1
|
Delik E, Eroğlu B, Karabıyık R, Tefon-Öztürk BE. Antibiotic concentrations induce morphological changes and increase biofilm formation in multi-antibiotic and heavy metal resistant Kluyvera cryocrescens and Serratia fonticola. Microb Pathog 2024; 197:107112. [PMID: 39521156 DOI: 10.1016/j.micpath.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is the biggest challenge that has rendered existing water resources unusable due to contamination with antibiotics and heavy metals. Antibiotics are often used to treat bacterial diseases. Heavy metals, on the other hand, are micro-pollutants that pose a threat to aquatic systems, especially when they accumulate in nature. Increasing pollution and the uncontrolled use of antibiotics have exposed bacteria to non-lethal concentrations (sub-MIC), potentially leading to resistance. In this study, Kluyvera cryocrescens and Serratia fonticola were isolated from a freshwater source and characterised. The resistance profiles of the isolates to 16 antibiotics and 8 heavy metals were determined, revealing that they are multidrug-resistant. The effects of sub-MICs (MIC/2 and MIC/4) of antibiotics on biofilm formation, siderophore production, and cell morphology of bacteria were analysed. It was found that at some sub-MIC values of kanamycin, tetracycline, meropenem, erythromycin, and clarithromycin, biofilm formation by K. cryocrescens increased. An increase in biofilm production was also observed in S. fonticola at sub-MIC values of imipenem, meropenem, ceftazidime, ciprofloxacin, and clarithromycin. Moreover, significant morphological changes were observed in both isolates following treatment with meropenem, ciprofloxacin, and ceftazidime. After treatment with meropenem, the typical rod-shaped (bacillary) morphology of the isolates shifted to a round (coccoid) form. In contrast, the bacteria developed into long filaments after treatment with ciprofloxacin and ceftazidime. These changes in the bacteria may favour the development of resistance and pose challenges for the prevention and treatment of diseases. Therefore, it is crucial to understand how sub-MIC levels of antimicrobial agents alter the virulence properties of bacteria.
Collapse
Affiliation(s)
- Eda Delik
- Biology Department, Faculty of Science, Akdeniz University, 07070, Antalya, Türkiye.
| | - Berfin Eroğlu
- Biology Department, Faculty of Science, Akdeniz University, 07070, Antalya, Türkiye.
| | - Reyhan Karabıyık
- Biology Department, Faculty of Science, Akdeniz University, 07070, Antalya, Türkiye.
| | | |
Collapse
|
2
|
Bailey J, Gallagher L, Manoil C. Genome-scale analysis of essential gene knockout mutants to identify an antibiotic target process. Antimicrob Agents Chemother 2023; 67:e0110223. [PMID: 37966228 PMCID: PMC10720506 DOI: 10.1128/aac.01102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 11/16/2023] Open
Abstract
We describe a genome-scale approach to identify the essential biological process targeted by a new antibiotic. The procedure is based on the identification of essential genes whose inactivation sensitizes a Gram-negative bacterium (Acinetobacter baylyi) to a drug and employs recently developed transposon mutant screening and single-mutant validation procedures. The approach, based on measuring the rates of loss of newly generated knockout mutants in the presence of antibiotic, provides an alternative to traditional procedures for studying essential functions using conditional expression or activity alleles. As a proof of principle study, we evaluated whether mutations enhancing sensitivity to the β-lactam antibiotic meropenem corresponded to the known essential target process of the antibiotic (septal peptidoglycan synthesis). We found that indeed mutations inactivating most genes needed for peptidoglycan synthesis and cell division strongly sensitized cells to meropenem. Additional classes of sensitizing mutations in essential genes were also identified, including those that inactivated capsule synthesis, DNA replication, or envelope stress response regulation. The essential capsule synthesis mutants appeared to enhance meropenem sensitivity by depleting a precursor needed for both capsule and peptidoglycan synthesis. The replication mutants may sensitize cells by impairing division. Nonessential gene mutations sensitizing cells to meropenem were also identified in the screen and largely corresponded to functions subordinately associated with the essential target process, such as in peptidoglycan recycling. Overall, these results help validate a new approach to identify the essential process targeted by an antibiotic and define the larger functional network determining sensitivity to it.
Collapse
Affiliation(s)
- J. Bailey
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - L. Gallagher
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - C. Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Zhang Q, Zhou H, Jiang P, Xiao X. Metal-based nanomaterials as antimicrobial agents: A novel driveway to accelerate the aggravation of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131658. [PMID: 37209560 DOI: 10.1016/j.jhazmat.2023.131658] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The consequences of antibiotic tolerance directly affect human health and result in socioeconomic loss. Nanomaterials as antimicrobial agents are considered a promising alternative to antibiotics and have been blended with various medical applications. However, with increasing evidence that metal-based nanomaterials may induce antibiotic tolerance, there is an urgent need to scrutinize how nanomaterial-induced microbial adaption affects the evolution and spread of antibiotic tolerance. Accordingly, within this investigation, we summarized the principal factors influencing the resistance development exposed to metal-based nanomaterials, including physicochemical properties, exposure scenario, as well as bacterial response. Furthermore, the mechanisms of metal-based nanomaterial-induced antibiotic resistance development were comprehensively elucidated from acquired resistance by horizontal transfer of antibiotic resistance genes (ARGs), intrinsic resistance by genetic mutation or upregulated resistance-related gene expression, and adaptive resistance by global evolution. Overall, our review raises concerns about the safety of nanomaterials as antimicrobial agents, which will facilitate assistance in the safe development of antibiotic-free antibacterial strategies.
Collapse
Affiliation(s)
- Qiurong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Huixian Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ping Jiang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
4
|
Semenec L, Cain AK, Dawson CJ, Liu Q, Dinh H, Lott H, Penesyan A, Maharjan R, Short FL, Hassan KA, Paulsen IT. Cross-protection and cross-feeding between Klebsiella pneumoniae and Acinetobacter baumannii promotes their co-existence. Nat Commun 2023; 14:702. [PMID: 36759602 PMCID: PMC9911699 DOI: 10.1038/s41467-023-36252-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Acinetobacter baumannii and Klebsiella pneumoniae are opportunistic pathogens frequently co-isolated from polymicrobial infections. The infections where these pathogens co-exist can be more severe and recalcitrant to therapy than infections caused by either species alone, however there is a lack of knowledge on their potential synergistic interactions. In this study we characterise the genomes of A. baumannii and K. pneumoniae strains co-isolated from a single human lung infection. We examine various aspects of their interactions through transcriptomic, phenomic and phenotypic assays that form a basis for understanding their effects on antimicrobial resistance and virulence during co-infection. Using co-culturing and analyses of secreted metabolites, we discover the ability of K. pneumoniae to cross-feed A. baumannii by-products of sugar fermentation. Minimum inhibitory concentration testing of mono- and co-cultures reveals the ability for A. baumannii to cross-protect K. pneumoniae against the cephalosporin, cefotaxime. Our study demonstrates distinct syntrophic interactions occur between A. baumannii and K. pneumoniae, helping to elucidate the basis for their co-existence in polymicrobial infections.
Collapse
Affiliation(s)
- Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Catherine J Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Qi Liu
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Hannah Lott
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Anahit Penesyan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Ram Maharjan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Francesca L Short
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Karl A Hassan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia.
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia.
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia.
| |
Collapse
|
5
|
She P, Li Z, Li Y, Liu S, Li L, Yang Y, Zhou L, Wu Y. Pixantrone Sensitizes Gram-Negative Pathogens to Rifampin. Microbiol Spectr 2022; 10:e0211422. [PMID: 36318018 PMCID: PMC9769682 DOI: 10.1128/spectrum.02114-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence of bacterial drug resistance poses a severe threat to global public health. In particular, antimicrobial-resistant pathogens lead to a high rate of treatment failure and significantly increase mortality. Repurposing FDA-approved compounds to sensitize superbugs to conventional antibiotics provides a promising strategy to alleviate such crises. Pixantrone (PIX) has been approved for treating aggressive B-cell non-Hodgkin's lymphoma. By high-throughput drug screening, we profiled the synergistic activity between PIX and rifampin (RFP) against Gram-negative extensively drug-resistant isolates by checkerboard assay. Mechanistic studies demonstrated that PIX impacted the flagellum assembly, induced irreversible intracellular reactive oxygen species accumulation and disrupted proton motive force. In addition, the combination of PIX with RFP possesses effective antimicrobial activity against multidrug-resistant strains in vivo without detected toxicity. Collectively, these results reveal the potential of PIX in combination with RFP as a therapy option for refractory infections caused by Gram-negative pathogens. IMPORTANCE Bacterial resistance has become increasingly serious because of the widespread use and abuse of antibiotics. In particular, the emergence of multidrug-resistant bacteria has posed a serious threat to human public health. Drug repurposing, the process of finding new uses for existing drugs, provide a promising pathway to solve antimicrobial resistance. Compared to the development of novel antibiotics, this strategy leverages well-characterized pharmacology and toxicology of known drugs and is more cost-effective.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linying Zhou
- Department of Laboratory Medicine, The First Hospital of Changsha, Changsha, Hunan, China
| | - Yong Wu
- Department of Laboratory Medicine, The First Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
6
|
Soontarach R, Nwabor OF, Voravuthikunchai SP. Interaction of lytic phage T1245 with antibiotics for enhancement of antibacterial and anti-biofilm efficacy against multidrug-resistant Acinetobacter baumannii. BIOFOULING 2022; 38:994-1005. [PMID: 36606321 DOI: 10.1080/08927014.2022.2163479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Biofilms associated with multidrug-resistant (MDR) Acinetobacter baumannii on medical devices remain a big clinical problem. Antibiotic susceptibility tests were performed with eight commonly employed antibiotics against clinical isolates. The effects of antibiotics in combination with well-characterized lytic phage T1245 were studied to assess their antibacterial and anti-biofilm efficacy. Ceftazidime, colistin, imipenem, and meropenem significantly reduced bacterial density up to approximately 80% when combined with phage T1245, compared with control. Phage T1245 in combination with ceftazidime, colistin, and meropenem at subinhibitory concentrations demonstrated significant reduction in biomass and bacterial viability of 3-day established biofilms, compared with antibiotic alone. In addition, electron microscopy further confirmed the disruption of biofilm structure and cell morphology upon treatment with phage T1245 and antibiotics, including ceftazidime, colistin, and meropenem. Combined treatment of phage T1245 with these antibiotics could be employed for the management of A. baumannii infections and eradication of the bacterial biofilms.
Collapse
Affiliation(s)
- Rosesathorn Soontarach
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| | - Ozioma Forstinus Nwabor
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
7
|
Vick SHW, Fabian BK, Dawson CJ, Foster C, Asher A, Hassan KA, Midgley DJ, Paulsen IT, Tetu SG. Delving into defence: identifying the Pseudomonas protegens Pf-5 gene suite involved in defence against secreted products of fungal, oomycete and bacterial rhizosphere competitors. Microb Genom 2021; 7. [PMID: 34788213 PMCID: PMC8743541 DOI: 10.1099/mgen.0.000671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Competitive behaviours of plant growth promoting rhizobacteria (PGPR) are integral to their ability to colonize and persist on plant roots and outcompete phytopathogenic fungi, oomycetes and bacteria. PGPR engage in a range of antagonistic behaviours that have been studied in detail, such as the production and secretion of compounds inhibitory to other microbes. In contrast, their defensive activities that enable them to tolerate exposure to inhibitory compounds produced by their neighbours are less well understood. In this study, the genes involved in the Pseudomonas protegens Pf-5 response to metabolites from eight diverse rhizosphere competitor organisms, Fusarium oxysporum, Rhizoctonia solani, Gaeumannomyces graminis var. tritici, Pythium spinosum, Bacillus subtilis QST713, Pseudomonas sp. Q2-87, Streptomyces griseus and Streptomyces bikiniensis subspecies bikiniensi, were examined. Proximity induced excreted metabolite responses were confirmed for Pf-5 with all partner organisms through HPLC before culturing a dense Pf-5 transposon mutant library adjacent to each of these microbes. This was followed by transposon-directed insertion site sequencing (TraDIS), which identified genes that influence Pf-5 fitness during these competitive interactions. A set of 148 genes was identified that were associated with increased fitness during competition, including cell surface modification, electron transport, nucleotide metabolism, as well as regulatory genes. In addition, 51 genes were identified for which loss of function resulted in fitness gains during competition. These included genes involved in flagella biosynthesis and cell division. Considerable overlap was observed in the set of genes observed to provide a fitness benefit during competition with all eight test organisms, indicating commonalities in the competitive response to phylogenetically diverse micro-organisms and providing new insight into competitive processes likely to take place in the rhizosphere.
Collapse
Affiliation(s)
- Silas H W Vick
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, Australia.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Belinda K Fabian
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, North Ryde, Australia
| | - Catherine J Dawson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - Christie Foster
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia
| | - Amy Asher
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - David J Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, North Ryde, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, North Ryde, Australia
| |
Collapse
|
8
|
Blumenscheit C, Pfeifer Y, Werner G, John C, Schneider A, Lasch P, Doellinger J. Unbiased Antimicrobial Resistance Detection from Clinical Bacterial Isolates Using Proteomics. Anal Chem 2021; 93:14599-14608. [PMID: 34697938 DOI: 10.1021/acs.analchem.1c00594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) poses an increasing challenge for therapy and clinical management of bacterial infections. Currently, antimicrobial resistance detection relies on phenotypic assays, which are performed independently from species identification. Sequencing-based approaches are possible alternatives for AMR detection, although the analysis of proteins should be superior to gene or transcript sequencing for phenotype prediction as the actual resistance to antibiotics is almost exclusively mediated by proteins. In this proof-of-concept study, we present an unbiased proteomics workflow for detecting both bacterial species and AMR-related proteins in the absence of secondary antibiotic cultivation within <4 h from a primary culture. The workflow was designed to meet the needs in clinical microbiology. It introduces a new data analysis concept for bacterial proteomics, and a software (rawDIAtect) for the prediction and reporting of AMR from peptide identifications. The method was validated using a sample cohort of 7 bacterial species and 11 AMR determinants represented by 13 protein isoforms, which resulted in a sensitivity of 98% and a specificity of 100%.
Collapse
Affiliation(s)
- Christian Blumenscheit
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Yvonne Pfeifer
- Nosocomial Pathogens and Antibiotic Resistance (FG13), Robert Koch-Institute, 38855 Wernigerode, Germany
| | - Guido Werner
- Nosocomial Pathogens and Antibiotic Resistance (FG13), Robert Koch-Institute, 38855 Wernigerode, Germany
| | - Charlyn John
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Andy Schneider
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Peter Lasch
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Joerg Doellinger
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| |
Collapse
|