1
|
Arrua EC, Hartwig O, Loretz B, Murgia X, Ho DK, Bastiat G, Lehr CM, Salomón CJ. Formulation of benznidazole-lipid nanocapsules: Drug release, permeability, biocompatibility, and stability studies. Int J Pharm 2023:123120. [PMID: 37307960 DOI: 10.1016/j.ijpharm.2023.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Benznidazole, a poorly soluble in water drug, is the first-line medication for the treatment of Chagas disease, but long treatment periods at high dosages cause several adverse effects with insufficient activity in the chronic phase. According to these facts, there is a serious need for novel benznidazole formulations for improving the chemotherapy of Chagas disease. Thus, this work aimed to incorporate benznidazole into lipid nanocapsules for improving its solubility, dissolution rate in different media, and permeability. Lipid nanocapsules were prepared by the phase inversion technique and were fully characterized. Three formulations were obtained with a diameter of 30, 50, and 100 nm and monomodal size distribution with a low polydispersity index and almost neutral zeta potential. Drug encapsulation efficiency was between 83 and 92% and the drug loading was between 0.66 and 1.04%. Loaded formulations were stable under storage for one year at 4 °C. Lipid nanocapsules were found to protect benznidazole in simulated gastric fluid and provide a sustained release platform for the drug in a simulated intestinal fluid containing pancreatic enzymes. The small size and the almost neutral surface charge of these lipid nanocarriers improved their penetration through mucus and such formulations showed a reduced chemical interaction with gastric mucin glycoproteins. LNCs. The incorporation of benznidazole in lipid nanocapsules improved the drug permeability across intestinal epithelium by 10-fold compared with the non-encapsulated drug while the exposure of the cell monolayers to these nanoformulations did not affect the integrity of the epithelium.
Collapse
Affiliation(s)
- Eva C Arrua
- Institute of Chemistry, IQUIR-CONICET, National Council Research, Suipacha 531, 2000 Rosario, Argentina
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany; Pharmacy Department, Faculty of Pharmaceutical and Biochemical Sciences, National University of Rosario, Suipacha, 531, 2000 Rosario, Argentina
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany
| | - Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany
| | - Guillaume Bastiat
- LUNAM Université, Micro et Nanomédecines Biomimétiques, F-49933, Angers, France and Inserm, U1066 IBS-CHU, 4 rue Larrey, F-49933 Angers Cédex 9, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| | - Claudio J Salomón
- Institute of Chemistry, IQUIR-CONICET, National Council Research, Suipacha 531, 2000 Rosario, Argentina; Pharmacy Department, Faculty of Pharmaceutical and Biochemical Sciences, National University of Rosario, Suipacha, 531, 2000 Rosario, Argentina.
| |
Collapse
|
2
|
Frade VP, Moreira CHV, Sabino EC, Bedor DCG, Ghilard FDR, Oliveira CDL, Sanches C. Population pharmacokinetic modeling of benznidazole in Brazilian patients with chronic Chagas disease. Rev Inst Med Trop Sao Paulo 2022; 64:e4. [PMID: 35137898 PMCID: PMC8815855 DOI: 10.1590/s1678-9946202264004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022] Open
Abstract
The present study aimed to establish a population pharmacokinetic (PopPK) modeling of benznidazole (BZD) in Brazilian patients with chronic Chagas disease. This was part of a Brazilian prospective cohort study with eight patients diagnosed with Chagas disease during the beginning of BZD treatment up to the 60th day. On the 15th day of treatment, a blood sampling was collected and analyzed. A one-compartment PK model was developed using Pmetrics. Patients with an average age of 50.3 (SD: 6.2) years old, 6 female patients and 2 males, 70.2 kg (14.2), receiving a 5 mg/Kg/day dose were included. PK parameters estimated for CL, V and Ka were 6.27 L/h, 38.97 L and 1.66 h-1, respectively. This is the first study to establish a population pharmacokinetic modeling of BZD in Brazilian patients with chronic Chagas disease. Therefore, further studies are needed to obtain the complete characterization of BZD pharmacokinetics.
Collapse
|