, Freitas B, Pereira MDNI, Calçada C, Mota P, Kythrich O, Pereira MHJS, Osório NS, Veiga MI. Artemisinin resistance-associated gene mutations in Plasmodium falciparum: A case study of severe malaria from Mozambique. Travel Med Infect Dis 2024; 57:102684. [PMID: 38159875 DOI: 10.1016/j.tmaid.2023.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The effectiveness of artemisinin-based combination therapies (ACT) in treating Plasmodium falciparum, is vital for global malaria control efforts, particularly in sub-Saharan Africa. The examination of imported cases from endemic areas holds implications for malaria chemotherapy on a global scale. METHOD A 45-year-old male presented with high fever, dry cough, diarrhoea and generalized muscle pain, following a two-week trip to Mozambique. P. falciparum infection with hiperparasitemia was confirmed and the patient was treated initially with quinine and doxycycline, then intravenous artesunate. To assess drug susceptibility, ex vivo half-maximal inhibitory concentration assays were conducted, and the isolated P. falciparum genome was deep sequenced. RESULTS The clinical isolate exhibited elevated ex vivo half-maximal inhibitory concentration values to dihydroartemisinin, lumefantrine, mefloquine and piperaquine. Genomic analysis identified a I416V mutation in the P. falciparum Kelch13 (PF3D7_1343700) gene, and several mutations at the Kelch13 interaction candidate genes, pfkics (PF3D7_0813000, PF3D7_1138700, PF3D7_1246300), including the ubiquitin carboxyl-terminal hydrolase 1, pfubp1 (PF3D7_0104300). Mutations at the drug transporters and genes linked to next-generation antimalarial drug resistance were also present. CONCLUSIONS This case highlights the emergence of P. falciparum strains carrying mutations in artemisinin resistance-associated genes in Mozambique, couple with a reduction in ex vivo susceptibility to ACT drugs. Continuous surveillance of mutations linked to drug resistance and regular monitoring of drug susceptibility are imperative to anticipate the spread of potential resistant strains emerging in Mozambique and to maintain effective malaria control strategies.
Collapse
Affiliation(s)
- Daniela Casanova
- Internal Medicine Department, Hospital Senhora da Oliveira, 4835-044, Guimarães, Portugal
| | - Vitória Baptista
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3B's─PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal; Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - Magda Costa
- Internal Medicine Department, Hospital Senhora da Oliveira, 4835-044, Guimarães, Portugal
| | - Bruno Freitas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3B's─PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - Maria das Neves Imaculada Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3B's─PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3B's─PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - Paula Mota
- Clinical Pathology Department, Hospital Senhora da Oliveira, 4835-044, Guimarães, Portugal
| | - Olena Kythrich
- Clinical Pathology Department, Hospital Senhora da Oliveira, 4835-044, Guimarães, Portugal
| | | | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3B's─PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3B's─PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal; Clinical Academic Center-Braga (2CA-Braga), 4710-243, Braga, Portugal.
| |
Collapse
|
7
|
Kayiba NK, Tshibangu-Kabamba E, Rosas-Aguirre A, Kaku N, Nakagama Y, Kaneko A, Makaba DM, Malekita DY, Devleesschauwer B, Likwela JL, Zakayi PK, DeMol P, Lelo GM, Hayette MP, Dikassa PL, Kido Y, Speybroeck N. The landscape of drug resistance in Plasmodium falciparum malaria in the Democratic Republic of Congo: a mapping systematic review. Trop Med Health 2023; 51:64. [PMID: 37968745 PMCID: PMC10647042 DOI: 10.1186/s41182-023-00551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
CONTEXT The Democratic Republic of Congo (DRC), one of the most malaria-affected countries worldwide, is a potential hub for global drug-resistant malaria. This study aimed at summarizing and mapping surveys of malaria parasites carrying molecular markers of drug-resistance across the country. METHODS A systematic mapping review was carried out before July 2023 by searching for relevant articles through seven databases (PubMed, Embase, Scopus, African Journal Online, African Index Medicus, Bioline and Web of Science). RESULTS We identified 1541 primary studies of which 29 fulfilled inclusion criteria and provided information related to 6385 Plasmodium falciparum clinical isolates (collected from 2000 to 2020). We noted the PfCRT K76T mutation encoding for chloroquine-resistance in median 32.1% [interquartile interval, IQR: 45.2] of analyzed malaria parasites. The proportion of parasites carrying this mutation decreased overtime, but wide geographic variations persisted. A single isolate had encoded the PfK13 R561H substitution that is invoked in artemisinin-resistance emergence in the Great Lakes region of Africa. Parasites carrying various mutations linked to resistance to the sulfadoxine-pyrimethamine combination were widespread and reflected a moderate resistance profile (PfDHPS A437G: 99.5% [IQR: 3.9]; PfDHPS K540E: 38.9% [IQR: 47.7]) with median 13.1% [IQR: 10.3] of them being quintuple IRN-GE mutants (i.e., parasites carrying the PfDHFR N51I-C59R-S108N and PfDHPS A437G-K540E mutations). These quintuple mutants tended to prevail in eastern regions of the country. Among circulating parasites, we did not record any parasites harboring mutations related to mefloquine-resistance, but we could suspect those with decreased susceptibility to quinine, amodiaquine, and lumefantrine based on corresponding molecular surrogates. CONCLUSIONS Drug resistance poses a serious threat to existing malaria therapies and chemoprevention options in the DRC. This review provides a baseline for monitoring public health efforts as well as evidence for decision-making in support of national malaria policies and for implementing regionally tailored control measures across the country.
Collapse
Affiliation(s)
- Nadine Kalenda Kayiba
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
- Department of Public Health, Faculty of Medicine, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Evariste Tshibangu-Kabamba
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Internal Medicine, Faculty of Medicine, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
| | - Natsuko Kaku
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yu Nakagama
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Akira Kaneko
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Dieudonné Mvumbi Makaba
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Department of Quality of Laboratories, Sciensano, Brussels, Belgium
| | - Doudou Yobi Malekita
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Joris Losimba Likwela
- Department of Public Health, Faculty of Medicine, University of Kisangani, Kisangani, Democratic Republic of Congo
| | - Pius Kabututu Zakayi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Patrick DeMol
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Georges Mvumbi Lelo
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Marie-Pierre Hayette
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Paul Lusamba Dikassa
- School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Yasutoshi Kido
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
| | - Niko Speybroeck
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Sharma S, Ali ME. How do the mutations in PfK13 protein promote anti-malarial drug resistance? J Biomol Struct Dyn 2023; 41:7329-7338. [PMID: 36153000 DOI: 10.1080/07391102.2022.2120539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Plasmodium falciparum develops resistance to artemisinin upon exposure to the anti-malarial drug. Various mutations in the Plasmodium falciparum Kelch13 (PfK13) protein such as Y493H, R539T, I543T and C580Y have been associated with anti-malarial drug resistance. These mutations impede the regular ubiquitination process that eventually invokes drug resistance. However, the relationship between the mutation and the mechanism of drug resistance has not yet been fully elucidated. The comparative protein dynamics are studied by performing the classical molecular dynamics (MD) simulations and subsequent analysis of the trajectories adopting root-mean-square fluctuations, the secondary-structure predictions and the dynamical cross-correlation matrix analysis tools. Here, we observed that the mutations in the Kelch-domain do not have any structural impact on the mutated site; however, it significantly alters the overall dynamics of the protein. The loop-region of the BTB-domain especially for Y493H and C580Y mutants is found to have the enhanced dynamical fluctuations. The enhanced fluctuations in the BTB-domain could affect the protein-protein (PfK13-Cullin) binding interactions in the ubiquitination process and eventually lead to anti-malarial drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| |
Collapse
|
9
|
Yade MS, Dièye B, Coppée R, Mbaye A, Diallo MA, Diongue K, Bailly J, Mama A, Fall A, Thiaw AB, Ndiaye IM, Ndiaye T, Gaye A, Tine A, Diédhiou Y, Mbaye AM, Doderer-Lang C, Garba MN, Bei AK, Ménard D, Ndiaye D. Ex vivo RSA and pfkelch13 targeted-amplicon deep sequencing reveal parasites susceptibility to artemisinin in Senegal, 2017. Malar J 2023; 22:167. [PMID: 37237307 PMCID: PMC10223908 DOI: 10.1186/s12936-023-04588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapy (ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in sub-Saharan Africa, where most malaria deaths occur. METHODS Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum isolates collected in 2017 in Thiès (Senegal) expressed in the Ring-stage Survival Assay (RSA). Both major and minor variants were explored in the three conserved-encoding domains of the pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS All samples tested in the ex vivo RSA were found to be susceptible to DHA (parasite survival rate < 1%). The non-synonymous mutations K189T and K248R in pfkelch13 were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION The results suggest that ART is still fully effective in the Thiès region of Senegal in 2017. Investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.
Collapse
Affiliation(s)
- Mamadou Samb Yade
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Baba Dièye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Romain Coppée
- Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Aminata Mbaye
- Université Gamal Abdel Nasser de Conakry/Centre for Research and Training in Infectiology of Guinea (CERFIG), Conakry, Guinea
| | - Mamadou Alpha Diallo
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Khadim Diongue
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
- Service of Parasitology-Mycology, Faculty of Medecine, Pharmacy, and Odontostomatology, Cheikh Anta Diop University of Dakar, Dakar, 10700 Senegal
| | | | - Atikatou Mama
- Université de Paris, Institut Cochin, Inserm U1016, Service de Parasitologie Hôpital Cochin, 75014 Paris, France
| | - Awa Fall
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Alphonse Birane Thiaw
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Tolla Ndiaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Amy Gaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Abdoulaye Tine
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Younouss Diédhiou
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Amadou Mactar Mbaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Cécile Doderer-Lang
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, 67000 Strasbourg, France
| | - Mamane Nassirou Garba
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
| | - Amy Kristine Bei
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02115 USA
| | - Didier Ménard
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, 67000 Strasbourg, France
- CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, 67000 Strasbourg, France
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, 75015 Paris, France
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Daouda Ndiaye
- Laboratory of Parasitology-Mycology, Aristide le Dantec Hospital, Université Cheikh Anta Diop, Dakar, Senegal
- International Research Training Center on Genomics and Health Surveillance (CIGASS), Dakar, Senegal
- Service of Parasitology-Mycology, Faculty of Medecine, Pharmacy, and Odontostomatology, Cheikh Anta Diop University of Dakar, Dakar, 10700 Senegal
| |
Collapse
|
10
|
Maniga JN, Samuel M, John O, Rael M, Muchiri JN, Bwogo P, Martin O, Sankarapandian V, Wilberforce M, Albert O, Onkoba SK, Adebayo IA, Adeyemo RO, Akinola SA. Novel Plasmodium falciparum k13 gene polymorphisms from Kisii County, Kenya during an era of artemisinin-based combination therapy deployment. Malar J 2023; 22:87. [PMID: 36894982 PMCID: PMC9996564 DOI: 10.1186/s12936-023-04517-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Currently, chemotherapy stands out as the major malaria intervention strategy, however, anti-malarial resistance may hamper global elimination programs. Artemisinin-based combination therapy (ACT) stands as the drug of choice for the treatment of Plasmodium falciparum malaria. Plasmodium falciparum kelch13 gene mutations are associated with artemisinin resistance. Thus, this study was aimed at evaluating the circulation of P. falciparum k13 gene polymorphisms from Kisii County, Kenya during an era of ACT deployment. METHODS Participants suspected to have malaria were recruited. Plasmodium falciparum was confirmed using the microscopy method. Malaria-positive patients were treated with artemether-lumefantrine (AL). Blood from participants who tested positive for parasites after day 3 was kept on filter papers. DNA was extracted using chelex-suspension method. A nested polymerase chain reaction (PCR) was conducted and the second-round products were sequenced using the Sanger method. Sequenced products were analysed using DNAsp 5.10.01 software and then blasted on the NCBI for k13 propeller gene sequence identity using the Basic Local Alignment Search Tool (BLAST). To assess the selection pressure in P. falciparum parasite population, Tajima' D statistic and Fu & Li's D test in DnaSP software 5.10.01 was used. RESULTS Out of 275 enrolled participants, 231 completed the follow-up schedule. 13 (5.6%) had parasites on day 28 hence characterized for recrudescence. Out of the 13 samples suspected of recrudescence, 5 (38%) samples were positively amplified as P. falciparum, with polymorphisms in the k13-propeller gene detected. Polymorphisms detected in this study includes R539T, N458T, R561H, N431S and A671V, respectively. The sequences have been deposited in NCBI with bio-project number PRJNA885380 and accession numbers SAMN31087434, SAMN31087433, SAMN31087432, SAMN31087431 and SAMN31087430 respectively. CONCLUSIONS WHO validated polymorphisms in the k13-propeller gene previously reported to be associated with ACT resistance were not detected in the P. falciparum isolates from Kisii County, Kenya. However, some previously reported un-validated k13 resistant single nucleotide polymorphisms were reported in this study but with limited occurrences. The study has also reported new SNPs. More studies need to be carried out in the entire country to understand the association of reported mutations if any, with ACT resistance.
Collapse
Affiliation(s)
- Josephat Nyabayo Maniga
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda.
| | | | - Odda John
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Pharmacology and Therapeutics, Makerere University, Kampala, Uganda.,Department of Pharmacology and Toxicology, School of Medicine, King Caesor University, Kampala, Uganda
| | - Masai Rael
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | - Pacifica Bwogo
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Odoki Martin
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Medical Microbiology and Immunology, School of Medicine, King Ceasor University, Kampala, Uganda.,Department of Applied Sciences, School of Sciences, Nkumba University, Entebbe, Uganda
| | - Vidya Sankarapandian
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda
| | - Mfitundinda Wilberforce
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Pharmacology and Toxicology, School of Medicine, King Caesor University, Kampala, Uganda
| | - Ochweri Albert
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Sarah Kemuma Onkoba
- Department of Medical Microbiology and Immunology, Kampala International University Western Campus, Bushenyi, Uganda
| | - Ismail Abiola Adebayo
- Department of Medical Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Rasheed Omotayo Adeyemo
- Department of Medical Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Saheed Adekunle Akinola
- Department of Medical Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
11
|
Yade MS, Dièye B, Coppée R, Mbaye A, Diallo MA, Diongue K, Bailly J, Mama A, Fall A, Thiaw AB, Ndiaye IM, Ndiaye T, Gaye A, Tine A, Diédhiou Y, Mbaye AM, Doderer-Lang C, Garba MN, Bei AK, Ménard D, Ndiaye D. Ex vivo RSA and Pfkelch13 targeted-amplicon deep sequencing reveal parasites susceptibility to artemisinin in Senegal, 2017. RESEARCH SQUARE 2023:rs.3.rs-2538775. [PMID: 36798264 PMCID: PMC9934778 DOI: 10.21203/rs.3.rs-2538775/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapies (ACTs), the current frontline malaria curative treatments. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in Sub-Saharan Africa where most malaria deaths occur. METHODS Here, we evaluated ex vivo susceptibility to dihydroartemisinin (DHA) from 38 P. falciparum isolates collected in 2017 in Thiès (Senegal) expressed with the Ring-stage Survival Assay (RSA). We explored major and minor variants in the full Pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS All samples tested in the ex vivo RSA were found to be susceptible to DHA. Both non-synonymous mutations K189T and K248R were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION Altogether, investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.
Collapse
Affiliation(s)
- Mamadou Samb Yade
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Baba Dièye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Romain Coppée
- Université Paris Cité and Sorbone Paris Nord, Inserm, IAME
| | - Aminata Mbaye
- Centre for Research and Training in Infectiology of Guinea (CRTIG)
| | - Mamadou Alpha Diallo
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | | | | | | | - Awa Fall
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Alphonse Birane Thiaw
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences
| | - Ibrahima Mbaye Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Tolla Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Amy Gaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Abdoulaye Tine
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Younouss Diédhiou
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Amadou Mactar Mbaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | | | - Mamane Nassirou Garba
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | | | - Didier Ménard
- Université de Strasbourg, UR7292 Dynamics of Host-Pathogen Interactions
| | - Daouda Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| |
Collapse
|
12
|
Leski TA, Taitt CR, Colston SM, Bangura U, Holtz A, Yasuda CY, Reynolds ND, Lahai J, Lamin JM, Baio V, Ansumana R, Stenger DA, Vora GJ. Prevalence of malaria resistance-associated mutations in Plasmodium falciparum circulating in 2017–2018, Bo, Sierra Leone. Front Microbiol 2022; 13:1059695. [DOI: 10.3389/fmicb.2022.1059695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionIn spite of promising medical, sociological, and engineering strategies and interventions to reduce the burden of disease, malaria remains a source of significant morbidity and mortality, especially among children in sub-Saharan Africa. In particular, progress in the development and administration of chemotherapeutic agents is threatened by evolved resistance to most of the antimalarials currently in use, including artemisinins.MethodsThis study analyzed the prevalence of mutations associated with antimalarial resistance in Plasmodium falciparum from 95 clinical samples collected from individuals with clinically confirmed malaria at a hospital in Bo, Sierra Leone between May 2017 and December 2018. The combination of polymerase chain reaction amplification and subsequent high throughput DNA sequencing was used to determine the presence of resistance-associated mutations in five P. falciparum genes – pfcrt, pfmdr1, pfdhfr, pfdhps and pfkelch13. The geographic origin of parasites was assigned using mitochondrial sequences.ResultsRelevant mutations were detected in the pfcrt (22%), pfmdr1 (>58%), pfdhfr (100%) and pfdhps (>80%) genes while no resistance-associated mutations were found in the pfkelch13 gene. The mitochondrial barcodes were consistent with a West African parasite origin with one exception indicating an isolate imported from East Africa.DiscussionDetection of the pfmdr1 NFSND haplotype in 50% of the samples indicated the increasing prevalence of strains with elevated tolerance to artemeter + lumefantrine (AL) threatening the combination currently used to treat uncomplicated malaria in Sierra Leone. The frequency of mutations linked to resistance to antifolates suggests widespread resistance to the drug combination used for intermittent preventive treatment during pregnancy.
Collapse
|
13
|
Ward KE, Fidock DA, Bridgford JL. Plasmodium falciparum resistance to artemisinin-based combination therapies. Curr Opin Microbiol 2022; 69:102193. [PMID: 36007459 PMCID: PMC9847095 DOI: 10.1016/j.mib.2022.102193] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Multidrug-resistant Plasmodium falciparum parasites are a major threat to public health in intertropical regions. Understanding the mechanistic basis, origins, and spread of resistance can inform strategies to mitigate its impact and reduce the global burden of malaria. The recent emergence in Africa of partial resistance to artemisinins, the core component of first-line combination therapies, is particularly concerning. Here, we review recent advances in elucidating the mechanistic basis of artemisinin resistance, driven primarily by point mutations in P. falciparum Kelch13, a key regulator of hemoglobin endocytosis and parasite response to artemisinin-induced stress. We also review resistance to partner drugs, including piperaquine and mefloquine, highlighting a key role for plasmepsins 2/3 and the drug and solute transporters P. falciparum chloroquine-resistance transporter and P. falciparum multidrug-resistance protein-1.
Collapse
Affiliation(s)
- Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Rodrigues ABB, de Abreu-Fernandes R, Neto Z, Jandondo D, Almeida-de-Oliveira NK, de Lavigne Mello AR, Morais J, Daniel-Ribeiro CT, Menard D, Ferreira-da-Cruz MDF. Pfkelch13 Plasmodium falciparum Mutations in Huambo, Angola. Pathogens 2022; 11:554. [PMID: 35631076 PMCID: PMC9146480 DOI: 10.3390/pathogens11050554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Artemisinin (ART) is recommended as the first-line drug for P. falciparum infections combined with a long-acting partner drug. The emergence of P. falciparum resistance to ART (ARTR) is a concern for malaria. The most feared threat remains the spread of ARTR from Southeast Asia to Africa or the independent emergence of ARTR in Africa, where malaria accounts for 93% of all malaria cases and 94% of deaths. To avoid this worst-case scenario, surveillance of Pfkelch13 mutations is essential. We investigated mutations of Pfkelch13 in 78 P. falciparum samples from Huambo, Angola. Most of the parasites had a wild-type Pfkelch13 allele. We identified one synonymous mutation (R471R) in 10 isolates and one non-synonymous mutation (A578S) in two samples. No Pfkelch13 validated or candidate ARTR mutants were identified. The finding suggests that there is little polymorphism in Pfkelch13 in Huambo. Since cases of late response to ART in Africa and the emergence of ARTR mutations in Rwanda and Uganda have been reported, efforts should be made toward continuous molecular surveillance of ARTR. Our study has some limitations. Since we analyzed P. falciparum parasites from a single health facility, the study may not be representative of all Angolan endemic areas.
Collapse
Affiliation(s)
- Ana Beatriz Batista Rodrigues
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil; (A.B.B.R.); (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazonian Region of the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil; (A.B.B.R.); (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazonian Region of the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Zoraima Neto
- Instituto Nacional de Investigação em Saúde (INIS), Ministério da Saúde, Luanda 999104, Angola; (Z.N.); (D.J.); (J.M.)
| | - Domingos Jandondo
- Instituto Nacional de Investigação em Saúde (INIS), Ministério da Saúde, Luanda 999104, Angola; (Z.N.); (D.J.); (J.M.)
| | - Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil; (A.B.B.R.); (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazonian Region of the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Aline Rosa de Lavigne Mello
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil; (A.B.B.R.); (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazonian Region of the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Joana Morais
- Instituto Nacional de Investigação em Saúde (INIS), Ministério da Saúde, Luanda 999104, Angola; (Z.N.); (D.J.); (J.M.)
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil; (A.B.B.R.); (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazonian Region of the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Didier Menard
- Institut Pasteur, INSERM U1201, 75015 Paris, France;
- Institute of Parasitology and Tropical Diseases, UR7292, Dynamics of Host-Pathogen Interactions, Federation of Translational Medicine, University of Strasbourg, 67081 Strasbourg, France
- Laboratory of Parasitology and Medical Mycology, Strasbourg University Hospital, 67081 Strasbourg, France
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil; (A.B.B.R.); (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazonian Region of the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|