1
|
Bédard C, Gagnon-Arsenault I, Boisvert J, Plante S, Dubé AK, Pageau A, Fijarczyk A, Sharma J, Maroc L, Shapiro RS, Landry CR. Most azole resistance mutations in the Candida albicans drug target confer cross-resistance without intrinsic fitness cost. Nat Microbiol 2024; 9:3025-3040. [PMID: 39379635 DOI: 10.1038/s41564-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
Azole antifungals are the main drugs used to treat fungal infections. Amino acid substitutions in the drug target Erg11 (Cyp51) are a common resistance mechanism in pathogenic yeasts. How many and which mutations confer resistance is, however, largely unknown. Here we measure the impact of nearly 4,000 amino acid variants of Candida albicans Erg11 on the susceptibility to six clinical azoles. This was achieved by deep mutational scanning of CaErg11 expressed in Saccharomyces cerevisiae. We find that a large fraction of mutations lead to resistance (33%), most resistance mutations confer cross-resistance (88%) and only a handful of resistance mutations show a significant fitness cost (9%). Our results reveal that resistance to azoles can arise through a large set of mutations and this will probably lead to azole pan-resistance, with little evolutionary compromise. This resource will help inform treatment choices in clinical settings and guide the development of new drugs.
Collapse
Affiliation(s)
- Camille Bédard
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Jonathan Boisvert
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Alicia Pageau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Anna Fijarczyk
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laetitia Maroc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada.
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada.
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada.
| |
Collapse
|
2
|
Moreau J, Noël T, Point K, Tewes F, Deroche L, Clarhaut J, Fitton-Ouhabi V, Perraud E, Marchand S, Buyck JM, Brunet K. Pan-azole-resistant Meyerozyma guilliermondii clonal isolates harbouring a double F126L and L505F mutation in Erg11. Mycoses 2024; 67:e13704. [PMID: 38429226 DOI: 10.1111/myc.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Meyerozyma guilliermondii is a yeast species responsible for invasive fungal infections. It has high minimum inhibitory concentrations (MICs) to echinocandins, the first-line treatment of candidemia. In this context, azole antifungal agents are frequently used. However, in recent years, a number of azole-resistant strains have been described. Their mechanisms of resistance are currently poorly studied. OBJECTIVE The aim of this study was consequently to understand the mechanisms of azole resistance in several clinical isolates of M. guilliermondii. METHODS Ten isolates of M. guilliermondii and the ATCC 6260 reference strain were studied. MICs of azoles were determined first. Whole genome sequencing of the isolates was then carried out and the mutations identified in ERG11 were expressed in a CTG clade yeast model (C. lusitaniae). RNA expression of ERG11, MDR1 and CDR1 was evaluated by quantitative PCR. A phylogenic analysis was developed and performed on M. guilliermondii isolates. Lastly, in vitro experiments on fitness cost and virulence were carried out. RESULTS Of the ten isolates tested, three showed pan-azole resistance. A combination of F126L and L505F mutations in Erg11 was highlighted in these three isolates. Interestingly, a combination of these two mutations was necessary to confer azole resistance. An overexpression of the Cdr1 efflux pump was also evidenced in one strain. Moreover, the three pan-azole-resistant isolates were shown to be genetically related and not associated with a fitness cost or a lower virulence, suggesting a possible clonal transmission. CONCLUSION In conclusion, this study identified an original combination of ERG11 mutations responsible for pan-azole-resistance in M. guilliermondii. Moreover, we proposed a new MLST analysis for M. guilliermondii that identified possible clonal transmission of pan-azole-resistant strains. Future studies are needed to investigate the distribution of this clone in hospital environment and should lead to the reconsideration of the treatment for this species.
Collapse
Affiliation(s)
- Jérémy Moreau
- Université de Poitiers, INSERM U1070 PHAR2, Poitiers, France
| | - Thierry Noël
- Université de Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Kévin Point
- Université de Poitiers, INSERM U1070 PHAR2, Poitiers, France
| | - Frédéric Tewes
- Université de Poitiers, INSERM U1070 PHAR2, Poitiers, France
| | - Luc Deroche
- CHU de Poitiers, Service de Virologie, Poitiers, France
| | - Jonathan Clarhaut
- Université de Poitiers, INSERM U1070 PHAR2, Poitiers, France
- CHU de Poitiers, Service de Toxicologie-Pharmacocinétique, Poitiers, France
| | - Valérie Fitton-Ouhabi
- Université de Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Estelle Perraud
- CHU de Poitiers, Service de Parasitologie et Mycologie Médicale, Poitiers, France
| | - Sandrine Marchand
- Université de Poitiers, INSERM U1070 PHAR2, Poitiers, France
- CHU de Poitiers, Service de Toxicologie-Pharmacocinétique, Poitiers, France
| | - Julien M Buyck
- Université de Poitiers, INSERM U1070 PHAR2, Poitiers, France
| | - Kévin Brunet
- Université de Poitiers, INSERM U1070 PHAR2, Poitiers, France
- CHU de Poitiers, Service de Parasitologie et Mycologie Médicale, Poitiers, France
| |
Collapse
|
3
|
Sitterlé E, Coste AT, Obadia T, Maufrais C, Chauvel M, Sertour N, Sanglard D, Puel A, D'Enfert C, Bougnoux ME. Large-scale genome mining allows identification of neutral polymorphisms and novel resistance mutations in genes involved in Candida albicans resistance to azoles and echinocandins. J Antimicrob Chemother 2021; 75:835-848. [PMID: 31923309 DOI: 10.1093/jac/dkz537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The genome of Candida albicans displays significant polymorphism. Point mutations in genes involved in resistance to antifungals may either confer phenotypic resistance or be devoid of phenotypic consequences. OBJECTIVES To catalogue polymorphisms in azole and echinocandin resistance genes occurring in susceptible strains in order to rapidly pinpoint relevant mutations in resistant strains. METHODS Genome sequences from 151 unrelated C. albicans strains susceptible to fluconazole and caspofungin were used to create a catalogue of non-synonymous polymorphisms in genes involved in resistance to azoles (ERG11, TAC1, MRR1 and UPC2) or echinocandins (FKS1). The potential of this catalogue to reveal putative resistance mutations was tested in 10 azole-resistant isolates, including 1 intermediate to caspofungin. Selected mutations were analysed by mutagenesis experiments or mutational prediction effect. RESULTS In the susceptible strains, we identified 126 amino acid substitutions constituting the catalogue of phenotypically neutral polymorphisms. By excluding these neutral substitutions, we identified 22 additional substitutions in the 10 resistant strains. Among these substitutions, 10 had already been associated with resistance. The remaining 12 were in Tac1p (n = 6), Upc2p (n = 2) and Erg11p (n = 4). Four out of the six homozygous substitutions in Tac1p (H263Y, A790V, H839Y and P971S) conferred increases in azole MICs, while no effects were observed for those in Upc2p. Additionally, two homozygous substitutions (Y64H and P236S) had a predicted conformation effect on Erg11p. CONCLUSIONS By establishing a catalogue of neutral polymorphisms occurring in genes involved in resistance to antifungal drugs, we provide a useful resource for rapid identification of mutations possibly responsible for phenotypic resistance in C. albicans.
Collapse
Affiliation(s)
- Emilie Sitterlé
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Alix T Coste
- Institut de Microbiologie, Université de Lausanne et Centre Hospitalo-Universitaire, Lausanne, Switzerland
| | - Thomas Obadia
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France.,Unité Malaria: parasites et hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Corinne Maufrais
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France
| | - Natacha Sertour
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France
| | - Dominique Sanglard
- Institut de Microbiologie, Université de Lausanne et Centre Hospitalo-Universitaire, Lausanne, Switzerland
| | - Anne Puel
- Laboratoire de génétique humaine des maladies infectieuses, Necker, INSERM U1163, Paris, France.,Université Paris Descartes, Institut Imagine, Paris, France
| | - Christophe D'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
5
|
Accoceberry I, Couzigou C, Fitton-Ouhabi V, Biteau N, Noël T. Challenging SNP impact on caspofungin resistance by full-length FKS1 allele replacement in Candida lusitaniae. J Antimicrob Chemother 2020; 74:618-624. [PMID: 30517635 DOI: 10.1093/jac/dky475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically engineered for full-length replacement of the FKS1 gene encoding the target of echinocandin antifungals in order to assess the impact of FKS mutations on echinocandin resistance and reduced echinocandin susceptibility (RES). METHODS FKS1 allelic exchange was achieved by transforming C. lusitaniae with two DNA fragments covering the entire FKS1 ORF. Both fragments overlap a 40 bp region where SNPs or small indels of interest were inserted. To target integration at the FKS1 locus, each DNA fragment was fused with split auxotrophic markers of which complementary truncated parts were previously inserted into the chromosomal regions flanking FKS1, allowing selection on minimal medium. RESULTS Three SNPs described in the FKS1 hotspot (HS) regions HS1 or HS2 of clinical isolates of Candida albicans were expressed at an equivalent position in C. lusitaniae and were confirmed to confer either reduced susceptibility (F641V) or full resistance (S645P and R1361G) to caspofungin. The F659 deletion reported in an FKS2 allele of Candida glabrata and the naturally occurring P660A substitution in FKS1 of Candida parapsilosis were shown to confer a 256-fold and 6-fold increase in caspofungin MIC, respectively, when introduced into an FKS1 allele of C. lusitaniae. CONCLUSIONS We have successfully developed a C. lusitaniae strain for the expression of full-length FKS1 alleles harbouring known mutations contributing to reduced susceptibility or resistance to caspofungin, thus opening the way for the screening of other FKS1/FKS2 mutations potentially involved in RES.
Collapse
Affiliation(s)
- Isabelle Accoceberry
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, CHU Bordeaux, Bordeaux, France
| | - Célia Couzigou
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, CHU Bordeaux, Bordeaux, France
| | - Valérie Fitton-Ouhabi
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Nicolas Biteau
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Thierry Noël
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|