1
|
Ullmann I, Aregger A, Leib SL, Zimmerli S. Caspofungin Cerebral Penetration and Therapeutic Efficacy in Experimental Cerebral Aspergillosis. Microbiol Spectr 2022; 10:e0275321. [PMID: 35435756 PMCID: PMC9241807 DOI: 10.1128/spectrum.02753-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/05/2022] Open
Abstract
Despite best available therapy, cerebral aspergillosis is an often-lethal complication of disseminated aspergillosis. There is an urgent need to expand the currently limited therapeutic options. In this study, we assessed cerebral drug exposure and efficacy of caspofungin (CAS) using a lethal infant rat model of cerebral aspergillosis. Eleven-day-old Wistar rats were infected by intracisternal injection of Aspergillus fumigatus conidia. Treatment started after 22 h and was continued for 10 days. Regimens were CAS 1 mg/kg/day intraperitoneally (i.p.), liposomal amphotericin B (L-AmB) 5 mg/kg/day i.p., and both drugs combined at the same dose i.p. Infected controls were given NaCl 0.85% i.p. Primary endpoints assessed were survival, cerebral fungal burden, galactomannan index, and drug concentrations in brain homogenate at 2, 3, 5, and 11 days after infection. Compared to those of controls (4.4 ± 2.7 days), survival times were increased by treatment with CAS alone (10.3 ± 1.7 days; P < 0.0001) and CAS combined with L-AmB (9.3 ± 2.8 days; P < 0.0001). In contrast, survival time of L-AmB-treated animals (4.3 ± 3.1 days) was not different from that of controls. Cerebral fungal burden and galactomannan index declined in all animals over time, without significant differences between controls and treated animals. CAS trough levels in brain tissue were between 0.84 and 1.4 μg/g, concentrations we show to be associated with efficacy. AmB trough levels in brain tissue were higher than the MIC of the A. fumigatus isolate. In summary, CAS concentrations in brain tissue suggest it may be therapeutically relevant and it significantly improved survival in this lethal model of cerebral aspergillosis in nonneutropenic rats. The clinical efficacy of CAS treatment for cerebral aspergillosis merits further study. IMPORTANCE Treatment options for cerebral aspergillosis, an often-lethal disease, are limited. The echinocandins (caspofungin is one of them) are not recommended treatment because their brain tissue penetration is often considered insufficient. In a nursing rat model of cerebral aspergillosis that mimics human disease, we found potentially therapeutically relevant concentrations of caspofungin in brain tissue and prolonged survival of caspofungin-treated animals. The efficacy of caspofungin in the treatment of cerebral aspergillosis documented here, if confirmed in other animal models (especially immunosuppressed murine models) and by using additional Aspergillus isolates across a range of CAS minimal effective concentrations (MECs), would suggest that caspofungin merits further study as a treatment option for patients suffering from aspergillosis disseminated to the brain.
Collapse
Affiliation(s)
- Irina Ullmann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Clinic of General Internal and Emergency Medicine, Citizens Hospital Solothurn, Solothurn, Switzerland
| | - Andrea Aregger
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Center for Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stefan Zimmerli
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Bidaud AL, Schwarz P, Herbreteau G, Dannaoui E. Techniques for the Assessment of In Vitro and In Vivo Antifungal Combinations. J Fungi (Basel) 2021; 7:jof7020113. [PMID: 33557026 PMCID: PMC7913650 DOI: 10.3390/jof7020113] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic fungal infections are associated with high mortality rates despite adequate treatment. Moreover, acquired resistance to antifungals is increasing, which further complicates the therapeutic management. One strategy to overcome antifungal resistance is to use antifungal combinations. In vitro, several techniques are used to assess drug interactions, such as the broth microdilution checkerboard, agar-diffusion methods, and time-kill curves. Currently, the most widely used technique is the checkerboard method. The aim of all these techniques is to determine if the interaction between antifungal agents is synergistic, indifferent, or antagonistic. However, the interpretation of the results remains difficult. Several methods of analysis can be used, based on different theories. The most commonly used method is the calculation of the fractional inhibitory concentration index. Determination of the usefulness of combination treatments in patients needs well-conducted clinical trials, which are difficult. It is therefore important to study antifungal combinations in vivo, in experimental animal models of fungal infections. Although mammalian models have mostly been used, new alternative animal models in invertebrates look promising. To evaluate the antifungal efficacy, the most commonly used criteria are the mortality rate and the fungal load in the target organs.
Collapse
Affiliation(s)
- Anne-Laure Bidaud
- Parasitology-Mycology Unit, Microbiology Department, APHP, European Georges Pompidou Hospital, Paris-Descartes University, F-75015 Paris, France;
| | - Patrick Schwarz
- Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, Baldingerstraße, D-35043 Marburg, Germany;
- Center for Invasive Mycoses and Antifungals, Philipps University Marburg, D-35037 Marburg, Germany
| | | | - Eric Dannaoui
- Parasitology-Mycology Unit, Microbiology Department, APHP, European Georges Pompidou Hospital, Paris-Descartes University, F-75015 Paris, France;
- Dynamyc Research Group, Paris Est Créteil University (UPEC, EnvA), F-94010 Paris, France
- Correspondence: ; Tel.: +33-1-56-09-39-48; Fax: +33-1-56-09-24-46
| |
Collapse
|
3
|
Wirth F, Ishida K. Antifungal drugs: An updated review of central nervous system pharmacokinetics. Mycoses 2020; 63:1047-1059. [PMID: 32772402 DOI: 10.1111/myc.13157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 01/06/2023]
Abstract
Invasive fungal infections (IFIs) in the central nervous system (CNS) are particularly hard to treat and are associated with high morbidity and mortality rates. Four chemical classes of systemic antifungal agents are used for the treatment of IFIs (eg meningitis), including polyenes, triazoles, pyrimidine analogues and echinocandins. This review will address all of these classes and discuss their penetration and accumulation in the CNS. Treatment of fungal meningitis is based on the antifungal that shows good penetration and accumulation in the CNS. Pharmacokinetic data concerning the entry of antifungal agents into the intracranial compartments are faulty. This review will provide an overview of the ability of systemic antifungals to penetrate the CNS, based on previously published drug physicochemical properties and pharmacokinetic data, for evaluation of the most promising antifungal drugs for the treatment of fungal CNS infections. The studies selected and discussed in this review are from 1990 to 2019.
Collapse
Affiliation(s)
- Fernanda Wirth
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Su H, Hu C, Cao B, Qu X, Guan P, Mu Y, Han L, Huang X. A semisynthetic borrelidin analogue BN-3b exerts potent antifungal activity against Candida albicans through ROS-mediated oxidative damage. Sci Rep 2020; 10:5081. [PMID: 32193473 PMCID: PMC7081223 DOI: 10.1038/s41598-020-61681-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
Abstract
In the process of investigating the antifungal structure-activity relationships (SAR) of borrelidin and discovering antifungal leads, a semisynthetic borrelidin analogue, BN-3b with antifungal activity against Candida albicans, was achieved. In this study, we found that oxidative damage induced by endogenous reactive oxygen species (ROS) plays an important role in the antifungal activity of BN-3b. Further investigation indicated that BN-3b stimulated ROS accumulation, increased malondialdehyde (MDA) levels, and decreased reduced/oxidized glutathione (GSH/GSSG) ratio. Moreover, BN-3b decreased mitochondrial membrane potential (MMP) and ATP generation. Ultrastructure analysis revealed that BN-3b severely damaged the cell membrane of C. albicans. Quantitative PCR (RT-qPCR) analysis revealed that virulence factors of C. albicans SAPs, PLB1, PLB2, HWP1, ALSs, and LIPs were all down-regulated after BN-3b exposure. We also found that BN-3b markedly inhibited the hyphal formation of C. albicans. In addition, in vivo studies revealed that BN-3b significantly prolonged survival and decreased fungal burden in mouse model of disseminated candidiasis.
Collapse
Affiliation(s)
- Hao Su
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P.R. China
| | - Caijuan Hu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P.R. China
| | - Bixuan Cao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P.R. China
| | - Xiaodan Qu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P.R. China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P.R. China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P.R. China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P.R. China.
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P.R. China.
| |
Collapse
|
5
|
Kardos T, Kovács R, Kardos G, Varga I, Bozó A, Tóth Z, Nagy F, Majoros L. Poor in vivo efficacy of caspofungin, micafungin and amphotericin B against wild-type Candida krusei clinical isolates does not correlate with in vitro susceptibility results. J Chemother 2018; 30:233-239. [PMID: 30025501 DOI: 10.1080/1120009x.2018.1487150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We determined micafungin, caspofungin and amphotericin B (AMB) minimum inhibitory concentration (MICs) and killing rates in RPMI-1640 and in RPMI-1640 with 50% serum against three Candida krusei bloodstream isolates. MIC ranges in RPMI-1640 were 0.125-0.25, 0.25 and 0.125-0.5 mg/L, in RPMI-1640 with 50% serum, MICs were 64-128-, 8- and 4-16-fold higher, respectively. In RPMI-1640 micafungin and caspofungin at 1, 4, 16 and 32 mg/L as well as AMB at 2 mg/L were fungicidal against all isolates in ≤3.96, ≤4.42 and 14.96 h, respectively. In RPMI-1640 with 50% serum, caspofungin was fungicidal for all isolates only at 32 mg/L, micafungin and AMB were fungistatic. In neutropenic mice, 5 mg/kg caspofungin and 1 mg/kg AMB were ineffective against two of the three isolates. Thus, in vivo efficacy of echinocandins and AMB is weak or absent against C. krusei. Prescribers treating C. krusei infections with echinocandins should watch out for clinical resistance and therapeutic failure.
Collapse
Affiliation(s)
- Tamás Kardos
- a Faculty of Medicine, Department of Pulmonology , University of Debrecen , Debrecen , Hungary.,b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - Renátó Kovács
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary.,c Faculty of Pharmacy , University of Debrecen , Debrecen , Hungary
| | - Gábor Kardos
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - Istvan Varga
- d Faculty of Dentistry , University of Debrecen , Debrecen , Hungary
| | - Aliz Bozó
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - Zoltán Tóth
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - Fruzsina Nagy
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - László Majoros
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| |
Collapse
|
6
|
Drummond RA, Lionakis MS. Candidiasis of the Central Nervous System in Neonates and Children with Primary Immunodeficiencies. CURRENT FUNGAL INFECTION REPORTS 2018; 12:92-97. [PMID: 30393511 PMCID: PMC6208439 DOI: 10.1007/s12281-018-0316-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Candida infections of the central nervous system (CNS) are a life-threatening complication of invasive infections that most often affect vulnerable groups of patients, including neonates and children with primary immunodeficiency disorders (PID). Here, we review the currently known risk factors for CNS candidiasis, focusing predominantly on the PID caused by biallelic mutations in CARD9. RECENT FINDINGS How the CNS is protected itself against fungal invasion is poorly understood. CARD9 promotes neutrophil recruitment and function, and is the only molecule shown to be critical for protection against CNS candidiasis in humans thus far. SUMMARY Fundamental insights into the pathogenesis of CNS candidiasis gained from studying rare CARD9-deficient patients has significant implications for other patients at risk for this disease, such as CARD9-sufficient neonates. These findings will be important for the development of adjunctive immune-based therapies, which are urgently needed to tackle the global burden of invasive fungal diseases.
Collapse
Affiliation(s)
- Rebecca A. Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda MD, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
7
|
Schmidt-Hieber M, Silling G, Schalk E, Heinz W, Panse J, Penack O, Christopeit M, Buchheidt D, Meyding-Lamadé U, Hähnel S, Wolf HH, Ruhnke M, Schwartz S, Maschmeyer G. CNS infections in patients with hematological disorders (including allogeneic stem-cell transplantation)-Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann Oncol 2016; 27:1207-25. [PMID: 27052648 PMCID: PMC4922317 DOI: 10.1093/annonc/mdw155] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/24/2016] [Indexed: 12/22/2022] Open
Abstract
Diagnosis of CNS infections remains a great challenge in patients with hematological disorders since symptoms might both be masked and be mimicked by other conditions such as metabolic disturbances or consequences from antineoplastic treatment. Thus, awareness of this complication is crucial and any suspicion of a CNS infection should lead to timely and adequate diagnostics and treatment to improve the outcome in this population. Infections of the central nervous system (CNS) are infrequently diagnosed in immunocompetent patients, but they do occur in a significant proportion of patients with hematological disorders. In particular, patients undergoing allogeneic hematopoietic stem-cell transplantation carry a high risk for CNS infections of up to 15%. Fungi and Toxoplasma gondii are the predominant causative agents. The diagnosis of CNS infections is based on neuroimaging, cerebrospinal fluid examination and biopsy of suspicious lesions in selected patients. However, identification of CNS infections in immunocompromised patients could represent a major challenge since metabolic disturbances, side-effects of antineoplastic or immunosuppressive drugs and CNS involvement of the underlying hematological disorder may mimic symptoms of a CNS infection. The prognosis of CNS infections is generally poor in these patients, albeit the introduction of novel substances (e.g. voriconazole) has improved the outcome in distinct patient subgroups. This guideline has been developed by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) with the contribution of a panel of 14 experts certified in internal medicine, hematology/oncology, infectious diseases, intensive care, neurology and neuroradiology. Grades of recommendation and levels of evidence were categorized by using novel criteria, as recently published by the European Society of Clinical Microbiology and Infectious Diseases.
Collapse
Affiliation(s)
- M Schmidt-Hieber
- Department of Hematology, Oncology and Tumor Immunology, HELIOS Clinic Berlin-Buch, Berlin
| | - G Silling
- Department of Hematology, Oncology and Stem Cell Transplantation, University Hospital, Aachen, Medical Faculty, RWTH Aachen, Aachen
| | - E Schalk
- Department of Hematology and Oncology, Otto-von-Guericke University Hospital Magdeburg, Magdeburg
| | - W Heinz
- Department of Internal Medicine II, University Hospital Würzburg, Center of Internal Medicine, Würzburg
| | - J Panse
- Department of Hematology, Oncology and Stem Cell Transplantation, University Hospital, Aachen, Medical Faculty, RWTH Aachen, Aachen
| | - O Penack
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Campus Virchow Clinic, Berlin
| | - M Christopeit
- Department of Stem Cell Transplantation, University Medical Center Hamburg Eppendorf, Hamburg
| | - D Buchheidt
- Department of Hematology and Oncology, Mannheim University Hospital, University of Heidelberg, Mannheim
| | - U Meyding-Lamadé
- Department of Neurology, Hospital Nordwest Frankfurt, Frankfurt/M., Germany Brunei Neuroscience Stroke and Rehabilitation Centre, Jerudong, Brunei Darussalam Department of Neuroinfectiology, Otto-Meyerhof-Centre, University of Heidelberg, Heidelberg
| | - S Hähnel
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg
| | - H H Wolf
- Department of Hematology and Oncology, University Hospital Halle, Halle
| | - M Ruhnke
- Paracelsus Clinic Osnabrück, Osnabrück
| | - S Schwartz
- Department of Hematology and Oncology, Charité University Medicine, Campus Benjamin Franklin, Berlin
| | - G Maschmeyer
- Department of Hematology, Oncology and Palliative Care, Ernst von Bergmann Clinic, Potsdam, Germany
| |
Collapse
|
8
|
Chen SC, Sorrell TC, Chang CC, Paige EK, Bryant PA, Slavin MA. Consensus guidelines for the treatment of yeast infections in the haematology, oncology and intensive care setting, 2014. Intern Med J 2015; 44:1315-32. [PMID: 25482743 DOI: 10.1111/imj.12597] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogenic yeast forms are commonly associated with invasive fungal disease in the immunocompromised host, including patients with haematological malignancies and patients of haemopoietic stem cell transplants. Yeasts include the Candida spp., Cryptococcus spp., Pneumocystis jirovecii and some lesser-known pathogens. Candida species remain the most common cause of invasive yeast infections (and the most common human pathogenic fungi). These guidelines present evidence-based recommendations for the antifungal management of established, invasive yeast infections in adult and paediatric patients in the haematology/oncology setting. Consideration is also given to the critically ill patient in intensive care units, including the neonatal intensive care unit. Evidence for 'pre-emptive' or 'diagnostic-driven antifungal therapy' is also discussed. For the purposes of this paper, invasive yeast diseases are categorised under the headings of invasive candidiasis, cryptococcosis and uncommon yeast infections. Specific recommendations for the management of Pneumocystis jirovecii are presented in an accompanying article (see consensus guidelines by Cooley et al. appearing elsewhere in this supplement).
Collapse
Affiliation(s)
- S C Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead, New South Wales; Department of Infectious Diseases, Westmead Hospital, Westmead, New South Wales; Sydney Medical School, The University of Sydney, Sydney, New South Wales
| | | | | | | | | | | |
Collapse
|
9
|
Domán M, Kovács R, Perlin DS, Kardos G, Gesztelyi R, Juhász B, Bozó A, Majoros L. Dose escalation studies with caspofungin against Candida glabrata. J Med Microbiol 2015; 64:998-1007. [PMID: 26296340 DOI: 10.1099/jmm.0.000116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Echinocandins are recommended as first-line agents against invasive fungal infections caused by Candida glabrata, which still carry a high mortality rate. Dose escalation of echinocandins has been suggested to improve the clinical outcome against C. glabrata. To address this possibility, we performed in vitro and in vivo experiments with caspofungin against four WT C. glabrata clinical isolates, a drug-susceptible ATCC 90030 reference strain and two echinocandin-resistant strains with known FKS mutations. MIC values for the clinical isolates in RPMI 1640 were ≤ 0.03 mg l(-1 ) but increased to 0.125-0.25 mg l(-1 )in RPMI 1640+50% serum. In RPMI 1640+50% serum, the replication of C. glabrata was weaker than in RPMI 1640.Caspofungin in RPMI 1640 at 1 and 4 mg l(-1) showed a fungicidal effect within 7 h against three of the four clinical isolates but was only fungistatic at 16 and 32 mg l(-1) (paradoxically decreased killing activity). In RPMI 1640+50% serum, caspofungin at ≥ 1 mg l(-1) was rapidly fungicidal (within 3.31 h) against three of the four isolates. In a profoundly neutropenic murine model, all caspofungin doses (1, 2, 3, 5 and 20 mg kg(-1) daily) decreased the fungal tissue burdens significantly (P < 0.05-0.001) without statistical differences between doses, but the mean fungal tissue burdens never fell below 105 cells (g tissue)(-1). The echinocandin-resistant strains were highly virulent in animal models and all doses were ineffective. These results confirm the clinical experience that caspofungin dose escalation does not improve efficacy.
Collapse
Affiliation(s)
- Marianna Domán
- Department of Medical Microbiology, University of Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, University of Debrecen, Hungary
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School-Rutgers, Newark, New Jersey, USA
| | - Gábor Kardos
- Department of Medical Microbiology, University of Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacodynamics, University of Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacodynamics, University of Debrecen, Hungary
| | - Aliz Bozó
- Department of Medical Microbiology, University of Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, University of Debrecen, Hungary
| |
Collapse
|
10
|
Coulter KS, Bariola JR. Current Antifungal Agents for Treatment of Central Nervous System Infections. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0186-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Very-high-dose caspofungin combined with voriconazole to treat central nervous system aspergillosis: substantial penetration of caspofungin into cerebrospinal fluid. Antimicrob Agents Chemother 2014; 58:3568-9. [PMID: 24733459 DOI: 10.1128/aac.02719-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Mousset S, Buchheidt D, Heinz W, Ruhnke M, Cornely OA, Egerer G, Krüger W, Link H, Neumann S, Ostermann H, Panse J, Penack O, Rieger C, Schmidt-Hieber M, Silling G, Südhoff T, Ullmann AJ, Wolf HH, Maschmeyer G, Böhme A. Treatment of invasive fungal infections in cancer patients-updated recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 2013; 93:13-32. [PMID: 24026426 PMCID: PMC3889633 DOI: 10.1007/s00277-013-1867-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/29/2013] [Indexed: 11/28/2022]
Abstract
The Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO) here presents its updated recommendations for the treatment of documented fungal infections. Invasive fungal infections are a main cause of morbidity and mortality in cancer patients undergoing intensive chemotherapy regimens. In recent years, new antifungal agents have been licensed, and agents already approved have been studied in new indications. The choice of the most appropriate antifungal treatment depends on the fungal species suspected or identified, the patient's risk factors (e.g., length and depth of neutropenia), and the expected side effects. This guideline reviews the clinical studies that served as a basis for the following recommendations. All recommendations including the levels of evidence are summarized in tables to give the reader rapid access to the information.
Collapse
Affiliation(s)
- Sabine Mousset
- Interdisziplinäres Zentrum für Palliativmedizin, Agaplesion Markus Krankenhaus, Wilhelm Epstein-Straße 4, 60431, Frankfurt, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Comparison of in vitro and vivo efficacy of caspofungin against Candida parapsilosis, C. orthopsilosis, C. metapsilosis and C. albicans. Mycopathologia 2012; 174:311-8. [PMID: 22565489 DOI: 10.1007/s11046-012-9554-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Caspofungin activity was determined in vitro and in vivo against three Candida orthopsilosis, three C. metapsilosis, two C. parapsilosis sensu stricto and two C. albicans isolates. MIC values and killing activity were determined in RPMI-1640 plus 50 % human serum. Neutropenic (cyclophosphamide-treated) mice were infected intravenously. Five-day intraperitoneal treatment with caspofungin was started after 24 h postinfection. Kidney burden was analyzed using the Kruskal-Wallis test with Dunn's post-test. In killing studies, caspofungin was fungistatic and fungicidal against C. albicans at ≥0.25 and ≥2 μg/ml concentrations, respectively. Caspofungin was fungistatic at ≥8-16, ≥2-8 and at ≥2-8 μg/ml against C. parapsilosis, C. orthopsilosis and C. metapsilosis, respectively. In the murine model, C. albicans was inhibited by 1, 2 and 5 mg/kg of caspofungin (P < 0.001 compared to the controls). Against C. parapsilosis, only 5 mg/kg caspofungin was effective against both isolates (P < 0.05). Two and five mg/kg of caspofungin was effective against all C. orthopsilosis and C. metapsilosis isolates (P < 0.05 to <0.001). Serum-based killing tests proved to be useful in predicting in vivo efficacy of caspofungin against four Candida species. Caspofungin at clinically attainable concentrations proved to be effective against all four species.
Collapse
|