1
|
Sakalauskienė GV, Malcienė L, Stankevičius E, Radzevičienė A. Unseen Enemy: Mechanisms of Multidrug Antimicrobial Resistance in Gram-Negative ESKAPE Pathogens. Antibiotics (Basel) 2025; 14:63. [PMID: 39858349 PMCID: PMC11762671 DOI: 10.3390/antibiotics14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Multidrug antimicrobial resistance (AMR) represents a formidable challenge in the therapy of infectious diseases, triggered by the particularly concerning gram-negative Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. Designated as a "priority" in 2017, these bacteria continue to pose a significant threat in 2024, particularly during the worldwide SARS-CoV-2 pandemic, where coinfections with ESKAPE members contributed to worsened patient outcomes. The declining effectiveness of current treatments against these pathogens has led to an increased disease burden and an increase in mortality rates globally. This review explores the sophisticated mechanisms driving AMR in gram-negative ESKAPE bacteria, focusing on Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter spp. Key bacterial mechanisms contributing to resistance include limitations in drug uptake, production of antibiotic-degrading enzymes, alterations in drug target sites, and enhanced drug efflux systems. Comprehending these pathways is vital for formulating innovative therapeutic strategies and tackling the ongoing threat posed by these resistant pathogens.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.M.); (E.S.); (A.R.)
| | | | | | | |
Collapse
|
2
|
Iduu NV, Raiford D, Conley A, Scaria J, Nelson J, Ruesch L, Price S, Yue M, Gong J, Wei L, Wang C. A Retrospective Analysis of Salmonella Isolates across 11 Animal Species (1982-1999) Led to the First Identification of Chromosomally Encoded blaSCO-1 in the USA. Microorganisms 2024; 12:528. [PMID: 38543579 PMCID: PMC10974302 DOI: 10.3390/microorganisms12030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Antimicrobial resistance (AMR) in non-typhoidal Salmonella is a pressing public health concern in the United States, necessitating continuous surveillance. We conducted a retrospective analysis of 251 Salmonella isolates from 11 animal species recovered between 1982 and 1999, utilizing serotyping, antimicrobial susceptibility testing, and whole-genome sequencing (WGS). Phenotypic resistance was observed in 101 isolates, with S. Typhimurium, S. Dublin, S. Agona, and S. Muenster prevailing among 36 identified serovars. Notably, resistance to 12 of 17 antibiotics was detected, with ampicillin being most prevalent (79/251). We identified 38 resistance genes, primarily mediating aminoglycoside (n = 13) and β-lactamase (n = 6) resistance. Plasmid analysis unveiled nine distinct plasmids associated with AMR genes in these isolates. Chromosomally encoded blaSCO-1 was present in three S. Typhimurium and two S. Muenster isolates from equine samples, conferring resistance to amoxicillin/clavulanic acid. Phylogenetic analysis revealed three distinct clusters for these five isolates, indicating evolutionary divergence. This study represents the first report of blaSCO-1 in the USA, and our recovered isolates harboring this gene as early as 1989 precede those of all other reports. The enigmatic nature of blaSCO-1 prompts further research into its function. Our findings highlight the urgency of addressing antimicrobial resistance in Salmonella for effective public health interventions.
Collapse
Affiliation(s)
- Nneka Vivian Iduu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Donna Raiford
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Austin Conley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Joy Scaria
- Department of Veterinary Pathobiology, Stillwater, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Julie Nelson
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.N.); (L.R.)
| | - Laura Ruesch
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.N.); (L.R.)
| | - Stuart Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310027, China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China;
| | - Lanjing Wei
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA;
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| |
Collapse
|
3
|
Pedrosa-Silva F, Venancio TM. Comparative Genomics Reveals Novel Species and Insights into the Biotechnological Potential, Virulence, and Resistance of Alcaligenes. Genes (Basel) 2023; 14:1783. [PMID: 37761923 PMCID: PMC10530903 DOI: 10.3390/genes14091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Alcaligenes is a cosmopolitan bacterial genus that exhibits diverse properties which are beneficial to plants. However, the genomic versatility of Alcaligenes has also been associated with the ability to cause opportunistic infections in humans, raising concerns about the safety of these microorganisms in biotechnological applications. Here, we report an in-depth comparative analysis of Alcaligenes species using all publicly available genomes to investigate genes associated with species, biotechnological potential, virulence, and resistance to multiple antibiotics. Phylogenomic analysis revealed that Alcaligenes consists of at least seven species, including three novel species. Pan-GWAS analysis uncovered 389 species-associated genes, including cold shock proteins (e.g., cspA) and aquaporins (e.g., aqpZ) found exclusively in the water-isolated species, Alcaligenes aquatilis. Functional annotation of plant-growth-promoting traits revealed enrichment of genes for auxin biosynthesis, siderophores, and organic acids. Genes involved in xenobiotic degradation and toxic metal tolerance were also identified. Virulome and resistome profiles provide insights into selective pressures exerted in clinical settings. Taken together, the results presented here provide the grounds for more detailed clinical and ecological studies of the genus Alcaligenes.
Collapse
Affiliation(s)
| | - Thiago M. Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Brazil;
| |
Collapse
|
4
|
Osman EA, Yokoyama M, Altayb HN, Cantillon D, Wille J, Seifert H, Higgins PG, Al-Hassan L. Klebsiella pneumonia in Sudan: Multidrug Resistance, Polyclonal Dissemination, and Virulence. Antibiotics (Basel) 2023; 12:antibiotics12020233. [PMID: 36830144 PMCID: PMC9952582 DOI: 10.3390/antibiotics12020233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The emergence and global expansion of hyper-virulent and multidrug resistant (MDR) Klebsiella pneumoniae is an increasing healthcare threat worldwide. The epidemiology of MDR K. pneumoniae is under-characterized in many parts of the world, particularly Africa. In this study, K. pneumoniae isolates from hospitals in Khartoum, Sudan, have been whole-genome sequenced to investigate their molecular epidemiology, virulence, and resistome profiles. Eighty-six K. pneumoniae were recovered from patients in five hospitals in Khartoum between 2016 and 2020. Antimicrobial susceptibility was performed by disk-diffusion and broth microdilution. All isolates underwent whole genome sequencing using Illumina MiSeq; cgMLST was determined using Ridom SeqSphere+, and 7-loci MLST virulence genes and resistomes were identified. MDR was observed at 80%, with 35 isolates (41%) confirmed carbapenem-resistant. Thirty-seven sequence types were identified, and 14 transmission clusters (TC). Five of these TCs involved more than one hospital. Ybt9 was the most common virulence gene detected, in addition to some isolates harbouring iuc and rmp1. There is a diverse population of K. pneumoniae in Khartoum hospitals, harbouring multiple resistance genes, including genes coding for ESBLs, carbapenemases, and aminoglycoside-modifying enzymes, across multiple ST's. The majority of isolates were singletons and transmissions were rare.
Collapse
Affiliation(s)
- Einas A. Osman
- Bioscience Research Institute, Ibn Sina University, Khartoum 11111, Sudan
| | - Maho Yokoyama
- Department of Global Health and Infection, Brighton & Sussex Medical School, Brighton BN1 9PX, UK
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Daire Cantillon
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Leena Al-Hassan
- Department of Global Health and Infection, Brighton & Sussex Medical School, Brighton BN1 9PX, UK
- Correspondence: ; Tel.: +44-(0)-1278877817
| |
Collapse
|
5
|
Hu J, Li J, Liu C, Zhang Y, Xie H, Li C, Shen H, Cao X. Molecular characteristics of global β-lactamase-producing Enterobacter cloacae by genomic analysis. BMC Microbiol 2022; 22:255. [PMID: 36266616 DOI: 10.1186/s12866-022-02667-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To analyze the characteristics of global β-lactamase-producing Enterobacter cloacae including the distribution of β-lactamase, sequence types (STs) as well as plasmid replicons. METHODS All the genomes of the E. cloacae were downloaded from GenBank. The distribution of β-lactamase encoding genes were investigated by genome annotation after the genome quality was checked. The STs of these strains were analyzed by multi-locus sequence typing (MLST). The distribution of plasmid replicons was further explored by submitting these genomes to the genome epidemiology center. The isolation information of these strains was extracted by Per program from GenBank. RESULTS A total of 272 out of 276 strains were found to carry β-lactamase encoding genes. Among them, 23 varieties of β-lactamase were identified, blaCMH (n = 130, 47.8%) and blaACT (n = 126, 46.3%) were the most predominant ones, 9 genotypes of carbapenem-hydrolyzing β-lactamase (CHβLs) were identified with blaVIM (n = 29, 10.7%) and blaKPC (n = 24, 8.9%) being the most dominant ones. In addition, 115 distinct STs for the 272 ß-lactamase-carrying E. cloacae and 48 different STs for 106 CHβLs-producing E. cloacae were detected. ST873 (n = 27, 9.9%) was the most common ST. Furthermore, 25 different plasmid replicons were identified, IncHI2 (n = 65, 23.9%), IncHI2A (n = 64, 23.5%) and IncFII (n = 62, 22.8%) were the most common ones. Notably, the distribution of plasmid replicons IncHI2 and IncHI2A among CHβLs-producing strains were significantly higher than theat among non-CHβLs-producing strains (p < 0.05). CONCLUSION Almost all the E. cloacae contained β-lactamase encoding gene. Among the global E. cloacae, blaCMH and blaACT were main blaAmpC genes. BlaTEM and blaCTX-M were the predominant ESBLs. BlaKPC, blaVIM and blaNDM were the major CHβLs. Additionally, diversely distinct STs and different replicons were identified.
Collapse
Affiliation(s)
- Jincao Hu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Yan Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Chuchu Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China.
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China.
| |
Collapse
|
6
|
Debergh H, Maex M, Garcia-Graells C, Boland C, Saulmont M, Van Hoorde K, Saegerman C. First Belgian Report of Ertapenem Resistance in an ST11 Klebsiella Pneumoniae Strain Isolated from a Dog Carrying blaSCO-1 and blaDHA-1 Combined with Permeability Defects. Antibiotics (Basel) 2022; 11:1253. [PMID: 36140031 PMCID: PMC9495147 DOI: 10.3390/antibiotics11091253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Klebsiella pneumoniae of sequence type (ST) 11 is a hyper-epidemic nosocomial clone, which is spreading worldwide among humans and emerging in pets. This is the first report, to the best of our knowledge, of multidrug-resistant (MDR) K. pneumoniae ST11 carrying blaSCO-1 and blaDHA-1, isolated from a four-month-old dog in Belgium. Antimicrobial susceptibility testing (AST) of the isolate, performed via broth microdilution following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines, revealed resistance to eight different classes of antimicrobials, including carbapenems, in particular ertapenem, third-generation cephalosporins and fluoroquinolones. A hybrid approach, combining long- and short-read sequencing, was employed for in silico plasmid characterization, multi-locus sequence typing (MLST) and the identification and localization of antimicrobial resistance (AMR) and virulence-associated genes. Three plasmids were reconstructed from the whole-genome sequence (WGS) data: the conjugative IncFIB(K), the non-mobilizable IncR and the mobilizable but unconjugative ColRNAI. The IncFIB(K) plasmid carried the blaSCO-1 gene, whereas IncR carried blaDHA-1, both alongside several other antimicrobial resistance genes (ARGs). No virulence genes could be detected. Here, we suggest that the resistance to ertapenem associated with susceptibility to imipenem and meropenem in K. pneumoniae could be related to the presence of blaSCO-1 and blaDHA-1, combined with permeability defects caused by point mutations in an outer membrane porin (OmpK37). The presence of the blaSCO-1 gene on a conjugative IncFIB(K) plasmid is worrisome as it can increase the risk of transmission to humans, to animals and to the environment.
Collapse
Affiliation(s)
- Hanne Debergh
- Service Foodborne Pathogens, Sciensano, B-1050 Brussels, Belgium
- Veterinary Bacteriology Service, Sciensano, B-1050 Brussels, Belgium
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, B-4000 Liège, Belgium
| | - Margo Maex
- Service Bacterial Diseases, Sciensano, B-1050 Brussels, Belgium
| | | | - Cécile Boland
- Veterinary Bacteriology Service, Sciensano, B-1050 Brussels, Belgium
| | - Marc Saulmont
- Association Régionale de Santé et d’Identification Animales, B-5590 Ciney, Belgium
| | | | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
7
|
Ambrose SJ, Hamidian M, Hall RM. Extensively resistant Acinetobacter baumannii isolate RCH52 carries several resistance genes derived from an IncC plasmid. J Antimicrob Chemother 2022; 77:930-933. [PMID: 35040980 DOI: 10.1093/jac/dkab473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To identify the origins of resistance in a sporadic extensively resistant Acinetobacter baumannii isolate. METHODS The complete genome of RCH52 was determined by combining available Illumina short reads with MinION (Oxford Nanopore) long reads using Unicycler. Bioinformatic searches were used to identify features of interest. RESULTS The complete genome of RCH52 revealed an unusual chromosomal region containing all of the antibiotic resistance genes, except tet39, which is in a plasmid. A 129 585 bp segment was bounded by inversely oriented copies of ISAba1 and included two groups of resistance genes separated by the large segment of the backbone of type 1 IncC plasmids that lies between the ARI-A and ARI-B resistance islands but does not include the replication region. The ISAba1-bounded segment was located in a novel integrative element that had integrated into the chromosomal thyA gene but provided a replacement thyA gene. Several resistance genes are derived from either the ARI-A or the ARI-B resistance islands found in IncC plasmids that have been brought together by an IS26-mediated deletion of the original plasmid. This non-replicating circular molecule (or translocatable unit) has been incorporated into a smaller ISAba1-bounded unit that includes oxa23 in Tn2008B via homologous recombination between sul2-CR2-floR segments found in both. CONCLUSIONS The plasmids shared by most Gram-negative pathogens, including the broad host range IncC plasmids, have not been detected in Acinetobacter species. However, it seems likely that they can conjugate into members of this genus and contribute pre-existing clusters of antibiotic resistance genes.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mohammad Hamidian
- The iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Opazo-Capurro A, Higgins PG, Wille J, Seifert H, Cigarroa C, González-Muñoz P, Quezada-Aguiluz M, Domínguez-Yévenes M, Bello-Toledo H, Vergara L, González-Rocha G. Genetic Features of Antarctic Acinetobacter radioresistens Strain A154 Harboring Multiple Antibiotic-Resistance Genes. Front Cell Infect Microbiol 2019; 9:328. [PMID: 31608244 PMCID: PMC6755334 DOI: 10.3389/fcimb.2019.00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 12/03/2022] Open
Abstract
While antibiotic-resistant bacteria have been detected in extreme environments, including Antarctica, to date there are no reports of Acinetobacter species isolated from this region. Here, we characterized by whole-genome sequencing (WGS) the genetic content of a single antibiotic-resistant Acinetobacter spp. isolate (A154) collected in Antarctica. The isolate was recovered in 2013 from soil samples at Fildes Peninsula, Antarctica, and was identified by detection of the intrinsic OXA-23 gene, and confirmed by Tetra Correlation Search (TCS) and WGS. The antibiotic susceptibility profile was determined by disc diffusion, E-test, and broth microdilution methods. From WGS data, the acquired resistome and insertion sequence (IS) content were identified by in silico analyses. Plasmids were studied by the alkaline lysis method followed by pulsed-field gel electrophoresis and conventional PCR. The A154 isolate was identified as A. radioresistens by WGS analysis and displayed >99.9 of similarity by TCS in relation with the databases. Moreover, it was resistant to ampicillin, ceftriaxone, ceftazidime, cefepime, cefotaxime, streptomycin, and kanamycin. Likewise, in addition to the intrinsic blaOXA−23−like gene, A154 harbored the plasmid-encoded antibiotic-resistance genes blaPER−2, tet(B), aph(3′)-Vla, strA, and strB, as well as a large diversity of ISs. This is the first report of antibiotic-resistant A. radioresistens in Antarctica. Our findings show the presence of several resistance genes which could be either intrinsic or acquired in the region.
Collapse
Affiliation(s)
- Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Camila Cigarroa
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paulina González-Muñoz
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - Mario Quezada-Aguiluz
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Mariana Domínguez-Yévenes
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Luis Vergara
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| |
Collapse
|
9
|
Ruppé E, Cherkaoui A, Wagner N, La Scala GC, Beaulieu JY, Girard M, Frey J, Lazarevic V, Schrenzel J. In vivo selection of a multidrug-resistant Aeromonas salmonicida during medicinal leech therapy. New Microbes New Infect 2017; 21:23-27. [PMID: 29204282 PMCID: PMC5709350 DOI: 10.1016/j.nmni.2017.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
We report the selection in a 15-year-old boy of a multidrug-resistant, extended-spectrum β-lactamase (ESBL)-producing Aeromonas salmonicida after medicinal leech therapy that required an antibiotic prophylaxis based on piperacillin/tazobactam and cotrimoxazole. Whole genome sequencing of the strain indeed revealed 13 antibiotic resistance genes, including the ESBL CTX-M-3 and the unusual β-lactamase SCO-1.
Collapse
Affiliation(s)
- E Ruppé
- Genomic Research Laboratory, Division of Infectious Diseases, Switzerland
| | - A Cherkaoui
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Switzerland
| | - N Wagner
- Pediatric Infectious Diseases, Department of Pediatrics, Switzerland
| | - G C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, Switzerland
| | - J-Y Beaulieu
- Hand Surgery Unit, Division of Orthopedic Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - M Girard
- Genomic Research Laboratory, Division of Infectious Diseases, Switzerland
| | - J Frey
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - V Lazarevic
- Genomic Research Laboratory, Division of Infectious Diseases, Switzerland
| | - J Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Switzerland.,Bacteriology Laboratory, Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Switzerland
| |
Collapse
|
10
|
A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes. Clin Microbiol Rev 2016; 29:29-57. [PMID: 26511485 DOI: 10.1128/cmr.00019-15] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For medical biologists, sequencing has become a commonplace technique to support diagnosis. Rapid changes in this field have led to the generation of large amounts of data, which are not always correctly listed in databases. This is particularly true for data concerning class A β-lactamases, a group of key antibiotic resistance enzymes produced by bacteria. Many genomes have been reported to contain putative β-lactamase genes, which can be compared with representative types. We analyzed several hundred amino acid sequences of class A β-lactamase enzymes for phylogenic relationships, the presence of specific residues, and cluster patterns. A clear distinction was first made between dd-peptidases and class A enzymes based on a small number of residues (S70, K73, P107, 130SDN132, G144, E166, 234K/R, 235T/S, and 236G [Ambler numbering]). Other residues clearly separated two main branches, which we named subclasses A1 and A2. Various clusters were identified on the major branch (subclass A1) on the basis of signature residues associated with catalytic properties (e.g., limited-spectrum β-lactamases, extended-spectrum β-lactamases, and carbapenemases). For subclass A2 enzymes (e.g., CfxA, CIA-1, CME-1, PER-1, and VEB-1), 43 conserved residues were characterized, and several significant insertions were detected. This diversity in the amino acid sequences of β-lactamases must be taken into account to ensure that new enzymes are accurately identified. However, with the exception of PER types, this diversity is poorly represented in existing X-ray crystallographic data.
Collapse
|
11
|
Sequence of pR3521, an IncB plasmid from Escherichia coli encoding ACC-4, SCO-1, and TEM-1 beta-lactamases. Antimicrob Agents Chemother 2010; 55:376-81. [PMID: 20956594 DOI: 10.1128/aac.00875-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequence of pR3521, a self-transmissible plasmid from Escherichia coli, was determined. pR3521 (110,416 bp) comprised a contiguous IncB sequence (84,034 bp) sharing extensive similarities with IncI replicons and an acquired region (26,382 bp) carrying sequences of diverse origin, containing bla(ACC-4), bla(SCO-1), bla(TEM-1b) (two copies), strA, strB, sul2, and aacC2.
Collapse
|
12
|
Ktari S, Arlet G, Verdet C, Jaoua S, Kachrid A, Ben Redjeb S, Mahjoubi-Rhimi F, Hammami A. Molecular Epidemiology and Genetic Environment of AcquiredblaACC-1inSalmonella entericaSerotype Livingstone Causing a Large Nosocomial Outbreak in Tunisia. Microb Drug Resist 2009; 15:279-86. [DOI: 10.1089/mdr.2009.0035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sonia Ktari
- Laboratory of Microbiology, University Hospital Center (CHU) of Habib Bourguiba, Sfax, Tunisia
| | - Guillaume Arlet
- Department of Bacteriology, Public Assistance Hospitals of Paris, Tenon Hospital, Paris, France
- Faculty of Medicine, Pierre and Marie Curie University-Paris, Paris, France
| | - Charlotte Verdet
- Department of Bacteriology, Public Assistance Hospitals of Paris, Tenon Hospital, Paris, France
- Faculty of Medicine, Pierre and Marie Curie University-Paris, Paris, France
| | | | - Amel Kachrid
- Laboratory of Microbiology, Children's Hospital, Tunis, Tunisia
| | - Saida Ben Redjeb
- Laboratory of Microbiology, CHU of Charles Nicolle, Tunis, Tunisia
| | - Fouzia Mahjoubi-Rhimi
- Laboratory of Microbiology, University Hospital Center (CHU) of Habib Bourguiba, Sfax, Tunisia
| | - Adnane Hammami
- Laboratory of Microbiology, University Hospital Center (CHU) of Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
13
|
Partridge SR. Genetic environment of ISEcp1 and blaACC-1. Antimicrob Agents Chemother 2007; 51:2658-9; author reply 2659. [PMID: 17684008 PMCID: PMC1913258 DOI: 10.1128/aac.00364-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sally R. Partridge
- Centre for Infectious Diseases and MicrobiologyUniversity of SydneyWestmead HospitalWestmead, NSW 2145, Australia
- Phone: (61-2) 9845 6278, Fax: (61-2) 9891 5317, E-mail:
| |
Collapse
|
14
|
Papagiannitsis CC, Tzouvelekis LS, Tzelepi E, Miriagou V. Plasmid-encoded ACC-4, an extended-spectrum cephalosporinase variant from Escherichia coli. Antimicrob Agents Chemother 2007; 51:3763-7. [PMID: 17664321 PMCID: PMC2043296 DOI: 10.1128/aac.00389-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ACC-4, an omega loop mutant (Val(211)-->Gly) of the Hafnia alvei-derived cephalosporinase ACC-1, was encoded by an Escherichia coli plasmid. The genetic environment of bla(ACC-4) shared similarities with plasmidic regions carrying bla(ACC-1). Kinetics of beta-lactam hydrolysis and levels of resistance to beta-lactams showed that ACC-4 was more effective than ACC-1 against expanded-spectrum cephalosporins.
Collapse
|