1
|
Ma CX, Lv W, Li YX, Fan BZ, Han X, Kong FS, Tian JC, Cushman M, Liang JH. Design, synthesis and structure-activity relationships of novel macrolones: Hybrids of 2-fluoro 9-oxime ketolides and carbamoyl quinolones with highly improved activity against resistant pathogens. Eur J Med Chem 2019; 169:1-20. [PMID: 30852383 DOI: 10.1016/j.ejmech.2019.02.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022]
Abstract
Constitutively erythromycin-resistant apathogens are more difficult to address than inducibly resistant and efflux-resistant strains. Three series of the 4th generation 2-fluoro 9-oxime erythromycin ketolides were synthesized and evaluated. Incorporation of substituted heteroaryl groups (a - m), in contrast to previously reported the unsubstituted heteroaryl groups, proved to the beneficial for enhancement of the activities of the 9-propgargyl ketolide 8 series and the 9-allyl ketolide 14 series. But these aryl groups (a - m) cannot supply the resulting compounds 8 and 14, unlike corresponding the 6-allyl ketolide 20 series, with activity against constitutively resistant Streptococcus pneumoniae. However, hybrids of macrolides and quinolones (8, 14 and 20, Ar = n - t) exhibited not only high activities against susceptible, inducibly erm-mediated resistant, and efflux-mediated resistant strains, but also significantly improved potencies against constitutively resistant Streptococcus pneumoniae and Streptococcus pyogenes. The capacity was highlighted by introduction of newly designed carbamoyl quinolones (q, r, s and t) rather than commonly seen carboxy quinolones (o and p) as the pharmacophores. Structure-activity relationships and molecular modelling indicated that 8r, 14r and 20q may have different binding sites compared to current erythromycins. Moreover, 8r, 14r and 20q have 2.5-3.6 times prolonged half-life and 2.3- to 2.6-fold longer mean residence time in vivo over telithromycin. These findings pave the way for rational design of novel non-telithromycin macrolides that target new binding sites within bacterial ribosomes.
Collapse
Affiliation(s)
- Cong-Xuan Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, 47907, USA
| | - Ya-Xin Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bing-Zhi Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xu Han
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Fan-Sheng Kong
- Beijing Increasepharm Safety & Efficacy Co. Ltd, Beijing, 102206, China
| | - Jing-Chao Tian
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, 47907, USA
| | - Jian-Hua Liang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Synthesis and antibacterial activity of novel lincomycin derivatives. IV. Optimization of an N-6 substituent. J Antibiot (Tokyo) 2017; 70:1112-1121. [PMID: 29115289 DOI: 10.1038/ja.2017.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 11/08/2022]
Abstract
The design and synthesis of lincomycin derivatives modified at the C-6 and C-7 positions are described. A substituent at the C-7 position is a 5-aryl-1,3,4-thiadiazol-2-yl-thio group that generates antibacterial activities against macrolide-resistant Streptococcus pneumoniae and Streptococcus pyogenes carrying an erm gene. An additional modification at the C-6 position was explored in application of information regarding pirlimycin and other related compounds. These dual modifications were accomplished by using methyl α-thiolincosaminide as a starting material. As a result of these dual modifications, the antibacterial activities were improved compared with those of compounds with a single modification at the C-7 position. The antibacterial activities of selected compounds in this report against macrolide-resistant S. pneumoniae and S. pyogenes with an erm gene were superior to those of telithromycin.
Collapse
|
3
|
Kumura K, Wakiyama Y, Ueda K, Umemura E, Watanabe T, Yamamoto M, Yoshida T, Ajito K. Synthesis and antibacterial activity of novel lincomycin derivatives. III. Optimization of a phenyl thiadiazole moiety. J Antibiot (Tokyo) 2017; 71:ja201759. [PMID: 28676716 DOI: 10.1038/ja.2017.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/09/2017] [Accepted: 04/21/2017] [Indexed: 11/08/2022]
Abstract
Lincomycin derivatives that have a 5-(2-nitrophenyl)-1,3,4-thiadiazol-2-yl thio moiety at the 7-position were synthesized. 5-Substituted 2-nitrophenyl derivatives showed potent antibacterial activities against Streptococcus pneumoniae and Streptococcus pyogenes with erm gene. Antibacterial activities of the 4,5-di-substituted 2-nitrophenyl derivatives were generally comparable to those of telithromycin (TEL) against S. pneumoniae with erm gene and clearly superior to those of TEL against S. pyogenes with erm gene. Compounds 6 and 10c that have a methoxy group at the 5-position of the benzene ring exhibited activities comparable to TEL against Haemophilus influenzae. These results suggest that lincomycin derivatives modified at the 7-position would be promising compounds as a clinical candidate. We would like to dedicate this article to the special issue for late Professor Dr. Hamao Umezawa in The Journal of Antibiotics.The Journal of Antibiotics advance online publication, 5 July 2017; doi:10.1038/ja.2017.59.
Collapse
Affiliation(s)
- Ko Kumura
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | - Yoshinari Wakiyama
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | - Kazutaka Ueda
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | - Eijiro Umemura
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | - Takashi Watanabe
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | - Mikio Yamamoto
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | - Takuji Yoshida
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | - Keiichi Ajito
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| |
Collapse
|
4
|
Nature nurtures the design of new semi-synthetic macrolide antibiotics. J Antibiot (Tokyo) 2016; 70:527-533. [PMID: 27899792 PMCID: PMC5509991 DOI: 10.1038/ja.2016.137] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/26/2022]
Abstract
Erythromycin and its analogs are used to treat respiratory tract and other infections. The broad use of these antibiotics during the last 5 decades has led to resistance that can range from 20% to over 70% in certain parts of the world. Efforts to find macrolides that were active against macrolide-resistant strains led to the development of erythromycin analogs with alkyl-aryl side chains that mimicked the sugar side chain of 16-membered macrolides, such as tylosin. Further modifications were made to improve the potency of these molecules by removal of the cladinose sugar to obtain a smaller molecule, a modification that was learned from an older macrolide, pikromycin. A keto group was introduced after removal of the cladinose sugar to make the new ketolide subclass. Only one ketolide, telithromycin, received marketing authorization but because of severe adverse events, it is no longer widely used. Failure to identify the structure-relationship responsible for this clinical toxicity led to discontinuation of many ketolides that were in development. One that did complete clinical development, cethromycin, did not meet clinical efficacy criteria and therefore did not receive marketing approval. Work on developing new macrolides was re-initiated after showing that inhibition of nicotinic acetylcholine receptors by the imidazolyl-pyridine moiety on the side chain of telithromycin was likely responsible for the severe adverse events. Solithromycin is a fourth-generation macrolide that has a fluorine at the 2-position, and an alkyl-aryl side chain that is different from telithromycin. Solithromycin interacts at three sites on the bacterial ribosome, has activity against strains resistant to older macrolides (including telithromycin), and is mostly bactericidal. Pharmaceutical scientists involved in the development of macrolide antibiotics have learned from the teachings of Professor Satoshi Omura and progress in this field was not possible without his endeavors.
Collapse
|
5
|
Synthesis and antibacterial activity of novel 11-[3-[(arylcarbamoyl)oxy]propylamino]-11-deoxy-6-O-methyl-3-oxoerythromycin A 11-N,12-O-cyclic carbamate derivatives. J Antibiot (Tokyo) 2016; 69:811-817. [PMID: 27118243 DOI: 10.1038/ja.2016.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 11/08/2022]
Abstract
A series of novel 11-[3-[(arylcarbamoyl)oxy]propylamino]-11-deoxy-6-O-methyl-3-oxoerythromycin A 11-N,12-O-cyclic carbamate derivatives (6a-h) were designed, synthesized and evaluated for their antibacterial activities in vitro. Most of these compounds had significant antibacterial activity against two groups of pathogens of Methicillin-sensitive Staphylococcus aureus (MIC50=0.031-2 μg ml-1) except 6g and Methicillin-sensitive S. epidermidis (MIC50=0.031-0.5 μg ml-1). MIC90 of 6d against Methicillin-resistant S. epidermidis was at least 16-fold better than that of erythromycin (EMA), azithromycin (AZM) and ABT-773. 6d and 6e had more potent antibacterial activity against S. pneumoniae than EMA, AZM and ABT-773. In particular, compounds 6d and 6e also showed relatively potent activity against Haemophilus influenzae and Streptococcus hemolyticus.
Collapse
|
6
|
Solleti VS, Alhariri M, Halwani M, Omri A. Antimicrobial properties of liposomal azithromycin for Pseudomonas infections in cystic fibrosis patients. J Antimicrob Chemother 2014; 70:784-96. [DOI: 10.1093/jac/dku452] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Van Bambeke F. Renaissance of antibiotics against difficult infections: Focus on oritavancin and new ketolides and quinolones. Ann Med 2014; 46:512-29. [PMID: 25058176 DOI: 10.3109/07853890.2014.935470] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipoglycopeptide, ketolide, and quinolone antibiotics are currently in clinical development, with specific advantages over available molecules within their respective classes. The lipoglycopeptide oritavancin is bactericidal against MRSA, vancomycin-resistant enterococci, and multiresistant Streptococcus pneumoniae, and proved effective and safe for the treatment of acute bacterial skin and skin structure infection (ABSSSI) upon administration of a single 1200 mg dose (two completed phase III trials). The ketolide solithromycin (two phase III studies recruiting for community-acquired pneumonia) shows a profile of activity similar to that of telithromycin, but in vitro data suggest a lower risk of hepatotoxicity, visual disturbance, and aggravation of myasthenia gravis due to reduced affinity for nicotinic receptors. Among quinolones, finafloxacin and delafloxacin share the unique property of an improved activity in acidic environments (found in many infection sites). Finafloxacin (phase II completed; activity profile similar to that of ciprofloxacin) is evaluated for complicated urinary tract and Helicobacter pylori infections. The other quinolones (directed towards Gram-positive pathogens) show improved activity on MRSA and multiresistant S. pneumoniae compared to current molecules. They are in clinical evaluation for ABSSSI (avarofloxacin (phase II completed), nemonoxacin and delafloxacin (ongoing phase III)), respiratory tract infections (zabofloxacin and nemonoxacin (ongoing phase III)), or gonorrhea (delafloxacin).
Collapse
Affiliation(s)
- Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
8
|
Jacobsson S, Golparian D, Phan LT, Ohnishi M, Fredlund H, Or YS, Unemo M. In vitro activities of the novel bicyclolides modithromycin (EDP-420, EP-013420, S-013420) and EDP-322 against MDR clinical Neisseria gonorrhoeae isolates and international reference strains. J Antimicrob Chemother 2014; 70:173-7. [PMID: 25182063 DOI: 10.1093/jac/dku344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES New antimicrobials are essential to prevent gonorrhoea becoming an untreatable infection. Herein, the in vitro activities of the novel bicyclolides modithromycin (EDP-420, EP-013420, S-013420) and EDP-322 against Neisseria gonorrhoeae strains were investigated and compared with antimicrobials currently or previously recommended for treatment of gonorrhoea. METHODS MICs (mg/L) were determined using an agar dilution method (modithromycin and EDP-322) or Etest (seven antimicrobials) for a large geographically, temporally and genetically diverse collection of clinical N. gonorrhoeae isolates (n = 225) and international reference strains (n = 29), including diverse MDR and XDR isolates. RESULTS The MIC range, modal MIC, MIC50 and MIC90 of modithromycin and EDP-322 were 0.004-256, 0.25, 0.25 and 1 mg/L and 0.008-16, 0.5, 0.5 and 1 mg/L, respectively. The activities of modithromycin and EDP-322 were mainly superior to those of azithromycin and additional antimicrobials investigated. In general, there was no cross-resistance with other antimicrobials. CONCLUSIONS Modithromycin and EDP-322 exhibited high levels of in vitro activities against N. gonorrhoeae, including isolates resistant to azithromycin, cefixime, ceftriaxone, spectinomycin, ampicillin, tetracycline and ciprofloxacin. However, some cross-resistance with high-level azithromycin resistance (MIC = 4096 mg/L) was observed. Modithromycin and EDP-322 could be effective options for treatment of gonorrhoea, particularly for cases resistant to extended-spectrum cephalosporins and as a part of an antimicrobial combination therapy regimen. Nevertheless, it is important to detail the in vitro selection, in vivo emergence and mechanisms of resistance, pharmacokinetics/pharmacodynamics in humans and optimal dosing, and perform appropriate randomized controlled clinical trials.
Collapse
Affiliation(s)
- Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Ly T Phan
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | | | - Hans Fredlund
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Yat Sun Or
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| |
Collapse
|
9
|
Abstract
Ketolides are erythromycin A derivatives with a keto group replacing the cladinose sugar and an aryl-alkyl group attached to the lactone macrocycle. The aryl-alkyl extension broadens its antibacterial spectrum to include all pathogens responsible for community-acquired pneumonia (CAP): Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis as well as atypical pathogens (Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila). Ketolides have extensive tissue distribution, favorable pharmacokinetics (oral, once-a-day) and useful anti-inflammatory/immunomodulatory properties. Hence, they were considered attractive additions to established oral antibacterials (quinolones, β-lactams, second-generation macrolides) for mild-to-moderate CAP. The first ketolide to be approved, Sanofi-Aventis' telithromycin (RU 66647, HMR 3647, Ketek®), had tainted clinical development, controversial FDA approval and subsequent restrictions due to rare, irreversible hepatotoxicity that included deaths. Three additional ketolides progressed to non-inferiority clinical trials vis-à-vis clarithromycin for CAP. Abbott's cethromycin (ABT-773), acquired by Polymedix and subsequently by Advanced Life Sciences, completed Phase III trials, but its New Drug Application was denied by the FDA in 2009. Enanta's modithromycin (EDP-420), originally codeveloped with Shionogi (S-013420) and subsequently by Shionogi alone, is currently in Phase II in Japan. Optimer's solithromycin (OP-1068), acquired by Cempra (CEM-101), is currently in Phase III. Until this hepatotoxicity issue is resolved, ketolides are unlikely to replace established antibacterials for CAP, or lipoglycopeptides and oxazolidinones for gram-positive infections.
Collapse
|
10
|
Pharmacodynamic profiling of modithromycin: assessment in a pneumococcal murine pneumonia model. Int J Antimicrob Agents 2014; 43:540-6. [PMID: 24703590 DOI: 10.1016/j.ijantimicag.2014.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 11/23/2022]
Abstract
The pharmacodynamic profile of modithromycin (EDP-420, EP-013420, S-013420), a novel bicyclolide, was evaluated in a neutropenic pneumococcal murine pneumonia model. Streptococcus pneumoniae median minimum inhibitory concentrations (MICs) for five genotypically diverse isolates ranged from 0.016 μg/mL to 0.125 μg/mL and were unaffected by macrolide or penicillin resistance determinants. The modithromycin dosing regimens (total daily doses of 3.125-1000 mg/kg/day) were derived from the pharmacokinetic profile of the compound in infected mice and were selected to produce a wide range of exposures. Dose-response relationships characterised using the Emax model demonstrated high correlations both with the ratio of the area under the concentration-time curve to MIC (AUC/MIC) and the ratio of the maximum drug concentration to MIC (Cmax/MIC). However, dose fractionation studies suggest that the AUC/MIC is the predominant driver of in vivo efficacy. The free drug AUC/MIC (fAUC/MIC) required for stasis and for 80% of maximum activity ranged from 4 to 53 and 25-99, respectively. The fAUC/MIC needed to achieve a 1 log reduction in bacterial density, which is a conventional measure of the required exposure in man to reliably predict efficacy, ranged from 9 to 69. These data demonstrate the in vitro and in vivo potency of modithromycin against S. pneumoniae irrespective of its phenotypic profile to the macrolides or penicillin.
Collapse
|
11
|
A novel ketolide, RBx 14255, with activity against multidrug-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 2014; 58:4283-9. [PMID: 24550341 DOI: 10.1128/aac.01589-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present here the novel ketolide RBx 14255, a semisynthetic macrolide derivative obtained by the derivatization of clarithromycin, for its in vitro and in vivo activities against sensitive and macrolide-resistant Streptococcus pneumoniae. RBx 14255 showed excellent in vitro activity against macrolide-resistant S. pneumoniae, including an in-house-generated telithromycin-resistant strain (S. pneumoniae 3390 NDDR). RBx 14255 also showed potent protein synthesis inhibition against telithromycin-resistant S. pneumoniae 3390 NDDR. The binding affinity of RBx 14255 toward ribosomes was found to be more than that for other tested drugs. The in vivo efficacy of RBx 14255 was determined in murine pulmonary infection induced by intranasal inoculation of S. pneumoniae ATCC 6303 and systemic infection with S. pneumoniae 3390 NDDR strains. The 50% effective dose (ED50) of RBx 14255 against S. pneumoniae ATCC 6303 in a murine pulmonary infection model was 3.12 mg/kg of body weight. In addition, RBx 14255 resulted in 100% survival of mice with systemic infection caused by macrolide-resistant S. pneumoniae 3390 NDDR at 100 mg/kg four times daily (QID) and at 50 mg/kg QID. RBx 14255 showed favorable pharmacokinetic properties that were comparable to those of telithromycin.
Collapse
|
12
|
Response of Different Antibiotic Resistant Group of Streptococcus pyogenes to Environmental Stresses. Indian J Microbiol 2013; 52:354-9. [PMID: 23997324 DOI: 10.1007/s12088-012-0273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022] Open
Abstract
Streptococcus species is considered as an important pathogen for human and animals. The antibiotic resistance mechanism in this species is continuously increased. On the other side, the tolerance of environmental stresses play an effective role in the severity of many streptococcal causative disease. In this study we assayed survey on the causative agents of pharyngitis and tonsillitis patients. The predominant causative strain was Streptococcus pyogenes with 93 % isolating ratio frequency. The other pathogenic species were S. agalactia 5.3 % and S. pneumonia 1.7 %. According to the antibiotic resistant test the S. pyogenes isolates were classified into six different groups. A selected strain from each antibiotic resistant group was tested for tolerance of a restrictive environmental factors. The variations of the environmental niches of isolates were in consistence with their antibiotic resistant variation.
Collapse
|
13
|
Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother 2013; 57:2694-704. [PMID: 23545534 DOI: 10.1128/aac.00235-13] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigated the efficacy and safety of liposomal clarithromycin formulations with different surface charges against clinical isolates of Pseudomonas aeruginosa from the lungs of cystic fibrosis (CF) patients. The liposomal clarithromycin formulations were prepared by the dehydration-rehydration method, and their sizes were measured using the dynamic-light-scattering technique. Encapsulation efficiency was determined by microbiological assay, and the stabilities of the formulations in biological fluid were evaluated for a period of 48 h. The MICs and minimum bactericidal concentrations (MBCs) of free and liposomal formulations were determined with P. aeruginosa strains isolated from CF patients. Liposomal clarithromycin activity against biofilm-forming P. aeruginosa was compared to that of free antibiotic using the Calgary Biofilm Device (CBD). The effects of subinhibitory concentrations of free and liposomal clarithromycin on bacterial virulence factors and motility on agar were investigated on clinical isolates of P. aeruginosa. The cytotoxicities of the liposome preparations and free drug were evaluated on a pulmonary epithelial cell line (A549). The average diameter of the formulations was >222 nm, with encapsulation efficiencies ranging from 5.7% to 30.4%. The liposomes retained more than 70% of their drug content during the 48-h time period. The highly resistant strains of P. aeruginosa became susceptible to liposome-encapsulated clarithromycin (MIC, 256 mg/liter versus 8 mg/liter; P < 0.001). Liposomal clarithromycin reduced the bacterial growth within the biofilm by 3 to 4 log units (P < 0.001), significantly attenuated virulence factor production, and reduced bacterial twitching, swarming, and swimming motilities. The clarithromycin-entrapped liposomes were less cytotoxic than the free drug (P < 0.001). These data indicate that our novel formulations could be a useful strategy to enhance the efficacy of clarithromycin against resistant P. aeruginosa strains that commonly affect individuals with cystic fibrosis.
Collapse
|
14
|
McCusker KP, Fujimori DG. The chemistry of peptidyltransferase center-targeted antibiotics: enzymatic resistance and approaches to countering resistance. ACS Chem Biol 2012; 7:64-72. [PMID: 22208312 DOI: 10.1021/cb200418f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The continued ability to treat bacterial infections requires effective antibiotics. The development of new therapeutics is guided by knowledge of the mechanisms of action of and resistance to these antibiotics. Continued efforts to understand and counteract antibiotic resistance mechanisms at a molecular level have the potential to direct development of new therapeutic strategies in addition to providing insight into the underlying biochemical functions impacted by antibiotics. The interaction of antibiotics with the peptidyltransferase center and adjacent exit tunnel within the bacterial ribosome is the predominant mechanism by which antibiotics impede translation, thus stalling growth. Resistance enzymes catalyze the chemical modification of the RNA that composes these functional regions, leading to diminished binding of antibiotics. This review discusses recent advances in the elucidation of chemical mechanisms underlying resistance and driving the development of new antibiotics.
Collapse
Affiliation(s)
- Kevin P. McCusker
- Department of Cellular and Molecular Pharmacology and ‡Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th St, MC2280, San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology and ‡Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th St, MC2280, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Abstract
There are 19 compounds in late-stage clinical trials, of which ten may be suitable for Gram-positive infections. However, there are only five compounds in development for Gram-negative infections, in addition to four broad-spectrum ones. There are two new classes in late-stage clinical development. This chapter discusses in some detail each of the antibiotics in Phase II and Phase III clinical trials. Only those that appear in the literature are covered. The shortage of compounds in development for Gram-negatives and the small number of new classes in the pipeline is of serious concern; this matter needs to be addressed by governments, the regulatory authorities, the pharmaceutical industry and academia urgently.
Collapse
|
16
|
In vitro intracellular activity and in vivo efficacy of modithromycin, a novel bicyclolide, against Legionella pneumophila. Antimicrob Agents Chemother 2011; 55:1594-7. [PMID: 21220530 DOI: 10.1128/aac.01474-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro and in vivo activities of modithromycin, a novel bicyclolide, against Legionella pneumophila were compared with those of telithromycin, clarithromycin, azithromycin, and levofloxacin. All the test agents decreased the intracellular growth of viable L. pneumophila bacteria over 96 h of incubation in both types of cells used, A/J mouse-derived macrophages and A549 human alveolar epithelial cells, at extracellular concentrations of 4× and 16× MIC, respectively. However, when the agents were removed from the medium after exposure for 2 h, regrowth of intracellular bacteria occurred in both cell systems when they were exposed to telithromycin, clarithromycin, and levofloxacin but not when they were exposed to modithromycin and azithromycin. Once-daily administration of modithromycin at a dose of 10 mg/kg of body weight for 5 days led to a significant decrease of intrapulmonary viable L. pneumophila bacteria in immunosuppressed A/J mice. The efficacy of modithromycin was superior to the efficacies of telithromycin and clarithromycin and comparable to the efficacies of azithromycin and levofloxacin. In addition, modithromycin and azithromycin inhibited the intrapulmonary regrowth of bacteria even at 72 h after the last treatment, but telithromycin and levofloxacin did not. These results suggested that modithromycin has longer-lasting cellular pharmacokinetic features like azithromycin. In conclusion, modithromycin, as well as azithromycin, has excellent in vitro and in vivo bactericidal activities and persistent efficacy against intracellular L. pneumophila. Modithromycin should be a useful agent for treatment of pulmonary infections caused by this pathogen.
Collapse
|