1
|
Berry P, Khanna S. Recurrent Clostridioides difficile Infection: Current Clinical Management and Microbiome-Based Therapies. BioDrugs 2023; 37:757-773. [PMID: 37493938 DOI: 10.1007/s40259-023-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Clostridioides difficile is one of the most important causes of healthcare-associated diarrhea. The high incidence and recurrence rates of C. difficile infection, as well as its associated morbidity and mortality, are great concerns. The most common complication of C. difficile infection is recurrence, with rates of 20-30% after a primary infection and 60% after three or more episodes. Medical management of recurrent C. difficile infection involves a choice of therapy that is different from the antibiotic used in the primary episode. Patients with recurrent C. difficile infection also benefit from fecal microbiota transplantation or standardized microbiome restoration therapies (approved or experimental) to restore eubiosis. In contrast to antibiotics, microbiome restoration therapies restore a normal gut flora and eliminate C. difficile colonization and infection. Fecal microbiota transplantation in recurrent C. difficile infection has demonstrated higher success rates than vancomycin, fidaxomicin, or placebo. Fecal microbiota transplantation has traditionally been considered safe, with the most common adverse reactions being abdominal discomfort, and diarrhea, and rare serious adverse events. Significant heterogeneity and a lack of standardization regarding the process of preparation, and administration of fecal microbiota transplantation remain a major pitfall. Standardized microbiome-based therapies provide a promising alternative. In the ECOSPOR III trial of SER-109, an oral formulation of bacterial spores, a significant reduction in the recurrence rate (12%) was observed compared with placebo (40%). In the phase III PUNCH CD3 trial, RBX2660 also demonstrated high efficacy rates of 70.6% versus 57.5%. Both these agents are now US Food and Drug Administration approved for recurrent C. difficile infection. Other standardized microbiome-based therapies currently in the pipeline are VE303, RBX7455, and MET-2. Antibiotic neutralization strategies, vaccines, passive monoclonal antibodies, and drug repurposing are other therapeutic strategies being explored to treat C. difficile infection.
Collapse
Affiliation(s)
- Parul Berry
- All India Institute of Medical Sciences, New Delhi, India
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, C. difficile Clinic and Microbiome Restoration Program, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Fecal pharmacokinetics/pharmacodynamics characteristics of fidaxomicin and vancomycin against Clostridioides difficile infection elucidated by in vivo feces-based infectious evaluation models. Clin Microbiol Infect 2022; 29:616-622. [PMID: 36574949 DOI: 10.1016/j.cmi.2022.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The pharmacokinetics (PK)/pharmacodynamics (PD; PK/PD) characteristics of fidaxomicin (FDX) and vancomycin (VCM) against Clostridioides difficile infection (CDI) are yet to be elucidated because of the lack of an established PK/PD analysis method for intestinal infections and unabsorbed oral drugs. Here, we developed a feces-based PK/PD analysis method and determined the fecal PK/PD index, with target values of FDX and VCM against CDI. METHODS The antimicrobial susceptibility, time-kill curves, and post-antibiotic effects (PAEs) of FDX and VCM against C. difficile were determined in vitro. The optimal fecal PK/PD indices, with target values, were determined from the results of PK and PD studies involving 5-week-old female C57BL/6J mice infected with C. difficile ATCC® 43255. The minimum inhibitory concentration (MIC) breakpoints for C. difficile were estimated based on clinical data concerning fecal antibiotic concentrations in patients with CDI. RESULTS FDX and VCM inhibited C. difficile growth via time-dependent antibacterial activity and exerted PAEs. In the CDI mouse model experiments, the changes in C. difficile load and clinical cures (72-hour survival rates and clinical sickness score grading) were most highly correlated with the ratio of area under the fecal drug concentration-time curve to MIC (AUC0→∞/MIC). The target AUC0→∞/MIC values of FDX and VCM for 3 log10 reduction in C. difficile load was 13,173 and 8,308, respectively. The MIC breakpoints of FDX and VCM for C. difficile was estimated to be 1.0 and 2.0 μg/mL, respectively. CONCLUSIONS The developed in vivo feces-based PK/PD analysis method elucidated the optimal fecal PK/PD index, with target values of FDX and VCM against CDI.
Collapse
|
3
|
Carlson TJ, Gonzales-Luna AJ, Garey KW. Fulminant Clostridioides difficile Infection: A Review of Treatment Options for a Life-Threatening Infection. Semin Respir Crit Care Med 2022; 43:28-38. [PMID: 35172356 DOI: 10.1055/s-0041-1740973] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fulminant Clostridioides difficile infection (FCDI) encompasses 3 to 5% of all CDI cases with associated mortality rates between 30 and 40%. Major treatment modalities include surgery and medical management with antibiotic and nonantibiotic therapies. However, identification of patients with CDI that will progress to FCDI is difficult and makes it challenging to direct medical management and identify those who may benefit from surgery. Furthermore, since it is difficult to study such a critically ill population, data investigating treatment options are limited. Surgical management with diverting loop ileostomy (LI) instead of a total abdominal colectomy (TAC) with end ileostomy has several appealing advantages, and studies have not consistently demonstrated a clinical benefit with this less-invasive strategy, so both LI and TAC remain acceptable surgical options. Successful medical management of FCDI is complicated by pharmacokinetic changes that occur in critically ill patients, and there is an absence of high-quality studies that included patients with FCDI. Recommendations accordingly include a combination of antibiotics administered via multiple routes to ensure adequate drug concentrations in the colon: intravenous metronidazole, high-dose oral vancomycin, and rectal vancomycin. Although fidaxomicin is now recommended as first-line therapy for non-FCDI, there are limited clinical data to support its use in FCDI. Several nonantibiotic therapies, including fecal microbiota transplantation and intravenous immunoglobulin, have shown success as adjunctive therapies, but they are unlikely to be effective alone. In this review, we aim to summarize diagnosis and treatment options for FCDI.
Collapse
Affiliation(s)
- Travis J Carlson
- Department of Clinical Sciences, High Point University Fred Wilson School of Pharmacy, High Point, North Carolina
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| |
Collapse
|
4
|
Guery B, Georgopali A, Karas A, Kazeem G, Michon I, Wilcox MH, Cornely OA. Pharmacokinetic analysis of an extended-pulsed fidaxomicin regimen for the treatment of Clostridioides (Clostridium) difficile infection in patients aged 60 years and older in the EXTEND randomized controlled trial. J Antimicrob Chemother 2021; 75:1014-1018. [PMID: 31960058 DOI: 10.1093/jac/dkz549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fidaxomicin is a recommended treatment for Clostridioides difficile infection (CDI) and reduces CDI recurrence incidence versus vancomycin. An extended-pulsed fidaxomicin (EPFX) regimen further reduces recurrence frequency. However, the pharmacokinetic profile of fidaxomicin in an EPFX regimen is unknown. OBJECTIVES To evaluate plasma and stool concentrations of fidaxomicin and its metabolite, OP-1118, after EPFX administration for CDI. METHODS In the Phase 3b/4 EXTEND trial, patients aged ≥60 years with toxin-confirmed CDI were randomized to receive EPFX (oral fidaxomicin twice daily, Days 1-5; once daily on alternate days, Days 7-25). Fidaxomicin and OP-1118 concentrations were determined using post-dose plasma samples obtained on Days 5 ± 1, 12 ± 1 and 25/26, and post-dose stool samples obtained on Days 5 ± 1, 12 ± 1 and 26 ± 1. RESULTS Plasma samples from 14 patients were included in the pharmacokinetic analysis; 12 of these patients provided stool samples. Median (range) plasma concentrations of fidaxomicin on Day 5 ± 1 and Day 25/26 were 0.0252 (0.0038-0.1220) mg/L and 0.0069 (0-0.0887) mg/L, respectively, and those of OP-1118 were 0.0648 (0.0142-0.3250) mg/L and 0.0206 (0-0.3720) mg/L, respectively. Median (range) stool concentrations of fidaxomicin and OP-1118 on Day 26 ± 1 were 272.5 (0-524) mg/kg and 280.5 (0-1120) mg/kg, respectively. CONCLUSIONS EPFX treatment maintained fidaxomicin stool concentrations above the C. difficile MIC90 until Day 26 ± 1. Systemic exposure to fidaxomicin and OP-1118 was low throughout and there was no evidence of accumulation in plasma or stool during treatment.
Collapse
Affiliation(s)
- Benoit Guery
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals & University of Leeds, Leeds, UK.,Healthcare Associated Infections Research Group, Section of Molecular Gastroenterology, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Oliver A Cornely
- Department I of Internal Medicine, University Hospital of Cologne and German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Quantitative characterization of Clostridioides difficile population in the gut microbiome of patients with C. difficile infection and their association with clinical factors. Sci Rep 2020; 10:17608. [PMID: 33077744 PMCID: PMC7573688 DOI: 10.1038/s41598-020-74090-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Objective was to analyse bacterial composition and abundance of Clostridioides difficile in gut microbiome of patients with C. difficile infection (CDI) in association with clinical characteristics. Whole metagenome sequencing of gut microbiome of 26 CDI patients was performed, and the relative abundance of C. difficile and its toxin genes was measured. Clinical characteristics of the patients were obtained through medical records. A strong correlation between the abundance of C. difficile and tcdB genes in CDI patients was found. The relative abundance of C. difficile in the gut microbiome ranged from undetectable to 2.8% (median 0.089). Patients with fever exhibited low abundance of C. difficile in their gut, and patients with fewer C. difficile organisms required long-term anti-CDI treatment. Abundance of Bifidobacterium and Bacteroides negatively correlated with that of C. difficile at the genus level. CDI patients were clustered using the bacterial composition of the gut: one with high population of Enterococcus (cluster 1, n = 12) and another of Bacteroides or Lactobacillus (cluster 2, n = 14). Cluster1 showed significantly lower bacterial diversity and clinical cure at the end of treatment. Additionally, patients with CDI exhibited increased ARGs; notably, blaTEM, blaSHV and blaCTX-M were enriched. C. difficile existed in variable proportion of the gut microbiome in CDI patients. CDI patients with Enterococcus-rich microbiome in the gut had lower bacterial diversity and poorer clinical cure.
Collapse
|
6
|
Carlson TJ, Endres BT, Bassères E, Gonzales-Luna AJ, Garey KW. Ridinilazole for the treatment of Clostridioides difficile infection. Expert Opin Investig Drugs 2019; 28:303-310. [PMID: 30767587 DOI: 10.1080/13543784.2019.1582640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/11/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Ridinilazole is a novel antibiotic being developed for the treatment of Clostridioides difficile infection (CDI). Ridinilazole has completed two phase II trials and phase III trials which are denoted Ri-CoDIFy 1 and 2, are planned (ClinicalTrials.gov identifiers: NCT03595553 and NCT03595566). Areas covered: This article covers the chemistry, mechanism of action, in vitro microbiology versus C. difficile and host microbiota, pre-clinical and clinical efficacy, pharmacokinetics, pharmacodynamics and safety and tolerability of ridinilazole. Expert opinion: Ridinilazole is a novel antibiotic with ideal properties for the treatment of CDI. Given the promising results from the phase II clinical trial, ridinilazole may have the capability to lower the risk for CDI recurrence thus improving sustained clinical response rates - a current unmet medical need. Assuming a positive phase III trial, ridinilazole will enter a market with heightened awareness on the importance of prevention of CDI. This along with further research into the economic consequences and decreased patient quality of life associated with recurrent CDI, should provide clinicians with further evidence for the need for therapy that limits CDI recurrence and improves sustained clinical cure.
Collapse
Affiliation(s)
- Travis J Carlson
- a Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| | - Bradley T Endres
- a Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| | - Eugénie Bassères
- a Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| | - Anne J Gonzales-Luna
- a Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| | - Kevin W Garey
- a Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| |
Collapse
|
7
|
Mullane KM, Winston DJ, Nooka A, Morris MI, Stiff P, Dugan MJ, Holland H, Gregg K, Adachi JA, Pergam SA, Alexander BD, Dubberke ER, Broyde N, Gorbach SL, Sears PS. A Randomized, Placebo-controlled Trial of Fidaxomicin for Prophylaxis of Clostridium difficile-associated Diarrhea in Adults Undergoing Hematopoietic Stem Cell Transplantation. Clin Infect Dis 2019; 68:196-203. [PMID: 29893798 PMCID: PMC6321849 DOI: 10.1093/cid/ciy484] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Clostridium difficile-associated diarrhea (CDAD) is common during hematopoietic stem-cell transplantation (HSCT) and is associated with increased morbidity and mortality. We evaluated fidaxomicin for prevention of CDAD in HSCT patients. Methods In this double-blind study, subjects undergoing HSCT with fluoroquinolone prophylaxis stratified by transplant type (autologous/allogeneic) were randomized to once-daily oral fidaxomicin (200 mg) or a matching placebo. Dosing began within 2 days of starting conditioning or fluoroquinolone prophylaxis and continued until 7 days after neutrophil engraftment or completion of fluoroquinolone prophylaxis/clinically-indicated antimicrobials for up to 40 days. The primary endpoint was CDAD incidence through 30 days after study medication. The primary endpoint analysis counted confirmed CDAD, receipt of CDAD-effective medications (for any indication), and missing CDAD assessment (for any reason, including death) as failures; this composite analysis is referred to as "prophylaxis failure" to distinguish from the pre-specified sensitivity analysis, which counted only confirmed CDAD (by toxin immunoassay or nucleic acid amplification test) as failure. Results Of 611 subjects enrolled, 600 were treated and analyzed. Prophylaxis failure was similar in fidaxomicin and placebo recipients (28.6% vs 30.8%; difference 2.2% [-5.1, 9.5], P = .278). However, most failures were due to non-CDAD events. Confirmed CDAD was lower in fidaxomicin vs placebo recipients (4.3% vs 10.7%; difference 6.4% [2.2, 10.6], P = .0014). Drug-related adverse events occurred in 15.0% of fidaxomicin recipients and 20.0% of placebo recipients. Conclusions While no difference was demonstrated between arms in the primary analysis, results of the sensitivity analysis demonstrated that fidaxomicin significantly reduced the incidence of CDAD in HSCT recipients. Clinical Trials Registration NCT01691248.
Collapse
Affiliation(s)
| | | | - Ajay Nooka
- Emory University School of Medicine, Atlanta, Georgia
| | | | - Patrick Stiff
- Loyola University Stritch School of Medicine, Maywood, Illinois
| | | | | | - Kevin Gregg
- Division of Infectious Diseases, University of Michigan, Ann Arbor
| | - Javier A Adachi
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas MD Anderson Cancer Center, Houston
| | - Steven A Pergam
- Division of Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, University of Washington, Seattle
| | | | - Erik R Dubberke
- Washington University School of Medicine, St Louis, Missouri
| | | | | | | |
Collapse
|
8
|
Al Momani LA, Abughanimeh O, Boonpheng B, Gabriel JG, Young M. Fidaxomicin vs Vancomycin for the Treatment of a First Episode of Clostridium Difficile Infection: A Meta-analysis and Systematic Review. Cureus 2018; 10:e2778. [PMID: 30112254 PMCID: PMC6089486 DOI: 10.7759/cureus.2778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile infection (CDI) continues to possess a significant disease burden in the United States (US) as well as all over the world. Given the increase in severity and recurrence rate, the decrease in cure rate, and the fact that the virulent ribotype 027 strain remains one of the most commonly identified strains in the US, the Infectious Diseases Society of America (IDSA) published a clinical practice guideline in February 2018 moving away from metronidazole as the first-line treatment for initial CDI and recommending either oral vancomycin or fidaxomicin. The aim of this study is to evaluate the clinical data available comparing the efficacy of primary treatment of CDI between those two antibiotics. We performed a PubMed, PubMed Central, and ScienceDirect database search without restriction to regions, publication types, or languages. A comprehensive literature search was performed from January 1, 1980 up to March 20, 2018. We used the following keywords in different combinations: Clostridium difficile, Clostridium difficile infection, CDI, C. diff, C. difficile, fidaxomicin, vancomycin, pseudomembranous colitis, and antibiotic-associated colitis. The search was limited to human studies. Data were independently extracted by two reviewers with disagreements resolved by a third author. We pooled an odds ratio (OR) on two primary outcomes: Clinical cure rate and rate of recurrence during the follow-up period. The computer search was also supplemented with manual searches by the authors of the retrieved review articles and primary studies. The search phrase “((Clostridium difficile) AND vancomycin) AND fidaxomicin” had the highest yield results. We identified four observational studies with a total of 2,303 patients with CDI that met our inclusion criteria. Compared with vancomycin, fidaxomicin use was associated with a significantly lower recurrence of CDI with a pooled OR of 0.47 (95% confidence interval (CI), 0.37 - 0.60, I2 = 0). On the other hand, there was no significant association of fidaxomicin use with CDI cure rate compared to vancomycin with a pooled OR of 1.22 (95% CI, 0.93 - 1.60, I2 = 0). In light of the recently updated clinical practice guidelines by the IDSA, our review suggests that fidaxomicin has a more sustained clinical response with a statistically significant lower recurrence rate. Although fidaxomicin appears to be the better drug with statistical significance, its cost-effectiveness continues to be an ongoing controversy. More randomized clinical trials are needed to shed light on this matter to assess if there is any clinical significance in fidaxomicin superiority.
Collapse
Affiliation(s)
- Laith A Al Momani
- Department of Internal Medicine, East Tennessee State University, Johnson City, USA
| | - Omar Abughanimeh
- Department of Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | | | | | - Mark Young
- Department of Gastroenterology, East Tennessee State University, Johnson City, USA
| |
Collapse
|
9
|
Maxwell-Scott HG, Goldenberg SD. Existing and investigational therapies for the treatment of Clostridium difficile infection: A focus on narrow spectrum, microbiota-sparing agents. Med Mal Infect 2017; 48:1-9. [PMID: 29169816 DOI: 10.1016/j.medmal.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
Abstract
Despite intense international attention and efforts to reduce its incidence, Clostridium difficile infection (CDI) remains a significant concern for patients, clinicians, and healthcare organizations. It is costly for payers and disabling for patients. Furthermore, recurrent CDI is particularly difficult to manage, resulting in excess mortality, hospital length of stay, and other healthcare resource use. A greater understanding of the role of the gut microbiome has emphasized the importance of this diverse community in providing colonization resistance against CDI. The introduction of fidaxomicin, which has limited effect on the microflora has improved clinical outcomes in relation to disease recurrence. There are a number of other new agents in development, which appear to have a narrow spectrum of activity whilst exerting minimal effect on the microflora. Whilst the role of these emerging agents in the treatment of CDI is presently unclear, they appear to be promising candidates.
Collapse
Affiliation(s)
- H G Maxwell-Scott
- London and Guy's and St Thomas' NHS Foundation Trust, Centre for Clinical Infection and Diagnostics Research, King's College, London, United Kingdom
| | - S D Goldenberg
- London and Guy's and St Thomas' NHS Foundation Trust, Centre for Clinical Infection and Diagnostics Research, King's College, London, United Kingdom.
| |
Collapse
|
10
|
D'Ostroph AR, So TY. Treatment of pediatric Clostridium difficile infection: a review on treatment efficacy and economic value. Infect Drug Resist 2017; 10:365-375. [PMID: 29089778 PMCID: PMC5655036 DOI: 10.2147/idr.s119571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The incidence of Clostridium difficile infection (CDI) in pediatric patients continues to rise. Most of the pediatric recommendations for CDI treatment are extrapolated from the literature and guidelines for adults. The American Academy of Pediatrics recommends oral metronidazole as the first-line treatment option for an initial CDI and the first recurrence if they are mild to moderate in severity. Oral vancomycin is recommended to be used for severe CDI and the second recurrent infection. Additional pulsed regimen of oral vancomycin, which is tapered, may increase efficacy in refractory patients. However, there is lack of large studies evaluating the use of fidaxomicin in pediatrics to know whether it could be a safe and effective treatment option for difficult-to-treat patients. Fidaxomicin is associated with higher total drug costs compared to metronidazole and vancomycin, but the literature supports its use due to a lower rate of CDI recurrence, which may result in cost savings. Further studies are warranted to evaluate the use of fidaxomicin in patients <18 years old and to understand its role in the standard of care for pediatric patients with CDI.
Collapse
Affiliation(s)
- Amanda R D'Ostroph
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill
| | - Tsz-Yin So
- Department of Pharmacy, Moses H Cone Memorial Hospital, Greensboro, NC, USA
| |
Collapse
|
11
|
Nelson RL, Suda KJ, Evans CT. Antibiotic treatment for Clostridium difficile-associated diarrhoea in adults. Cochrane Database Syst Rev 2017; 3:CD004610. [PMID: 28257555 PMCID: PMC6464548 DOI: 10.1002/14651858.cd004610.pub5] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Clostridium difficile (C. difficile) is recognized as a frequent cause of antibiotic-associated diarrhoea and colitis. This review is an update of a previously published Cochrane review. OBJECTIVES The aim of this review is to investigate the efficacy and safety of antibiotic therapy for C. difficile-associated diarrhoea (CDAD), or C. difficile infection (CDI), being synonymous terms. SEARCH METHODS We searched MEDLINE, EMBASE, CENTRAL and the Cochrane IBD Group Specialized Trials Register from inception to 26 January 2017. We also searched clinicaltrials.gov and clinicaltrialsregister.eu for ongoing trials. SELECTION CRITERIA Only randomised controlled trials assessing antibiotic treatment for CDI were included in the review. DATA COLLECTION AND ANALYSIS Three authors independently assessed abstracts and full text articles for inclusion and extracted data. The risk of bias was independently rated by two authors. For dichotomous outcomes, we calculated the risk ratio (RR) and corresponding 95% confidence interval (95% CI). We pooled data using a fixed-effect model, except where significant heterogeneity was detected, at which time a random-effects model was used. The following outcomes were sought: sustained symptomatic cure (defined as initial symptomatic response and no recurrence of CDI), sustained bacteriologic cure, adverse reactions to the intervention, death and cost. MAIN RESULTS Twenty-two studies (3215 participants) were included. The majority of studies enrolled patients with mild to moderate CDI who could tolerate oral antibiotics. Sixteen of the included studies excluded patients with severe CDI and few patients with severe CDI were included in the other six studies. Twelve different antibiotics were investigated: vancomycin, metronidazole, fusidic acid, nitazoxanide, teicoplanin, rifampin, rifaximin, bacitracin, cadazolid, LFF517, surotomycin and fidaxomicin. Most of the studies were active comparator studies comparing vancomycin with other antibiotics. One small study compared vancomycin to placebo. There were no other studies that compared antibiotic treatment to a placebo or a 'no treatment' control group. The risk of bias was rated as high for 17 of 22 included studies. Vancomycin was found to be more effective than metronidazole for achieving symptomatic cure. Seventy-two per cent (318/444) of metronidazole patients achieved symptomatic cure compared to 79% (339/428) of vancomycin patients (RR 0.90, 95% CI 0.84 to 0.97; moderate quality evidence). Fidaxomicin was found to be more effective than vancomycin for achieving symptomatic cure. Seventy-one per cent (407/572) of fidaxomicin patients achieved symptomatic cure compared to 61% (361/592) of vancomycin patients (RR 1.17, 95% CI 1.04 to 1.31; moderate quality evidence). Teicoplanin may be more effective than vancomycin for achieving a symptomatic cure. Eightly-seven per cent (48/55) of teicoplanin patients achieved symptomatic cure compared to 73% (40/55) of vancomycin patients (RR 1.21, 95% CI 1.00 to 1.46; very low quality evidence). For other comparisons including the one placebo-controlled study the quality of evidence was low or very low due to imprecision and in many cases high risk of bias because of attrition and lack of blinding. One hundred and forty deaths were reported in the studies, all of which were attributed by study authors to the co-morbidities of the participants that lead to acquiring CDI. Although many other adverse events were reported during therapy, these were attributed to the participants' co-morbidities. The only adverse events directly attributed to study medication were rare nausea and transient elevation of liver enzymes. Recent cost data (July 2016) for a 10 day course of treatment shows that metronidazole 500 mg is the least expensive antibiotic with a cost of USD 13 (Health Warehouse). Vancomycin 125 mg costs USD 1779 (Walgreens for 56 tablets) compared to fidaxomicin 200 mg at USD 3453.83 or more (Optimer Pharmaceuticals) and teicoplanin at approximately USD 83.67 (GBP 71.40, British National Formulary). AUTHORS' CONCLUSIONS No firm conclusions can be drawn regarding the efficacy of antibiotic treatment in severe CDI as most studies excluded patients with severe disease. The lack of any 'no treatment' control studies does not allow for any conclusions regarding the need for antibiotic treatment in patients with mild CDI beyond withdrawal of the initiating antibiotic. Nonetheless, moderate quality evidence suggests that vancomycin is superior to metronidazole and fidaxomicin is superior to vancomycin. The differences in effectiveness between these antibiotics were not too large and the advantage of metronidazole is its far lower cost compared to the other two antibiotics. The quality of evidence for teicoplanin is very low. Adequately powered studies are needed to determine if teicoplanin performs as well as the other antibiotics. A trial comparing the two cheapest antibiotics, metronidazole and teicoplanin, would be of interest.
Collapse
Affiliation(s)
- Richard L Nelson
- University of Illinois School of Public HealthEpidemiology/Biometry Division1603 West TaylorRoom 956ChicagoIllinoisUSA60612
| | | | - Charlesnika T Evans
- Northwestern UniversityDepartment of Preventive Medicine and Center for Healthcare Studies633 N. St. ClairChicagoILUSA60611
| | | |
Collapse
|
12
|
Bassères E, Endres BT, Dotson KM, Alam MJ, Garey KW. Novel antibiotics in development to treat Clostridium difficile infection. Curr Opin Gastroenterol 2017; 33:1-7. [PMID: 28134686 DOI: 10.1097/mog.0000000000000332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Clostridium difficile infections (CDI) remain a challenge to treat clinically due primarily to limited number of antibiotics available and unacceptably high recurrence rates. Because of this, there has been significant demand for creating innovative therapeutics, which has resulted in the development of several novel antibiotics. RECENT FINDINGS This review updates seven different antibiotics that are currently in development to treat CDI including fidaxomicin, surotomycin, ridinilazole, ramoplanin, cadazolid, LFF571, and CRS3123. Available preclinical and clinical data are compared between these antibiotics. SUMMARY Many of these new antibiotics display almost ideal properties for antibiotics directed against CDI. Despite these properties, not all clinical development of these compounds has been successful. These studies have provided key insights into the pathogenesis of CDI and will continue to inform future drug development. Successful phase III clinical trials should result in several new and novel antibiotics to treat CDI.
Collapse
|
13
|
Fidaxomicin versus Vancomycin in the Treatment of Clostridium difficile Infection: Canadian Outcomes. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 2016:8048757. [PMID: 27366179 PMCID: PMC4904592 DOI: 10.1155/2016/8048757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022]
Abstract
Background. This analysis examined the efficacy of fidaxomicin versus vancomycin in 406 Canadian patients with Clostridium difficile infection (CDI), based on data from 2 randomized, clinical trials. Methods. Patients received fidaxomicin or vancomycin 1. Patients were assessed for clinical response recurrence of infection and sustained clinical response for 28 days after treatment completion. Patients at increased risk of recurrence were subjected to subgroup analyses. Results. Clinical response rates for fidaxomicin (90.0%) were noninferior to those with vancomycin (92.2%; 95% confidence interval for difference: −7.7, 3.5). However, fidaxomicin-treated patients had lower recurrence (14.4% versus 28.0%, p = 0.001) and higher sustained clinical response (77.1% versus 66.3%, p = 0.016). Compared with vancomycin, fidaxomicin was associated with lower recurrence rates in all subgroups, reaching statistical significance in patients with age ≥ 65 years (16.0% versus 30.9%, p = 0.026), concomitant antibiotic use (16.2% versus 38.7%, p = 0.036), and non-BI strains (11.8% versus 28.3%, p = 0.004). Higher sustained clinical response rates were observed for fidaxomicin compared with vancomycin in all subgroups; this was statistically significant in the non-BI subgroup (82.8% versus 69.1%, p = 0.021). Conclusions. In Canadian patients, fidaxomicin was superior to vancomycin in sustaining clinical response and reducing CDI recurrence.
Collapse
|
14
|
Abstract
Clostridium difficile is one of the many aetiological agents of antibiotic associated diarrhoea and is implicated in 15-25 per cent of the cases. The organism is also involved in the exacearbation of inflammatory bowel disease and extracolonic manifestations. Due to increase in the incidence of C. difficile infection (CDI), emergence of hypervirulent strains, and increased frequency of recurrence, the clinical management of the disease has become important. The management of CDI is based on disease severity, and current antibiotic treatment options are limited to vancomycin or metronidazole in the developing countries. this review article briefly describes important aspects of CDI, and the new drug, fidaxomicin, for its treatment. Fidaxomicin is particularly active against C. difficile and acts by inhibition of RNA synthesis. Clinical trials done to compare the efficacy and safety of fidaxomicin with that of vancomycin in treating CDI concluded that fidaxomicin was non-inferior to vancomycin for treatment of CDI and that there was a significant reduction in recurrences. The bactericidal properties of fidaxomicin make it an ideal alternative for CDI treatment. However, fidaxomicin use should be considered taking into account the potential benefits of the drug, along with the medical requirements of the patient, the risks of treatment and the high cost of fidaxomicin compared to other treatment regimens.
Collapse
Affiliation(s)
- Chetana Vaishnavi
- Department of Gastroenterology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
15
|
Louie TJ, Byrne B, Emery J, Ward L, Krulicki W, Nguyen D, Wu K, Cannon K. Differences of the Fecal Microflora With Clostridium difficile Therapies. Clin Infect Dis 2016; 60 Suppl 2:S91-7. [PMID: 25922407 DOI: 10.1093/cid/civ252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND During treatment of Clostridium difficile infection (CDI), patterns of pathogen reduction in relationship to changes in components of the normal microbiota are hypothesized to be predictive of response to treatment and subsequent sustained cure. METHODS At a single center, subjects enrolled into phase 2 and 3 C. difficile treatment clinical trials (2003-2008) provided fecal samples to assess killing of C. difficile and changes to components of the microbiome. Quantitative bacterial cultures, measurement of C. difficile toxin titers, quantitative polymerase chain reaction of fecal samples for Bacteroidetes, Clostridium clusters XIVa and IV, and C. difficile were performed. RESULTS Quantitative bacterial cultures showed a mean log10 C. difficile count (colony-forming units [CFU]) of 6.7 ± 2.0 at study entry; vancomycin treatment consistently reduced C. difficile counts to the limit of detection (2.0 log10 CFU/g), whereas metronidazole was associated with mean C. difficile counts 1.5-2 log10 higher at 10 days of treatment. In patients receiving tolevamer, C. difficile persisted in high counts during treatment; response to treatment was correlated with neutralization of toxin along with persistence of normal microbiota components. However, this was achieved in approximately half of subjects. Both vancomycin and metronidazole further suppressed microbiome components during treatment of CDI. Lactobacilli were observed to be a microbiome component that persisted during treatment of CDI. CONCLUSIONS Differences of pathogen clearance and microbiome perturbation during treatment of CDI appear to explain treatment outcomes. The hypothesis that probiotic microbes could help prevent onset of CDI is supported by the observation of persistence of lactobacilli during and after treatment of CDI.
Collapse
Affiliation(s)
- Thomas J Louie
- Department of Medicine and Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Infection Prevention and Control, Calgary Zone, Alberta Health Services, Canada
| | - Brendan Byrne
- Department of Medicine and Department of Microbiology, Immunology and Infectious Diseases, University of Calgary
| | - Judith Emery
- Department of Medicine and Department of Microbiology, Immunology and Infectious Diseases, University of Calgary
| | - Linda Ward
- Infection Prevention and Control, Calgary Zone, Alberta Health Services, Canada
| | - Wally Krulicki
- Infection Prevention and Control, Calgary Zone, Alberta Health Services, Canada
| | - David Nguyen
- Department of Medicine and Department of Microbiology, Immunology and Infectious Diseases, University of Calgary
| | - Kaiyu Wu
- Department of Medicine and Department of Microbiology, Immunology and Infectious Diseases, University of Calgary
| | - Kristine Cannon
- Department of Medicine and Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Infection Prevention and Control, Calgary Zone, Alberta Health Services, Canada
| |
Collapse
|
16
|
Fidaxomicin: A novel agent for the treatment of Clostridium difficile infection. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 26:305-12. [PMID: 26744587 PMCID: PMC4692299 DOI: 10.1155/2015/934594] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oral vancomycin and oral metronidazole have several limitations with regard to their use in the treatment of Clostridium difficile infections (CDIs); however, oral vancomycin has been considered the gold standard in clinical trials. In June 2012, fidaxomicin received Health Canada approval for the treatment of CDIs. Its chemistry, mechanisms of action and pharmacological properties are discussed, along with its potential role in CDI therapy. BACKGROUND: Due to the limitations of existing treatment options for Clostridium difficile infection (CDI), new therapies are needed. OBJECTIVE: To review the available data on fidaxomicin regarding chemistry, mechanisms of action and resistance, in vitro activity, pharmacokinetic and pharmacodynamic properties, efficacy and safety in clinical trials, and place in therapy. METHODS: A search of PubMed using the terms “fidaxomicin”, “OPT-80”, “PAR-101”, “OP-1118”, “difimicin”, “tiacumicin” and “lipiarmycin” was performed. All English-language articles from January 1983 to November 2014 were reviewed, as well as bibliographies of all articles. RESULTS: Fidaxomicin is the first macrocyclic lactone antibiotic with activity versus C difficile. It inhibits RNA polymerase, therefore, preventing transcription. Fidaxomicin (and its active metabolite OP-1118) is bactericidal against C difficile and exhibits a prolonged postantibiotic effect (approximately 10 h). Other than for C difficile, fidaxomicin demonstrated only moderate inhibitory activity against Gram-positive bacteria and was a poor inhibitor of normal colonic flora, including anaerobes and enteric Gram-negative bacilli. After oral administration (200 mg two times per day for 10 days), fidaxomicin achieved low serum concentration levels but high fecal concentration levels (mean approximately 1400 μg/g stool). Phase 3 clinical trials involving adults with CDI demonstrated that 200 mg fidaxomicin twice daily for 10 days was noninferior to 125 mg oral vancomycin four times daily for 10 days in regard to clinical response at the end of therapy. Fidaxomicin was, however, reported to be superior to oral vancomycin in reducing recurrent CDI and achieving a sustained clinical response (assessed at day 28) for patients infected with non-BI/NAP1/027 strains. CONCLUSION: Fidaxomicin was noninferior to oral vancomycin with regard to clinical response at the end of CDI therapy. Fidaxomicin has been demonstated to be as safe as oral vancomycin, but superior to vancomycin in achieving a sustained clinical response for CDI in patients infected with non-BI/NAP1/027 strains. Caution should be exercised in using fidaxomicin monotherapy for treatment of severe complicated CDI because limited data are available. Whether fidaxomicin is cost effective (due to its significantly higher acquisition cost versus oral vancomycin) depends on the acceptable willingness to pay threshold per quality-adjusted life year as a measure of assessing cost effectiveness.
Collapse
|
17
|
A Review of Management of Clostridium difficile Infection: Primary and Recurrence. Antibiotics (Basel) 2015; 4:411-23. [PMID: 27025632 PMCID: PMC4790304 DOI: 10.3390/antibiotics4040411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 12/23/2022] Open
Abstract
Clostridium difficile infection (CDI) is a potentially fatal illness, especially in the elderly and hospitalized individuals. The recurrence and rates of CDI are increasing. In addition, some cases of CDI are refractory to the currently available antibiotics. The search for improved modalities for the management of primary and recurrent CDI is underway. This review discusses the current antibiotics, fecal microbiota transplantation (FMT) and other options such as immunotherapy and administration of non-toxigenic Clostridium difficile (CD) for the management of both primary and recurrent CDI.
Collapse
|
18
|
Mathur H, Rea MC, Cotter PD, Ross RP, Hill C. The potential for emerging therapeutic options for Clostridium difficile infection. Gut Microbes 2015; 5:696-710. [PMID: 25564777 PMCID: PMC4615897 DOI: 10.4161/19490976.2014.983768] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review.
Collapse
Key Words
- ATCC, American Type Culture Collection
- CDI, Clostridium difficile infection
- CdtLoc, binary toxin locus
- Clostridium difficile
- DNA, deoxyribonucleic acid
- DPC, Dairy Products Collection
- ESCMID, European Society of Clinical Microbiology and Infectious Diseases
- ETEC, enterotoxigenic E. coli
- FDA, Food and Drug Administration
- FMT, faecal microbiota transplantation
- GIT, gastrointestinal tract
- HIV, human immunodeficiency virus
- IDSA, Infectious Diseases Society of America
- IgG, immunoglobulin G
- LTA, lipoteichoic acid
- M21V, methionine to valine substitution at residue 21
- MIC, minimum inhibitory concentration
- NGS, next generation sequencing
- NVB, Novacta Biosystems Ltd
- PMC, pseudomembranous colitis
- PaLoc, pathogenicity locus
- R027, ribotype 027
- RBD
- RBS, ribosome binding site
- RNA, ribonucleic acid
- SHEA, Society for Healthcare Epidemiology of America
- V15F, valine to phenylalanine substitution at residue 15
- antibiotics
- faecal microbiota transplantation
- receptor binding domain
- toxins
- vaccines
Collapse
Affiliation(s)
- Harsh Mathur
- School of Microbiology; University College Cork; Cork, Ireland,Teagasc Food Research Center; Moorepark; Fermoy, Ireland
| | - Mary C Rea
- Teagasc Food Research Center; Moorepark; Fermoy, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Center; Moorepark; Fermoy, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,Correspondence to: Colin Hill; ; Paul D Cotter;
| | - R Paul Ross
- Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,College of Science; Engineering and Food Science; University College Cork; Cork, Ireland
| | - Colin Hill
- School of Microbiology; University College Cork; Cork, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,Correspondence to: Colin Hill; ; Paul D Cotter;
| |
Collapse
|
19
|
Debast SB, Bauer MP, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 2014; 20 Suppl 2:1-26. [PMID: 24118601 DOI: 10.1111/1469-0691.12418] [Citation(s) in RCA: 774] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/22/2013] [Accepted: 09/27/2013] [Indexed: 12/11/2022]
Abstract
In 2009 the first European Society of Clinical Microbiology and Infection (ESCMID) treatment guidance document for Clostridium difficile infection (CDI) was published. The guideline has been applied widely in clinical practice. In this document an update and review on the comparative effectiveness of the currently available treatment modalities of CDI is given, thereby providing evidence-based recommendations on this issue. A computerized literature search was carried out to investigate randomized and non-randomized trials investigating the effect of an intervention on the clinical outcome of CDI. The Grades of Recommendation Assessment, Development and Evaluation (GRADE) system was used to grade the strength of our recommendations and the quality of the evidence. The ESCMID and an international team of experts from 11 European countries supported the process. To improve clinical guidance in the treatment of CDI, recommendations are specified for various patient groups, e.g. initial non-severe disease, severe CDI, first recurrence or risk for recurrent disease, multiple recurrences and treatment of CDI when oral administration is not possible. Treatment options that are reviewed include: antibiotics, toxin-binding resins and polymers, immunotherapy, probiotics, and faecal or bacterial intestinal transplantation. Except for very mild CDI that is clearly induced by antibiotic usage antibiotic treatment is advised. The main antibiotics that are recommended are metronidazole, vancomycin and fidaxomicin. Faecal transplantation is strongly recommended for multiple recurrent CDI. In case of perforation of the colon and/or systemic inflammation and deteriorating clinical condition despite antibiotic therapy, total abdominal colectomy or diverting loop ileostomy combined with colonic lavage is recommended.
Collapse
|
20
|
Soriano MM, Liao S, Danziger LH. Fidaxomicin: a minimally absorbed macrocyclic antibiotic for the treatment of Clostridium difficile infections. Expert Rev Anti Infect Ther 2014; 11:767-76. [PMID: 23977933 DOI: 10.1586/14787210.2013.814767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fidaxomicin was approved for the treatment of Clostridium difficile infections in 2011. It has a novel mechanism of action and narrow spectrum of activity that makes it unique among the currently used therapies for this disease. Phase III clinical studies demonstrated a benefit of fidaxomicin over vancomycin for the outcomes of recurrence and global cure or sustained clinical response. This observation was confirmed within specific populations, including those of older age, immunocompromised due to active cancers, and patients taking concomitant antibiotics. Additionally, fidaxomicin significantly reduced recurrence rates compared to vancomycin among patients receiving treatment for recurrent C. difficile episodes. Fidaxomicin represents an advance in therapy for the treatment of C. difficile infections.
Collapse
Affiliation(s)
- Melinda M Soriano
- Department of Pharmacy Practice, The University of Illinois at Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
21
|
Juang P, Hardesty JS. Role of fidaxomicin for the treatment of Clostridium difficile infection. J Pharm Pract 2014; 26:491-7. [PMID: 24064437 DOI: 10.1177/0897190013499526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clostridium difficile is a gram-negative, anaerobic, spore-forming emerging pathogen within health care systems and community-based populations that has a high associated morbidity and mortality as well as cost for the health care system. Recent studies reported high rates of recurrence thus a need for new pharmacological agents to treat C difficile infections (CDIs). Fidaxomicin is a novel macrocyclic antibiotic, originally isolated from fermentation broth of Dactylosporangium aurantiacum spp Hamdenensis, with selective spectrum, unique pharmacokinetic and pharmacodynamics profile, adverse effect profile, efficacy, and role in the treatment of and time to recurrent CDI. Fidaxomicin data have similar clinical cure, when compared to vancomycin, with lower recurrence rates and higher global cure rates in non-BI/NAP1/027 strains. Fidaxomicin also lacks activity against gram-negative bacteria; hence, its potential effect on resistance development among enteric bacteria appears to be low. It appears to have minimal need for renal or hepatic adjustments and minimal concerns for drug-drug interactions. Overall, fidaxomicin has been generally well tolerated with the most common adverse effects reported as mild gastrointestinal complaints. Fidaxomicin appears to have a role in the treatment of CDI with potential lower rates of recurrence, especially in patients with severe disease or risk factors for recurrent CDI.
Collapse
Affiliation(s)
- Paul Juang
- Department of Pharmacy Practice, St Louis College of Pharmacy, St Louis, MO, USA
| | | |
Collapse
|
22
|
Blondeau JM. Macrocyclic antibiotics: a novel class of drug for the treatment ofClostridium difficileinfection. Expert Rev Clin Pharmacol 2014; 5:9-11. [DOI: 10.1586/ecp.11.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
|
24
|
Chaparro-Rojas F, Mullane KM. Emerging therapies for Clostridium difficile infection - focus on fidaxomicin. Infect Drug Resist 2013; 6:41-53. [PMID: 23843696 PMCID: PMC3702225 DOI: 10.2147/idr.s24434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The epidemiology of Clostridium difficile infections (CDI) has evolved during the last decades, with an increase in the reported incidence, severity of cases, and rate of mortality and relapses. These increases have primarily affected some special populations including the elderly, patients requiring concomitant antibiotic therapy, patients with renal failure, and patients with cancer. Until recently, the treatment of CDI was limited to either metronidazole or vancomycin. New therapeutic options have emerged to address the shortcomings of current antibiotic therapy. Fidaxomicin stands out as the first-in-class oral macrocyclic antibiotic with targeted activity against C. difficile and minimal collateral damage on the normal colonic flora. Fidaxomicin has demonstrated performance not inferior to what is considered the "gold standard" available therapy for CDI, vancomycin, in two separate Phase III clinical trials, but with significant advantages, including fewer recurrences and higher rates of sustained clinical cures. Fidaxomicin constitutes an important development in targeted antibiotic therapy for CDI and must be considered as a first-line agent for patients with risk factors known to portend relapse and severe infection.
Collapse
Affiliation(s)
- Fredy Chaparro-Rojas
- Department of Medicine, Section of Infectious Diseases, University of Chicago, Chicago, IL, USA
| | - Kathleen M Mullane
- Department of Medicine, Section of Infectious Diseases, University of Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Brodszky V, Gulácsi L, Ludwig E, Prinz G, Banai J, Reményi P, Strbák B, Kertész A, Kopcsóné Németh I, Zsoldiné Urbán E, Baji P, Péntek M. [Antimicrobial therapy of Clostridium difficile infection. Systematic review and meta-analysis of the scientific evidence]. Orv Hetil 2013; 154:890-9. [PMID: 23728312 DOI: 10.1556/oh.2013.29627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Clostridium difficile is the leading cause of antibiotic associated infectious nosocomial diarrhoea. Limited number of new pharmaceutical products have been developed and registered in the past decades for the treatment of Clostridium difficile infection. The available scientific evidence is limited and hardly comparable. AIM To analyse the clinical efficacy and safety of metronidazole, vancomycin and fidaxomicin in the therapy of Clostridium difficile infection. METHODS Systematic review and meta-analysis of the literature data. RESULTS Meta-analysis of literature data showed no significant difference between these antibiotics in clinical cure endpoint (odss ratios: fidaxomicin vs. vancomycin 1.19; vancomycin vs. metronidazol 1.69 and fidaxomicin vs. metronidazol 2.00). However, fidaxomicin therapy was significantly more effective than vancomicin and metronidazol in endpoints of recurrence and global cure (odds ratios: fidaxomicin vs. vancomycin 0.47; vancomycin vs. metronidazol 0.91 és fidaxomicin vs. metronidazol 0.43). There was no significant difference between fidaxomicin, vancomycin and metronidazole in safety endpoints. CONCLUSIONS Each antibiotic similarly improved clinical cure. Fidaxomicin was the most effective therapeutic alternative in lowering the rate of recurrent Clostridium difficile infections.
Collapse
Affiliation(s)
- Valentin Brodszky
- Budapesti Corvinus Egyetem Egészség-gazdaságtani és Egészségügyi Technológiaelemzési Kutatóközpont, Budapest, Fővám tér 8. 1093.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hostler CJ, Chen LF. Fidaxomicin for treatment of clostridium difficile-associated diarrhea and its potential role for prophylaxis. Expert Opin Pharmacother 2013; 14:1529-36. [DOI: 10.1517/14656566.2013.802307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Sears P, Ichikawa Y, Ruiz N, Gorbach S. Advances in the treatment ofClostridium difficilewith fidaxomicin: a narrow spectrum antibiotic. Ann N Y Acad Sci 2013; 1291:33-41. [DOI: 10.1111/nyas.12135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pamela Sears
- Optimer Pharmaceuticals, Inc; San Diego California
| | | | - Nancy Ruiz
- Optimer Pharmaceuticals, Inc; San Diego California
| | | |
Collapse
|
28
|
Hüsecken K, Negri M, Fruth M, Boettcher S, Hartmann RW, Haupenthal J. Peptide-based investigation of the Escherichia coli RNA polymerase σ(70):core interface as target site. ACS Chem Biol 2013; 8:758-66. [PMID: 23330640 DOI: 10.1021/cb3005758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The number of bacterial strains that are resistant against antibiotics increased dramatically during the past decades. This fact stresses the urgent need for the development of new antibacterial agents with novel modes of action targeting essential enzymes such as RNA polymerase (RNAP). Bacterial RNAP is a large multi-subunit complex consisting of a core enzyme (subunits: α(2)ββ'ω) and a dissociable sigma factor (σ(70); holo enzyme: α(2)ββ'ωσ(70)) that is responsible for promoter recognition and transcription initiation. The interface between core RNAP and σ(70) represents a promising binding site. Nevertheless, detailed studies investigating its druggability are rare. Compounds binding to this region could inhibit this protein-protein interaction and thus holo enzyme formation, resulting in inhibition of transcription initiation. Sixteen peptides covering different regions of the Escherichia coli σ(70):core interface were designed; some of them-all derived from σ(70) 2.2 region-led to a strong RNAP inhibition. Indeed, an ELISA-based experiment confirmed the most active peptide P07 to inhibit the σ(70):core interaction. Furthermore, an abortive transcription assay revealed that P07 impedes transcription initiation. In order to study the mechanism of action of P07 in more detail, molecular dynamics simulations and a rational amino acid replacement study were performed, leading to the conclusion that P07 binds to the coiled-coil region in β' and that its flexible N-terminus inhibits the enzyme by interaction with the β' lid-rudder-system (LRS). This work revisits the β' coiled-coil as a hot spot for the protein-protein interaction inhibition and expands it by introduction of the LRS as target site.
Collapse
Affiliation(s)
- Kristina Hüsecken
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Martina Fruth
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Stefan Boettcher
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Rolf W. Hartmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Joerg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| |
Collapse
|
29
|
Rodríguez-Pardo D, Mirelis B, Navarro F. Infecciones producidas por Clostridium difficile. Enferm Infecc Microbiol Clin 2013; 31:254-63. [DOI: 10.1016/j.eimc.2012.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 01/05/2023]
|
30
|
Gerding DN, Johnson S. Does infection with specific Clostridium difficile strains or clades influence clinical outcome? Clin Infect Dis 2013; 56:1601-3. [PMID: 23463642 DOI: 10.1093/cid/cit133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Arora V, Shah D, Garey K. Overview of Clostridium difficileInfection as an Emerging Health Care Facility–Acquired Infection. Hosp Pharm 2013. [DOI: 10.1310/hpj4802-s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Erb W, Zhu J. From natural product to marketed drug: the tiacumicin odyssey. Nat Prod Rep 2013; 30:161-74. [DOI: 10.1039/c2np20080e] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Nerandzic MM, Mullane K, Miller MA, Babakhani F, Donskey CJ. Reduced acquisition and overgrowth of vancomycin-resistant enterococci and Candida species in patients treated with fidaxomicin versus vancomycin for Clostridium difficile infection. Clin Infect Dis 2012; 55 Suppl 2:S121-6. [PMID: 22752860 PMCID: PMC3388028 DOI: 10.1093/cid/cis440] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fidaxomicin causes less disruption of anaerobic microbiota during treatment of Clostridium difficile infection (CDI) than vancomycin and has activity against many vancomycin-resistant enterococci (VRE). In conjunction with a multicenter randomized trial of fidaxomicin versus vancomycin for CDI treatment, we tested the hypothesis that fidaxomicin promotes VRE and Candida species colonization less than vancomycin. Stool was cultured for VRE and Candida species before and after therapy. For patients with negative pretreatment cultures, the incidence of VRE and Candida species acquisition was compared. For those with preexisting VRE, the change in concentration during treatment was compared. The susceptibility of VRE isolates to fidaxomicin was assessed. Of 301 patients, 247 (82%) had negative VRE cultures and 252 (84%) had negative Candida species cultures before treatment. In comparison with vancomycin-treated patients, fidaxomicin-treated patients had reduced acquisition of VRE (7% vs 31%, respectively; P < .001) and Candida species (19% vs 29%, respectively; P = .03). For patients with preexisting VRE, the mean concentration decreased significantly in the fidaxomicin group (5.9 vs 3.8 log10 VRE/g stool; P = .01) but not the vancomycin group (5.3 vs 4.2 log10 VRE/g stool; P = .20). Most VRE isolates recovered after fidaxomicin treatment had elevated fidaxomicin minimum inhibitory concentrations (MICs; MIC90, 256 µg/mL), and subpopulations of VRE with elevated fidaxomicin MICs were common before therapy. Fidaxomicin was less likely than vancomycin to promote acquisition of VRE and Candida species during CDI treatment. However, selection of preexisting subpopulations of VRE with elevated fidaxomicin MICs was common during fidaxomicin therapy. Clinical Trials Registration. NCT00314951.
Collapse
Affiliation(s)
- Michelle M Nerandzic
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
34
|
Weiss K, Allgren RL, Sellers S. Safety analysis of fidaxomicin in comparison with oral vancomycin for Clostridium difficile infections. Clin Infect Dis 2012; 55 Suppl 2:S110-5. [PMID: 22752858 PMCID: PMC3388027 DOI: 10.1093/cid/cis390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Fidaxomicin is a novel macrocyclic antibiotic recently approved by the US Food and Drug Administration for the treatment of Clostridium difficile–associated diarrhea in adults. We reviewed safety data from nonclinical studies and clinical trials (phases 1, 2A, and 3) with fidaxomicin. In nonclinical studies, fidaxomicin was administered orally at approximately 1 g/kg/d to dogs for up to 3 months with no significant target-organ toxicities observed. A total of 728 adults have received oral fidaxomicin in clinical trials to date: 116 healthy volunteers and 612 patients with C. difficile infection. In phase 3 clinical trials, fidaxomicin was well tolerated, with a safety profile comparable with oral vancomycin. There were no differences in the incidence of death or serious adverse events between the 2 drugs. Fidaxomicin appears to be well tolerated. Continued monitoring of adverse events in the postmarketing setting will provide additional information about the full safety profile of fidaxomicin.
Collapse
Affiliation(s)
- Karl Weiss
- Department of Infectious Diseases and Microbiology, Maisonneuve-Rosemont Hospital, Faculty of Medicine, University of Montreal, Quebec, Canada.
| | | | | |
Collapse
|
35
|
Louie TJ, Cannon K, Byrne B, Emery J, Ward L, Eyben M, Krulicki W. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin Infect Dis 2012; 55 Suppl 2:S132-42. [PMID: 22752862 PMCID: PMC3388020 DOI: 10.1093/cid/cis338] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The microflora-sparing properties of fidaxomicin were examined during the conduct of a randomized clinical trial comparing vancomycin 125 mg 4 times per day versus fidaxomicin 200 mg twice per day for 10 days as treatment of Clostridium difficile infection (CDI). Fecal samples were obtained from 89 patients (45 received fidaxomicin, and 44 received vancomycin) at study entry and on days 4, 10, 14, 21, 28, and 38 for quantitative cultures for C. difficile and cytotoxin B fecal filtrate concentrations. Additionally, samples from 10 patients, each receiving vancomycin or fidaxomicin, and 10 samples from healthy controls were analyzed by quantitative real-time polymerase chain reaction with multiple group-specific primers to evaluate the impact of antibiotic treatment on the microbiome. Compared with controls, patients with CDI at study entry had counts of major microbiome components that were 2-3-log(10) colony-forming units (CFU)/g lower. In patients with CDI, fidaxomicin allowed the major components to persist, whereas vancomycin was associated with a further 2-4-log(10) CFU reduction of Bacteroides/Prevotella group organisms, which persisted to day 28 of the study, and shorter term and temporary suppression of both Clostridium coccoides and Clostridium leptum group organisms. In the posttreatment period, C. difficile counts similarly persisted in both study populations, but reappearance of toxin in fecal filtrates was observed in 28% of vancomycin-treated patient samples (29 of 94), compared with 14% of fidaxomicin-treated patient samples (13 of 91; P = .03). Similarly, 23% of vancomycin-treated patients (10 of 44) and 11% of fidaxomicin-treated patients (5 of 44) had recurrence of CDI. Whereas vancomycin and fidaxomicin are equally effective in resolving CDI symptoms, preservation of the microflora by fidaxomicin is associated with a lower likelihood of CDI recurrence.
Collapse
Affiliation(s)
- Thomas J Louie
- Department of Medicine, University of Calgary, Foothills Medical Center, 1403 29th St NW, Calgary, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Fidaxomicin is bactericidal against Clostridium difficile. The combined results of 8 in vitro studies of 1323 C. difficile isolates showed the minimum inhibitory concentration (MIC) range of fidaxomicin to be ≤0.001–1 μg/mL, with a maximum MIC for inhibition of 90% of organisms (MIC90) of 0.5 μg/mL. Isolates from 2 phase III clinical trials demonstrated that fidaxomicin MICs of baseline isolates did not predict clinical cure, failure, or recurrence of C. difficile infections. No resistance to fidaxomicin developed during treatment in either study, although a single strain recovered from a cured patient had an elevated MIC of 16 µg/mL at the time of recurrence. For 135 strains, OP-1118, a major metabolite, had an MIC for inhibition of 50% of organisms of 4 μg/mL and an MIC90 of 8 μg/mL. Changes in inoculum size (102–105 colony-forming units/spot) or cation concentrations of calcium or magnesium appeared to have no effect on fidaxomicin MICs. Fidaxomicin has little or no activity against gram-negative aerobes and anaerobes or yeast.
Collapse
|
37
|
Sears P, Crook DW, Louie TJ, Miller MA, Weiss K. Fidaxomicin attains high fecal concentrations with minimal plasma concentrations following oral administration in patients with Clostridium difficile infection. Clin Infect Dis 2012; 55 Suppl 2:S116-20. [PMID: 22752859 PMCID: PMC3388019 DOI: 10.1093/cid/cis337] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fidaxomicin has recently been approved for the treatment of Clostridium difficile infection (CDI). As part of phase III studies, plasma and fecal samples were analyzed for concentrations of fidaxomicin and its metabolite, OP-1118. Plasma samples were collected before and after dose receipt on the first and last days of therapy, and fecal samples were collected on the last day of therapy. Samples were analyzed for fidaxomicin and OP-1118 (metabolite), using validated liquid chromatography/tandem mass spectrometric methods. Plasma concentrations were low for both fidaxomicin (mean [± standard deviation {SD}], 22.8 ± 26.7 ng/mL and 28.5 ± 33.4 ng/mL on the first and last days of therapy, respectively) and OP-1118 (mean [±SD], 44.5 ± 50.4 ng/mL and 85.6 ± 131 ng/mL, respectively). In contrast, fecal levels were >1000 µg/g for fidaxomicin and >800 µg/g for OP-1118. Fidaxomicin mean fecal levels were >5000 times the minimum inhibitory concentration for C. difficile of 0.25 µg/mL.
Collapse
Affiliation(s)
- Pamela Sears
- Optimer Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | | | | | | | |
Collapse
|
38
|
Golan Y, Epstein L. Safety and efficacy of fidaxomicin in the treatment of Clostridium difficile-associated diarrhea. Therap Adv Gastroenterol 2012; 5:395-402. [PMID: 23152733 PMCID: PMC3491684 DOI: 10.1177/1756283x12461294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile-associated diarrhea (CDAD) is the most common cause of healthcare-associated diarrhea. The current recommended treatment regimens of metronidazole and vancomycin have not changed in nearly 25 years. Fidaxomicin, an exceedingly narrow spectrum macrolide antibiotic, was recently approved for the treatment of CDAD. In phase III clinical trials, fidaxomicin was noninferior to vancomycin in achieving clinical cure of CDAD. Furthermore, fidaxomicin was associated with fewer recurrences of CDAD compared with vancomycin in clinical trials. These results, combined with the ease of administration and a good safety profile, make fidaxomicin an attractive treatment option for treating CDAD.
Collapse
Affiliation(s)
- Yoav Golan
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Lauren Epstein
- Division of Geographic Medicine and Infectious Disease, Department of Medicine, Tufts Medical Center, 800 Washington St. #238, Boston, MA 02446, USA
| |
Collapse
|
39
|
Crawford T, Huesgen E, Danziger L. Fidaxomicin: a novel macrocyclic antibiotic for the treatment of Clostridium difficile infection. Am J Health Syst Pharm 2012; 69:933-43. [PMID: 22610025 DOI: 10.2146/ajhp110371] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The pharmacology, clinical efficacy, safety, dosage and administration, and place in therapy of fidaxomicin for the treatment of Clostridium difficile infection (CDI) are reviewed. SUMMARY Fidaxomicin, a macrocyclic antibiotic, has a narrow spectrum of activity against gram-positive anaerobes and is bactericidal against C. difficile. It has no activity against gram-negative bacteria. Fidaxomicin has minimal activity against Bacteroides species, which may be advantageous in maintaining colonization resistance and protecting the gastrointestinal tract from colonization by C. difficile. The minimum inhibitory concentration for 90% of organisms for fidaxomicin against C. difficile ranged from 0.0078 to 2 μg/mL in in vitro studies. After oral administration, fecal concentrations are detected and are directly proportional to the dose administered. Fidaxomicin resistance in vivo has not been reported. In clinical trials, fidaxomicin has been shown to be noninferior to vancomycin in the management of mild-to-moderately severe CDI. The adverse-effect profile of fidaxomicin is comparable to that of vancomycin. The recommended dosage for treatment of CDI is fidaxomicin 200 mg orally twice daily for 10 days. Fidaxomicin should be considered for patients who previously received treatment with metronidazole or vancomycin for CDI and who are diagnosed with recurrent CDI in which a non-NAP1/BI/027 strain is isolated. At institutions where strain typing is not available, fidaxomicin may be considered in patients with recurrent CDI who have not responded to treatment with the regimen used for the first episode of CDI. CONCLUSION Fidaxomicin is a well-tolerated agent for the treatment of CDI and has been shown to be noninferior to vancomycin in the management of mild-to-moderately severe CDI.
Collapse
Affiliation(s)
- Tonya Crawford
- Center for Advanced Design, Research, and Exploration, University of Illinois at Chicago, Chicago, USA
| | | | | |
Collapse
|
40
|
Johnson AP, Wilcox MH. Fidaxomicin: a new option for the treatment of Clostridium difficile infection. J Antimicrob Chemother 2012; 67:2788-92. [DOI: 10.1093/jac/dks302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
41
|
Abstract
Non-systemic drugs act within the intestinal lumen without reaching the systemic circulation. The first generation included polymeric resins that sequester phosphate ions, potassium ions, or bile acids for the treatment of electrolyte imbalances or hypercholesteremia. The field has evolved towards non-absorbable small molecules or peptides targeting luminal enzymes or transporters for the treatment of mineral metabolism disorders, diabetes, gastrointestinal (GI) disorders, and enteric infections. From a drug design and development perspective, non-systemic agents offer novel opportunities to address unmet medical needs while minimizing toxicity risks, but also present new challenges, including developing a better understanding and control of non-transcellular leakage pathways into the systemic circulation. The pharmacokinetic-pharmacodynamic relationship of drugs acting in the GI tract can be complex due to the variability of intestinal transit, interaction with chyme, and the complex environment of the surface epithelia. We review the main classes of nonabsorbable agents at various stages of development, and their therapeutic potential and limitations. The rapid progress in the identification of intestinal receptors and transporters, their functional characterization and role in metabolic and inflammatory disorders, will undoubtedly renew interest in the development of novel, safe, non-systemic therapeutics.
Collapse
|
42
|
Zhang SJ, Yang Q, Xu L, Chang J, Sun X. Synthesis and antibacterial activity against Clostridium difficile of novel demethylvancomycin derivatives. Bioorg Med Chem Lett 2012; 22:4942-5. [PMID: 22765891 DOI: 10.1016/j.bmcl.2012.06.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 12/12/2022]
Abstract
To explore the structure-activity relationships (SAR) of demethylvancomycin (2) and find more effective new chemical entities than known glycopeptides for the treatment of Clostridium difficile (C. difficile), 17 novel N-substituted (N-arylmethylene or -aliphatic substituents) demethylvancomycin derivatives were prepared. These analogues have been evaluated in vitro for their antibacterial activities against C. difficile and Enterococcus faecium (E. faecium). Compounds 5d, 5h, and 5i with N-arylmethylene substituents, structurally similar to Oritavancin, showed more potent antibacterial activity against C. difficile than vancomycin (1) or demethylvancomycin (2). Meanwhile, compound 5k with an undecyl side chain showed the most potent antibacterial activity against E. faecium (vancomycin-resistant strain).
Collapse
Affiliation(s)
- Si-Ji Zhang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
43
|
Kim J, Pai H, Seo MR, Kang JO. Clinical and microbiologic characteristics of tcdA-negative variant Clostridium difficile infections. BMC Infect Dis 2012; 12:109. [PMID: 22571633 PMCID: PMC3420311 DOI: 10.1186/1471-2334-12-109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/09/2012] [Indexed: 01/05/2023] Open
Abstract
Background The tcdA-negative variant (A-B+) of Clostridium difficile is prevalent in East Asian countries. However, the risk factors and clinical characteristics of A-B+C. difficile infections (CDI) are not clearly documented. The objective of this study was to investigate these characteristics. Methods From September 2008 through January 2010, the clinical characteristics, medication history and treatment outcomes of CDI patients were recorded prospectively. Toxin characterization and antibiotic susceptibility tests were performed on stool isolates of C. difficile. Results During the study period, we identified 22 cases of CDI caused by tcdA-negative tcdB-positive (A-B+) strains and 105 cases caused by tcdA-positive tcdB-positive (A+B+) strains. There was no significant difference in disease severity or clinical characteristics between the two groups. Previous use of clindamycin and young age were identified as significant risk factors for the acquisition of A-B+ CDI (OR = 4.738, 95% CI 1.48–15.157, p = 0.009 and OR = 0.966, 95% CI 0.935–0.998, p = 0.038, respectively) in logistic regression. Rates of resistance to clindamycin were 100% and 69.6% in the A-B+ and A+B+ isolates, respectively (p = 0.006), and the ermB gene was identified in 17 of 21 A-B+ isolates (81%). Resistance to moxifloxacin was also more frequent in the A-B+ than in the A+B+ isolates (95.2% vs. 63.7%, p = 0.004). Conclusions The clinical course of A-B+ CDI is not different from that of A+B+ CDI. Clindamycin use is a significant risk factor for the acquisition of tcdA-negative variant strains.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
44
|
Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012; 51:4024-45. [PMID: 22441768 DOI: 10.1002/anie.201104384] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Indexed: 12/18/2022]
Abstract
Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved.
Collapse
Affiliation(s)
- Mattias E Ivarsson
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, Zurich, Switzerland
| | | | | |
Collapse
|
45
|
|
46
|
Cornely OA, Crook DW, Esposito R, Poirier A, Somero MS, Weiss K, Sears P, Gorbach S. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2012; 12:281-9. [PMID: 22321770 DOI: 10.1016/s1473-3099(11)70374-7] [Citation(s) in RCA: 552] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Infection with Clostridium difficile is the primary infective cause of antibiotic-associated diarrhoea. We aimed to compare efficacy and safety of fidaxomicin and vancomycin to treat patients with C difficile infection in Europe, Canada, and the USA. METHODS In this multicentre, double-blind, randomised, non-inferiority trial, we enrolled patients from 45 sites in Europe and 41 sites in the USA and Canada between April 19, 2007, and Dec 11, 2009. Eligible patients were aged 16 years or older with acute, toxin-positive C difficile infection. Patients were randomly allocated (1:1) to receive oral fidaxomicin (200 mg every 12 h) or oral vancomycin (125 mg every 6 h) for 10 days. The primary endpoint was clinical cure, defined as resolution of diarrhoea and no further need for treatment. An interactive voice-response system and computer-generated randomisation schedule gave a randomisation number and medication kit number for each patient. Participants and investigators were masked to treatment allocation. Non-inferiority was prespecified with a margin of 10%. Modified intention-to-treat and per-protocol populations were analysed. This study is registered with ClinicalTrials.gov, number NCT00468728. FINDINGS Of 535 patients enrolled, 270 were assigned fidaxomicin and 265 vancomycin. After 26 patients were excluded, 509 were included in the modified intention-to-treat (mITT) population. 198 (91·7%) of 216 patients in the per-protocol population given fidaxomicin achieved clinical cure, compared with 213 (90·6%) of 235 given vancomycin, meeting the criterion for non-inferiority (one-sided 97·5% CI -4·3%). Non-inferiority was also shown for clinical cure in the mITT population, with 221 (87·7%) of 252 patients given fidaxomicin and 223 (86·8%) of 257 given vancomycin cured (one-sided 97·5% CI -4·9%). In most subgroup analyses of the primary endpoint in the mITT population, outcomes in the two treatment groups did not differ significantly; although patients receiving concomitant antibiotics for other infections had a higher cure rate with fidaxomicin (46 [90·2%] of 51) than with vancomycin (33 [73·3%] of 45; p=0·031). Occurrence of treatment-emergent adverse events did not differ between groups. 20 (7·6%) of 264 patients given at least one dose of fidaxomicin and 17 (6·5%) of 260 given vancomycin died. INTERPRETATION Fidaxomicin could be an alternative treatment for infection with C difficile, with similar efficacy and safety to vancomycin. FUNDING Optimer Pharmaceuticals.
Collapse
|
47
|
Hardesty JS, Juang P. Fidaxomicin: a macrocyclic antibiotic for the treatment of Clostridium difficile infection. Pharmacotherapy 2012; 31:877-86. [PMID: 21923589 DOI: 10.1592/phco.31.9.877] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clostridium difficile is an emerging pathogen in certain health care systems and community-based populations that is associated with high rates of morbidity and mortality, as well as increased costs for the health care system. As recurrence rates increase, new pharmacologic agents to treat C. difficile infection are needed. Fidaxomicin, a novel macrocyclic antibiotic, was recently approved by the United States Food and Drug Administration for the treatment of C. difficile-associated diarrhea. Originally isolated from fermentation broth of Dactylosporangium aurantiacum subspecies hamdenensis, the drug has a selective spectrum, distinctive pharmacokinetic and pharmaco-dynamic properties, and a favorable adverse-effect profile. Fidaxomicin has demonstrated similar clinical cure rates (i.e., resolution of diarrhea) compared with vancomycin, with lower recurrence rates and higher global cure rates (i.e., resolution of diarrhea without recurrence) in non-restriction endonuclease analysis type BI, North American Pulsed Field type 1 (NAP1), polymerase chain reaction ribotype 027 (or non-BI/NAP1/027) strains. Overall, fidaxomicin has been generally well tolerated, with the most common adverse effects reported as mild gastrointestinal complaints. Fidaxomicin appears to be a useful agent in the treatment of severe C. difficile infection, demonstrating decreased rates of recurrence.
Collapse
Affiliation(s)
- Jennifer S Hardesty
- Department of Pharmacy Practice, St. Louis College of Pharmacy, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
48
|
Mullane KM, Gorbach S. Fidaxomicin: first-in-class macrocyclic antibiotic. Expert Rev Anti Infect Ther 2012; 9:767-77. [PMID: 21810048 DOI: 10.1586/eri.11.53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The incidence of Clostridium difficile has doubled over the past 15 years, and rising mortality rates associated with this infection have followed in its wake. C. difficile infection (CDI) has supplanted methicillin-resistant Staphylococcus aureus as the major cause of nosocomial infection. An insufficient response rate to currently available CDI therapies has prompted the search for new and alternative treatment modalities for this disease. The investigational pipeline includes evaluation of new antimicrobial agents that exhibit good activity against C. difficile without altering normal gut flora, C. difficile toxin-absorbing compounds, and preformed antibodies and vaccines against C. difficile toxin. In two robust clinical trials comparing fidaxomicin to vancomycin in the treatment of CDI, treatment with fidaxomicin demonstrated a superior global cure (cure without recurrence) rate compared with the current gold standard, vancomycin. Fidaxomicin, the first of a new class of macrocyclic antimicrobial agents, represents an advance in the management of CDI.
Collapse
|
49
|
Lancaster JW, Matthews SJ. Fidaxomicin: The Newest Addition to the Armamentarium Against Clostridium difficile Infections. Clin Ther 2012; 34:1-13. [DOI: 10.1016/j.clinthera.2011.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 01/05/2023]
|
50
|
Venugopal AA, Johnson S. Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of Clostridium difficile infection. Clin Infect Dis 2011; 54:568-74. [PMID: 22156854 DOI: 10.1093/cid/cir830] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fidaxomicin, a nonabsorbed macrocyclic compound, is the first antimicrobial agent approved by the FDA for the treatment of Clostridium difficile infection (CDI) in adults over the last 25 years. It is bactericidal, and its mechanism of action relates to inhibition of a RNA polymerase at a site distinct from where rifamycins interact. Fidaxomicin, 200 milligrams by mouth twice daily, is not inferior to vancomycin, 125 milligrams by mouth 4 times daily, for treatment of CDI as determined by clinical response after 10 days of treatment and is superior to vancomycin for sustained response without recurrence 25 days after treatment completion. These results are a significant advance in the treatment of CDI and herald the development of narrow-spectrum anti-C. difficile agents that relatively spare the indigenous fecal microbiota. Continued vigilance for the development of resistance and unanticipated side affects will be important as the drug is introduced into clinical practice.
Collapse
Affiliation(s)
- Anilrudh A Venugopal
- Division of Infectious Diseases, St John Hospital and Medical Center, Pointe Woods, Michigan 48236, USA.
| | | |
Collapse
|