1
|
Colicins of Escherichia coli Lead to Resistance against the Diarrhea-Causing Pathogen Enterotoxigenic E. coli in Pigs. Microbiol Spectr 2022; 10:e0139622. [PMID: 36190425 PMCID: PMC9603048 DOI: 10.1128/spectrum.01396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gut microbes can affect host adaptation to various environment conditions. Escherichia coli is a common gut species, including pathogenic strains and nonpathogenic strains. This study was conducted to investigate the effects of different E. coli strains in the gut on the health of pigs. In this study, the complete genomes of two E. coli strains isolated from pigs were sequenced. The whole genomes of Y18J and the enterotoxigenic E. coli strain W25K were compared to determine their roles in pig adaptation to disease. Y18J was isolated from feces of healthy piglets and showed strong antimicrobial activity against W25K in vitro. Gene knockout experiments and complementation analysis followed by modeling the microbe-microbe interactions demonstrated that the antagonistic mechanism of Y18J against W25K relied on the bacteriocins colicin B and colicin M. Compared to W25K, Y18J is devoid of exotoxin-coding genes and has more secondary-metabolite-biosynthetic gene clusters. W25K carries more genes involved in genome replication, in accordance with a shorter cell cycle observed during a growth experiment. The analysis of gut metagenomes in different pig breeds showed that colicins B and M were enriched in Laiwu pigs, a Chinese local breed, but were scarce in boars and Duroc pigs. IMPORTANCE This study revealed the heterogeneity of E. coli strains from pigs, including two strains studied by both in silico and wet experiments in detail and 14 strains studied by bioinformatics analysis. E. coli Y18J may improve the adaptability of pigs toward disease resistance through the production of colicins B and M. Our findings could shed light on the pathogenic and harmless roles of E. coli in modern animal husbandry, leading to a better understanding of intestinal-microbe-pathogen interactions in the course of evolution.
Collapse
|
2
|
A 2.5-years within-patient evolution of a Pseudomonas aeruginosa with in vivo acquisition of ceftolozane-tazobactam and ceftazidime-avibactam resistance upon treatment. Antimicrob Agents Chemother 2019:AAC.01637-19. [PMID: 31636072 DOI: 10.1128/aac.01637-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ceftolozane-tazobactam is considered to be a last resort treatment for infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa Although, resistance to this antimicrobial have been described in vitro, development of resistance in vivo was rarely reported. Here, we described the evolution of resistance to ceftolozane-tazobactam of P. aeruginosa isolates recovered from the same patient during recurrent infections over 2.5 years.Antimicrobial susceptibility testing results showed that 24 of the 27 P. aeruginosa isolates recovered from blood (n=18), wound (n=2), pulmonary sample (n=1), bile (n=2) and stools (n=4) of the same patient were susceptible to ceftolozane-tazobactam and ceftazidime-avibactam but resistant to ceftazidime, piperacillin-tazobactam, imipenem and meropenem. Three clinical isolates acquired resistance to ceftolozane-tazobactam and ceftazidime-avibactam along with a partial restoration of piperacillin-tazobactam and carbapenems susceptibilities. Whole genome sequencing analysis reveals that all isolates were clonally related (ST-111) with a median of 24.9 single nucleotide polymorphisms (SNPs) (range 8-48). The ceftolozane-tazobactam and ceftazidime-avibactam resistance was likely linked to the same G183D substitution in the chromosome-encoded cephalosporinase.Our results suggest resistance to ceftolozane-tazobactam in P. aeruginosa might occur in vivo upon treatment through amino-acid substitution in the intrinsic AmpC leading to ceftolozane-tazobactam and ceftazidime-avibactam resistance accompanied by re-sensitization to piperacillin-tazobactam and carbapenems.
Collapse
|
3
|
Zavala A, Retailleau P, Elisée E, Iorga BI, Naas T. Genetic, Biochemical, and Structural Characterization of CMY-136 β-Lactamase, a Peculiar CMY-2 Variant. ACS Infect Dis 2019; 5:528-538. [PMID: 30788955 DOI: 10.1021/acsinfecdis.8b00240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the widespread use and abuse of antibiotics for the past decades, antimicrobial resistance poses a serious threat to public health nowadays. β-Lactams are the most used antibiotics, and β-lactamases are the most widespread resistance mechanism. Class C β-lactamases, also known as cephalosporinases, usually do not hydrolyze the latest and most potent β-lactams, expanded spectrum cephalosporins and carbapenems. However, the recent emergence of extended-spectrum AmpC cephalosporinases, their resistance to inhibition by classic β-lactamase inhibitors, and the fact that they can contribute to carbapenem resistance when paired with impermeability mechanisms, means that these enzymes may still prove worrisome in the future. Here we report and characterize the CMY-136 β-lactamase, a Y221H point mutant derivative of CMY-2. CMY-136 confers an increased level of resistance to ticarcillin, cefuroxime, cefotaxime, and ceftolozane/tazobactam. It is also capable of hydrolyzing ticarcillin and cloxacillin, which act as inhibitors of CMY-2. X-ray crystallography and modeling experiments suggest that the hydrolytic profile alterations seem to be the result of an increased flexibility and altered conformation of the Ω-loop, caused by the Y221H mutation.
Collapse
Affiliation(s)
- Agustin Zavala
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, France
- EA7361 “Structure, dynamic, function and expression of broad spectrum β-lactamases”, Université Paris Sud, Université Paris Saclay, LabEx LERMIT, Faculty of Medicine, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, France
| | - Eddy Elisée
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, France
| | - Thierry Naas
- EA7361 “Structure, dynamic, function and expression of broad spectrum β-lactamases”, Université Paris Sud, Université Paris Saclay, LabEx LERMIT, Faculty of Medicine, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
- Carbapenemase-producing Enterobacteriaceae, Associated French National Reference Center for Antibiotic Resistance, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur, APHP, Université Paris Sud, 25-28 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
4
|
Effect of asparagine substitutions in the YXN loop of a class C β-lactamase of Acinetobacter baumannii on substrate and inhibitor kinetics. Antimicrob Agents Chemother 2014; 59:1472-7. [PMID: 25534745 DOI: 10.1128/aac.03537-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class C cephalosporinases are a growing threat, and inhibitors of these enzymes are currently unavailable. Studies exploring the YXN loop asparagine in the Escherichia coli AmpC, P99, and CMY-2 enzymes have suggested that interactions between C6' or C7' substituents on penicillins or cephalosporins and this Asn are important in determining substrate specificity and enzymatic stability. We sought to characterize the YXN loop asparagine in the clinically important ADC-7 class C β-lactamase of Acinetobacter baumannii. Mutagenesis at the N148 position in ADC-7 yields functional mutants (N152G, -S, -T, -Q, -A, and -C) that retain cephalosporinase activity. Using standard assays, we show that N148G, -S, and -T variants possess good catalytic activity toward cefoxitin and ceftaroline but that cefepime is a poor substrate. Because N152 variants of CMY-2, another class C β-lactamase, are more readily inhibited by tazobactam due to higher rates of inactivation, we also tested if the N148 substitutions in ADC-7 would affect inactivation by sulfone inhibitors, sulbactam and tazobactam, class A β-lactamase, and A. baumannii penicillin-binding protein (PBP) inhibitors with in vitro activity against ADC-7. The 50% inhibitory concentrations (IC50s) for tazobactam and sulbactam were improved, with 7-fold and 2-fold reductions, respectively, for the N148S variant. A homology model of the N148S ADC-7 enzyme in a Michaelis-Menten complex with tazobactam showed a loss of interaction between N148 and the sulfone moiety of the inhibitor. We postulate that this may result in more-rapid secondary ring opening of the inhibitor, as the unbound sulfone is an excellent leaving group, leading to more-rapid formation of the stable linearized inhibitor.
Collapse
|
5
|
Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 2013; 58:1835-46. [PMID: 24379206 PMCID: PMC4023773 DOI: 10.1128/aac.00826-13] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the incidence of Gram-negative bacterial infections for which few effective treatments remain increases, so does the contribution of drug-hydrolyzing β-lactamase enzymes to this serious clinical problem. This review highlights recent advances in β-lactamase inhibitors and focuses on agents with novel mechanisms of action against a wide range of enzymes. To this end, we review the β-lactamase inhibitors currently in clinical trials, select agents still in preclinical development, and older therapeutic approaches that are being revisited. Particular emphasis is placed on the activity of compounds at the forefront of the developmental pipeline, including the diazabicyclooctane inhibitors (avibactam and MK-7655) and the boronate RPX7009. With its novel reversible mechanism, avibactam stands to be the first new β-lactamase inhibitor brought into clinical use in the past 2 decades. Our discussion includes the importance of selecting the appropriate partner β-lactam and dosing regimens for these promising agents. This "renaissance" of β-lactamase inhibitors offers new hope in a world plagued by multidrug-resistant (MDR) Gram-negative bacteria.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Krisztina M. Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|