1
|
Amoura A, Pistien C, Chaligné C, Dion S, Magnan M, Bridier-Nahmias A, Baron A, Chau F, Bourgogne E, Le M, Denamur E, Ingersoll MA, Fantin B, Lefort A, El Meouche I. Variability in cell division among anatomical sites shapes Escherichia coli antibiotic survival in a urinary tract infection mouse model. Cell Host Microbe 2024; 32:900-912.e4. [PMID: 38759643 DOI: 10.1016/j.chom.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Urinary tract infection (UTI), mainly caused by Escherichia coli, are frequent and have a recurrent nature even after antibiotic treatment. Potential bacterial escape mechanisms include growth defects, but probing bacterial division in vivo and establishing its relation to the antibiotic response remain challenging. Using a synthetic reporter of cell division, we follow the temporal dynamics of cell division for different E. coli clinical strains in a UTI mouse model with and without antibiotics. We show that more bacteria are actively dividing in the kidneys and urine compared with the bladder. Bacteria that survive antibiotic treatment are consistently non-dividing in three sites of infection. Additionally, we demonstrate how both the strain in vitro persistence profile and the microenvironment impact infection and treatment dynamics. Understanding the relative contribution of the host environment, growth heterogeneity, non-dividing bacteria, and antibiotic persistence is crucial to improve therapies for recurrent infections.
Collapse
Affiliation(s)
- Ariane Amoura
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Claire Pistien
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Camille Chaligné
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Sara Dion
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Mélanie Magnan
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | | | - Alexandra Baron
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Françoise Chau
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Emmanuel Bourgogne
- AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France; Université Paris Cité, Faculté de Santé, Pharmacie, Laboratoire de Toxicologie, 75018 Paris, France
| | - Minh Le
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France
| | - Erick Denamur
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, 75018 Paris, France
| | - Molly A Ingersoll
- Université Paris Cité, CNRS, Inserm, Institut Cochin, 75014 Paris, France; Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Bruno Fantin
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Agnès Lefort
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Beaujon, Service de Médecine Interne, 92110 Clichy, France
| | - Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France.
| |
Collapse
|
2
|
Collins J, Osheroff N. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. ACS Infect Dis 2024; 10:1097-1115. [PMID: 38564341 PMCID: PMC11019561 DOI: 10.1021/acsinfecdis.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Bulman ZP, Tan X, Chu TY, Huang Y, Rana AP, Singh N, Flowers SA, Kyono Y, Kreiswirth BN, Chen L. Ceftazidime-avibactam based combinations against carbapenemase producing Klebsiella pneumoniae harboring hypervirulence plasmids. Comput Struct Biotechnol J 2022; 20:3946-3954. [PMID: 35950190 PMCID: PMC9352398 DOI: 10.1016/j.csbj.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
The combination of carbapenem resistance and hypervirulence in Klebsiella pneumoniae is an emerging and urgent threat due to its potential to resist common antibiotics and cause life-threatening infections in healthy hosts. This study aimed to evaluate the activity of clinically relevant antibiotic regimens against carbapenem-resistant K. pneumoniae with hypervirulence plasmids and to identify pathways associated with antibiotic tolerance using transcriptomics. We studied two carbapenem-resistant K. pneumoniae isolates, CDI694 and CDI231, both harboring hypervirulence plasmids. Time-kill and dynamic one-compartment pharmacokinetic/pharmacodynamic assays were used to assess ceftazidime/avibactam-based therapies. RNAseq was performed following 48 h of antibiotic exposure. Closed genomes of CDI694 and CDI231 were obtained; each isolate harbored carbapenem-resistance and hypervirulence (containing rmpA/rmpA2 and iut genes) plasmids. Ceftazidime/avibactam-based regimens were bactericidal, though both isolates continued to grow in the presence of antibiotics despite no shifts in MIC. Transcriptomic analyses suggested that perturbations to cell respiration, carbohydrate transport, and stress-response pathways contributed to the antibiotic tolerance in CDI231. Genes associated with hypervirulence and antibiotic resistance were not strongly impacted by drug exposure except for ompW, which was significantly downregulated. Treatment of carbapenem-resistant K. pneumoniae harboring hypervirulence plasmids with ceftazidime/avibactam-based regimens may yield a tolerant population due to altered transcription of multiple key pathways.
Collapse
Affiliation(s)
- Zackery P. Bulman
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Xing Tan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Ting-Yu Chu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Yanqin Huang
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Amisha P. Rana
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Nidhi Singh
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Stephanie A. Flowers
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Yasuhiro Kyono
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Barry N. Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| |
Collapse
|
4
|
Sun R, Zhao X, Meng Q, Huang P, Zhao Q, Liu X, Zhang W, Zhang F, Fu Y. Genome-Wide Screening and Characterization of Genes Involved in Response to High Dose of Ciprofloxacin in Escherichia coli. Microb Drug Resist 2022; 28:501-510. [PMID: 35512736 DOI: 10.1089/mdr.2021.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Inevitably, considering its extensive use and misuse, resistance toward ciprofloxacin has increased in almost all clinically relevant bacteria. This study aimed to investigate the transcriptome changes at a high concentration of ciprofloxacin in Escherichia coli. In brief, 1,418 differentially expressed genes (DEGs) were identified, from which 773 genes were upregulated by ciprofloxacin, whereas 651 genes were downregulated. Enriched biological pathways reflected the upregulation of biological processes such as DNA damage and repair system, toxin/antitoxin systems, formaldehyde detoxification system. With kyoto encyclopedia of genes and genomes pathway analysis, higher expressed DEGs were associated with "LPS biosynthesis," "streptomycin biosynthesis," and "polyketide sugar unit biosynthesis." Lower expressed DEGs were associated with "biosynthesis of amino acids" and "flagellar assembly" pathways. After treatment of ciprofloxacin, lipopolysaccharide (LPS) release was increased by two times, and the gene expression level of LPS synthesis was elevated (p < 0.05) in both reference and clinical strains. Our results demonstrated that transient exposure to high-dose ciprofloxacin is a double-edged sword. Cautions should be taken when administering high-dose antibiotic treatment for infectious diseases.
Collapse
Affiliation(s)
- Rui Sun
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xianqi Zhao
- Department of General Surgery, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qingtai Meng
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ping Huang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Qian Zhao
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xinyi Liu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenli Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Yingmei Fu
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Lee AS, Lamanna OK, Ishida K, Hill E, Nguyen A, Hsieh MH. A Novel Propidium Monoazide-Based PCR Assay Can Measure Viable Uropathogenic E. coli In Vitro and In Vivo. Front Cell Infect Microbiol 2022; 12:794323. [PMID: 35178354 PMCID: PMC8844370 DOI: 10.3389/fcimb.2022.794323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Polymerase chain reaction (PCR) is an important means by which to study the urine microbiome and is emerging as possible alternative to urine cultures to identify pathogens that cause urinary tract infection (UTI). However, PCR is limited by its inability to differentiate DNA originating from viable, metabolically active versus non-viable, inactive bacteria. This drawback has led to concerns that urobiome studies and PCR-based diagnosis of UTI are confounded by the presence of relic DNA from non-viable bacteria in urine. Propidium monoazide (PMA) dye can penetrate cells with compromised cell membranes and covalently bind to DNA, rendering it inaccessible to amplification by PCR. Although PMA has been shown to differentiate between non-viable and viable bacteria in various settings, its effectiveness in urine has not been previously studied. We sought to investigate the ability of PMA to differentiate between viable and non-viable bacteria in urine. Methods Varying amounts of viable or non-viable uropathogenic E. coli (UTI89) or buffer control were titrated with mouse urine. The samples were centrifuged to collect urine sediment or not centrifuged. Urine samples were incubated with PMA and DNA cross-linked using blue LED light. DNA was isolated and uidA gene-specific PCR was performed. For in vivo studies, mice were inoculated with UTI89, followed by ciprofloxacin treatment or no treatment. After the completion of ciprofloxacin treatment, an aliquot of urine was plated on non-selective LB agar and another aliquot was treated with PMA and subjected to uidA-specific PCR. Results PMA’s efficiency in excluding DNA signal from non-viable bacteria was significantly higher in bacterial samples in phosphate-buffered saline (PBS, dCT=13.69) versus bacterial samples in unspun urine (dCT=1.58). This discrepancy was diminished by spinning down urine-based bacterial samples to collect sediment and resuspending it in PBS prior to PMA treatment. In 3 of 5 replicate groups of UTI89-infected mice, no bacteria grew in culture; however, there was PCR amplification of E. coli after PMA treatment in 2 of those 3 groups. Conclusion We have successfully developed PMA-based PCR methods for amplifying DNA from live bacteria in urine. Our results suggest that non-PMA bound DNA from live bacteria can be present in urine, even after antibiotic treatment. This indicates that viable but non-culturable E. coli can be present following treatment of UTI, and may explain why some patients have persistent symptoms but negative urine cultures following UTI treatment.
Collapse
Affiliation(s)
- Albert S. Lee
- Division of Pediatric Urology, Children’s National Hospital, Washington, DC, United States
| | - Olivia K. Lamanna
- Sheikh Zayed Institute, Children’s National Hospital, Washington, DC, United States
| | - Kenji Ishida
- Sheikh Zayed Institute, Children’s National Hospital, Washington, DC, United States
| | - Elaise Hill
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, United States
| | - Andrew Nguyen
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Michael H. Hsieh
- Division of Pediatric Urology, Children’s National Hospital, Washington, DC, United States
- Sheikh Zayed Institute, Children’s National Hospital, Washington, DC, United States
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: Michael H. Hsieh,
| |
Collapse
|
6
|
Babosan A, Skurnik D, Muggeo A, Pier G, Baharoglu Z, Jové T, Ploy MC, Griveau S, Bedioui F, Vergnolle S, Moussalih S, de Champs C, Mazel D, Guillard T. A qnr-plasmid allows aminoglycosides to induce SOS in Escherichia coli. eLife 2022; 11:69511. [PMID: 35037621 PMCID: PMC8789287 DOI: 10.7554/elife.69511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
The plasmid-mediated quinolone resistance (PMQR) genes have been shown to promote high-level bacterial resistance to fluoroquinolone antibiotics, potentially leading to clinical treatment failures. In Escherichia coli, sub-minimum inhibitory concentrations (sub-MICs) of the widely used fluoroquinolones are known to induce the SOS response. Interestingly, the expression of several PMQR qnr genes is controlled by the SOS master regulator, LexA. During the characterization of a small qnrD-plasmid carried in E. coli, we observed that the aminoglycosides become able to induce the SOS response in this species, thus leading to the elevated transcription of qnrD. Our findings show that the induction of the SOS response is due to nitric oxide (NO) accumulation in the presence of sub-MIC of aminoglycosides. We demonstrated that the NO accumulation is driven by two plasmid genes, ORF3 and ORF4, whose products act at two levels. ORF3 encodes a putative flavin adenine dinucleotide (FAD)-binding oxidoreductase which helps NO synthesis, while ORF4 codes for a putative fumarate and nitrate reductase (FNR)-type transcription factor, related to an O2-responsive regulator of hmp expression, able to repress the Hmp-mediated NO detoxification pathway of E. coli. Thus, this discovery, that other major classes of antibiotics may induce the SOS response could have worthwhile implications for antibiotic stewardship efforts in preventing the emergence of resistance.
Collapse
Affiliation(s)
- Anamaria Babosan
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| | - David Skurnik
- Institut Necker-Enfants Malades, Inserm U1151-Equipe 11, Université Paris Descartes, Paris, France
| | - Anaëlle Muggeo
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| | - Gerald Pier
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
| | - Zeynep Baharoglu
- Unité Plasticité du Génome Bactérien, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Thomas Jové
- CHU Limoges, RESINFIT, UMR 1092, Université de Limoges, Inserm, Limoges, France
| | - Marie-Cécile Ploy
- CHU Limoges, RESINFIT, UMR 1092, Université de Limoges, Inserm, Limoges, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences, PSL Research University, CNRS, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences, PSL Research University, CNRS, Paris, France
| | | | - Sophie Moussalih
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| | - Christophe de Champs
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Thomas Guillard
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| |
Collapse
|
7
|
Plasmid-mediated ciprofloxacin resistance imparts a selective advantage on Escherichia coli ST131. Antimicrob Agents Chemother 2021; 66:e0214621. [PMID: 34780264 DOI: 10.1128/aac.02146-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli ST131 is a recently emerged antibiotic resistant clone responsible for high rates of urinary tract and bloodstream infections. Despite its global dominance, the precise mechanisms that have driven the rapid dissemination of ST131 remain unknown. Here, we show that the plasmid-associated resistance gene encoding the AAC(6')-Ib-cr enzyme that inactivates the fluoroquinolone antibiotic ciprofloxacin is present in >70% of strains from the most rapidly expanding subgroup of multidrug resistant ST131. Using a series of genome-edited and plasmid-cured isogenic strains, we demonstrate that the aac(6')-Ib-cr gene confers a selective advantage on ST131 in the presence of ciprofloxacin, even in strains containing chromosomal GyrA and ParC FQ-resistance mutations. Further, we identify a pattern of emerging carbapenem resistance in other common E. coli clones carrying both aac(6')-Ib-cr and chromosomal FQ-resistance mutations, suggesting this dual resistance combination may also impart a selective advantage on these non-ST131 antibiotic resistant lineages.
Collapse
|
8
|
Siddiqui NA, Houson HA, Kamble NS, Blanco JR, O'Donnell RE, Hassett DJ, Lapi SE, Kotagiri N. Leveraging copper import by yersiniabactin siderophore system for targeted PET imaging of bacteria. JCI Insight 2021; 6:144880. [PMID: 34027898 PMCID: PMC8262292 DOI: 10.1172/jci.insight.144880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/21/2021] [Indexed: 12/27/2022] Open
Abstract
There is an emerging need for accurate and rapid identification of bacteria in the human body to achieve diverse biomedical objectives. Copper homeostasis is vital for the survival of bacterial species owing to the roles of the metal as a nutrient, respiratory enzyme cofactor, and a toxin. Here, we report the development of a copper-64–labeled bacterial metal chelator, yersiniabactin, to exploit a highly conserved metal acquisition pathway for noninvasive and selective imaging of bacteria. Compared with traditional techniques used to manufacture probes, our strategy simplifies the process considerably by combining the function of metal attachment and cell recognition to the same molecule. We demonstrate, for the first time to our knowledge, how a copper-64 PET probe can be used to identify specific bacterial populations, monitor antibiotic treatment outcomes, and track bacteria in diverse niches in vivo.
Collapse
Affiliation(s)
- Nabil A Siddiqui
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hailey A Houson
- Division of Advanced Medical Imaging Research, Department of Radiology and Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nitin S Kamble
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jose R Blanco
- Division of Advanced Medical Imaging Research, Department of Radiology and Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert E O'Donnell
- Department of Internal Medicine, Heart, Lung and Vascular Institute, and
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Suzanne E Lapi
- Division of Advanced Medical Imaging Research, Department of Radiology and Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Kürekci C, Aydın M, Tekeli İO, Ambarcıoğlu P, Şengül SA, Sakin F. Occurrence and characterization of ciprofloxacin‐resistant
Escherichia coli
from bovine and ovine bulk tank milk samples in Turkey. J Food Saf 2021. [DOI: 10.1111/jfs.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Cemil Kürekci
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| | - Muhsin Aydın
- Department of Biology, Faculty of Science and Letters Adıyaman University Adıyaman Turkey
| | - İbrahim Ozan Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| | - Pınar Ambarcıoğlu
- Department of Biostatistics, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| | - Seydi Ahmet Şengül
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| | - Fatih Sakin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| |
Collapse
|
10
|
Tolentino FM, De Almeida IAZC, Dos Santos CCM, Teixeira ISDC, Silva SIDLE, Nogueira MCL, Arroyo MG, Faim WR, De Almeida MTG, Peresi JTM. Phenotypic and genotypic profile of the antimicrobial resistance of bacterial isolates and evaluation of physical and chemical potability indicators in groundwater in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:186-201. [PMID: 31293171 DOI: 10.1080/09603123.2019.1640354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The aquatic environment has received increasing attention regarding the evolution of bacterial resistance, either as a source of resistance genes or as a matrix for the dissemination of these genes. We evaluated the physicochemical, microbiological and antimicrobial resistance characteristics of 160 samples from alternative water well solutions. According to Ordinance 2914/2011 - MS, 44 (27.5%) samples were considered unsafe if at least one physicochemical parameter exceeded permissible limits. Escherichia coli were found in 30.6% of the unregistered housing estates (UHE) and 1.9% of the local sanitary surveillance system (RW). The total of 158 bacterial strains were isolated from 13 (25%) RW and 68 (63%) UHE, 132 of which (83.5%) were obtained from UHE samples. In the investigation of resistance genes, tetA, qnrS and qnrB genes were detected in three, one and eight isolates, respectively. Our results emphasize the importance of constant surveillance and control of the quality of water supplies.
Collapse
Affiliation(s)
- Fernanda Modesto Tolentino
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | | | - Cecilia Cristina Marques Dos Santos
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | - Inara Siqueira De Carvalho Teixeira
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | - Sonia Izaura De Lima E Silva
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | - Mara Correa Lelles Nogueira
- Centro de Pesquisas de Micro-organismos da Faculdade de Medicina de São José do Rio Preto , São José do Rio Preto-SP, Brasil
| | - Máira Gazzola Arroyo
- Centro de Pesquisas de Micro-organismos da Faculdade de Medicina de São José do Rio Preto , São José do Rio Preto-SP, Brasil
| | - Wilson Roberto Faim
- Secretaria Municipal de Saúde e Higiene - Vigilância Sanitária de São José do Rio Preto , São José do Rio Preto-SP, Brasil
| | | | - Jacqueline Tanury Macruz Peresi
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| |
Collapse
|
11
|
Ciprofloxacin Pharmacokinetics/Pharmacodynamics against Susceptible and Low-Level Resistant Escherichia coli Isolates in an Experimental Ascending Urinary Tract Infection Model in Mice. Antimicrob Agents Chemother 2020; 65:AAC.01804-20. [PMID: 33106267 DOI: 10.1128/aac.01804-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
The mouse ascending urinary tract infection model was used to study the pharmacokinetic/pharmacodynamic (PKPD) relationships of the effect of ciprofloxacin in subcutaneous treatment for 3 days with varying doses and dosing intervals against a susceptible Escherichia coli strain (MIC, 0.032 mg/liter). Further, a humanized dose of ciprofloxacin was administered for 3 days against three E. coli strains with low-level resistance, i.e., MICs of 0.06, 0.25, and 1 mg/liter, respectively. Against the susceptible isolate, ciprofloxacin was highly effective in clearing the urine with daily doses from 10 mg/kg, but the dosing regimen had to be divided into at least two doses for optimal effect. Ciprofloxacin could not clear the urine or kidneys for the low-level-resistant strains. PKPD correlations with all strains combined showed that for the AUC24/MIC there was a slightly higher correlation with effect in urine and kidneys (R 2, 0.71 and 0.69, respectively) than the %T>MIC (R 2, 0.41 and 0.61, respectively). Equal correlations for the two PKPD indices were found for reduction of colony counts (CFU) in the bladder tissue, but not even the highest dose of 28 mg/kg × 6 could clear the bladder tissue. In conclusion, ciprofloxacin is highly effective in clearing the urine and kidney tissue for fully susceptible E. coli, while even low-level resistance in E. coli obscures this effect. While the effect of ciprofloxacin is mostly AUC/MIC driven against E. coli infection in the urinary tract, the effect in urine depends on the presence of ciprofloxacin in the urine during most of a 24-h period.
Collapse
|
12
|
Muggeo A, Cambau E, Amara M, Micaëlo M, Pangon B, Bajolet O, Benmansour H, de Champs C, Guillard T. Phenotypic and genotypic quinolone resistance in Escherichia coli underlining GyrA83/87 mutations as a target to detect ciprofloxacin resistance. J Antimicrob Chemother 2020; 75:2466-2470. [DOI: 10.1093/jac/dkaa189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/18/2020] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Quinolone resistance (QR) is one component of the MDR emerging in Escherichia coli and is of particular concern given the widespread use of fluoroquinolones.
Objectives
To characterize the QR phenotypes and genotypes in E. coli responsible for bloodstream infections and to propose molecular determinants that could be targeted to predict ciprofloxacin resistance.
Methods
E. coli isolates from blood cultures in three French hospitals were studied for quinolone MICs and characterization of genotypic QR determinants (QRg).
Results
Among 507 isolates tested for MICs, 148 (29.2%) were resistant to quinolones based on EUCAST breakpoints and 143 (28.2%) harboured at least one QRg. QRg were mainly mutations in the QRDR (138 isolates, 27.2%), with 55.8% of these isolates carrying at least three QRDR mutations. gyrA mutations predominated (92.8%) followed by parC (61.6%), parE (32.6%) and gyrB (1.4%) mutations. Only 4.7% of the isolates harboured a plasmid-mediated quinolone resistance (PMQR) gene: aac(6′)-Ib-cr (60.0%) or qnr (qnrS, qnrB) (32.0%). For the first time in France, we reported the qepA4 allele of the plasmid-encoded efflux pump QepA. Only five isolates carried PMQR without a QRDR mutation. The positive predictive value (PPV) for ciprofloxacin resistance was 100% for any QRg and 99.2% for gyrA mutations specifically.
Conclusions
QR observed in E. coli isolates involved in bloodstream infections is still mainly due to QRDR mutations, especially at codons GyrA83/87, which could be used as a molecular target to rapidly detect resistance.
Collapse
Affiliation(s)
- Anaëlle Muggeo
- Université de Reims-Champagne-Ardenne, SFR CAP-Santé, Inserm UMR-S 1250 P3Cell, 51097, Reims, France
- Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, CHU Reims, Hôpital Robert Debré, Reims, France
| | - Emmanuelle Cambau
- Université de Paris, Inserm IAME UMR 1137, Paris, France and APHP Lariboisière-Fernand Widal, Laboratoire de Bactériologie, Paris, France
| | - Marlène Amara
- Service de Biologie, Unité de Microbiologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Maïté Micaëlo
- Service de Biologie, Unité de Microbiologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Béatrice Pangon
- Service de Biologie, Unité de Microbiologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Odile Bajolet
- Université de Reims-Champagne-Ardenne, SFR CAP-Santé, Inserm UMR-S 1250 P3Cell, 51097, Reims, France
- Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, CHU Reims, Hôpital Robert Debré, Reims, France
| | - Hanaa Benmansour
- Université de Paris, Inserm IAME UMR 1137, Paris, France and APHP Lariboisière-Fernand Widal, Laboratoire de Bactériologie, Paris, France
| | - Christophe de Champs
- Université de Reims-Champagne-Ardenne, SFR CAP-Santé, Inserm UMR-S 1250 P3Cell, 51097, Reims, France
- Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, CHU Reims, Hôpital Robert Debré, Reims, France
| | - Thomas Guillard
- Université de Reims-Champagne-Ardenne, SFR CAP-Santé, Inserm UMR-S 1250 P3Cell, 51097, Reims, France
- Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, CHU Reims, Hôpital Robert Debré, Reims, France
| |
Collapse
|
13
|
Wang P, Hu L, Hao Z. Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6')-Ib-cr-Producing Escherichia coli. Infect Drug Resist 2020; 13:749-759. [PMID: 32210589 PMCID: PMC7069587 DOI: 10.2147/idr.s242304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The emergence of plasmid-mediated quinolone resistance (PMQR) is a global challenge in the treatment of clinical disease in both humans and animals and is exacerbated by the presence of different PMQR genes existing in the same bacterial strain. Here, we discovered that a natural isoquinoline alkaloid palmatine extracted from traditional Chinese medicinal plants effectively inhibited the activity of PMQR proteins QnrS and AAC(6′)-Ib-cr. Methods In total 120 clinical ciprofloxacin-resistant Escherichia coli (E. coli) were screened for the presence of qnrS and aac(6ʹ)-Ib-cr by PCR. Recombinant E. coli that produced QnrS or AAC(6ʹ)-Ib-cr proteins were constructed and the correct expression was confirmed by MALDI/TOF MS analysis and SDS-PAGE. A minimal inhibitory concentration (MICs) assay, growth curve assay and time-kill assay were conducted to evaluate the in vitro antibacterial activity of palmatine and the combination of palmatine and ciprofloxacin. Cytotoxicity assays and mouse thigh infection model were used to evaluate the in vivo synergies. Molecular docking, gyrase supercoiling assay and acetylation assay were used to clarify the mechanism of action. Results Palmatine effectively restored the activity of ciprofloxacin against qnrS and aac(6ʹ)-Ib-cr-positive E. coli strains in a synergistic manner in vitro. In addition, the combined therapy significantly reduced the bacterial burden in a mouse thigh infection model. Molecular docking revealed that palmatine bound at the functional large loop B of QnrS and Trp102Arg and Asp179Tyr in the binding pocket of AAC(6′)-Ib-cr. Furthermore, interaction analysis confirmed that palmatine reduced the gyrase protective effect of QnrS and the acetylation effect of AAC(6′)-Ib-cr. Conclusion Our findings suggest that palmatine is a potential efficacious compound to restore PMQR-mediated ciprofloxacin resistance and warrants further preclinical evaluations.
Collapse
Affiliation(s)
- Peng Wang
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Longfei Hu
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Zhihui Hao
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100089, People's Republic of China
| |
Collapse
|
14
|
Wnorowska U, Fiedoruk K, Piktel E, Prasad SV, Sulik M, Janion M, Daniluk T, Savage PB, Bucki R. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: current status and potential future applications. J Nanobiotechnology 2020; 18:3. [PMID: 31898542 PMCID: PMC6939332 DOI: 10.1186/s12951-019-0566-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology-based therapeutic approaches have attracted attention of scientists, in particular due to the special features of nanomaterials, such as adequate biocompatibility, ability to improve therapeutic efficiency of incorporated drugs and to limit their adverse effects. Among a variety of reported nanomaterials for biomedical applications, metal and metal oxide-based nanoparticles offer unique physicochemical properties allowing their use in combination with conventional antimicrobials and as magnetic field-controlled drug delivery nanocarriers. An ever-growing number of studies demonstrate that by combining magnetic nanoparticles with membrane-active, natural human cathelicidin-derived LL-37 peptide, and its synthetic mimics such as ceragenins, innovative nanoagents might be developed. Between others, they demonstrate high clinical potential as antimicrobial, anti-cancer, immunomodulatory and regenerative agents. Due to continuous research, knowledge on pleiotropic character of natural antibacterial peptides and their mimics is growing, and it is justifying to stay that the therapeutic potential of nanosystems containing membrane active compounds has not been exhausted yet.
Collapse
Affiliation(s)
- Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Suhanya V Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Magdalena Sulik
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Marianna Janion
- Faculty of Medicine and Health Sciences, The Jan Kochanowski University in Kielce, Al. IX Wiekow Kielc 19A, 25-317, Kielce, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland.
| |
Collapse
|
15
|
Tepekule B, Abel Zur Wiesch P, Kouyos RD, Bonhoeffer S. Quantifying the impact of treatment history on plasmid-mediated resistance evolution in human gut microbiota. Proc Natl Acad Sci U S A 2019; 116:23106-23116. [PMID: 31666328 PMCID: PMC6859334 DOI: 10.1073/pnas.1912188116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To understand how antibiotic use affects the risk of a resistant infection, we present a computational model of the population dynamics of gut microbiota including antibiotic resistance-conferring plasmids. We then describe how this model is parameterized based on published microbiota data. Finally, we investigate how treatment history affects the prevalence of resistance among opportunistic enterobacterial pathogens. We simulate treatment histories and identify which properties of prior antibiotic exposure are most influential in determining the prevalence of resistance. We find that resistance prevalence can be predicted by 3 properties, namely the total days of drug exposure, the duration of the drug-free period after last treatment, and the center of mass of the treatment pattern. Overall this work provides a framework for capturing the role of the microbiome in the selection of antibiotic resistance and highlights the role of treatment history for the prevalence of resistance.
Collapse
Affiliation(s)
- Burcu Tepekule
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland;
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
- Centre for Molecular Medicine Norway, 0318 Oslo, Norway
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Sebastian Bonhoeffer
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
16
|
In Vitro Synergy and In Vivo Activity of Tigecycline-Ciprofloxacin Combination Therapy against Vibrio vulnificus Sepsis. Antimicrob Agents Chemother 2019; 63:AAC.00310-19. [PMID: 31332060 DOI: 10.1128/aac.00310-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022] Open
Abstract
The mortality rate associated with Vibrio vulnificus sepsis remains high. An in vitro time-kill assay revealed synergism between tigecycline and ciprofloxacin. The survival rate was significantly higher in mice treated with tigecycline plus ciprofloxacin than in mice treated with cefotaxime plus minocycline. Thus, combination treatment with tigecycline-ciprofloxacin may be an effective novel antibiotic regimen for V. vulnificus sepsis.
Collapse
|
17
|
Dellgren L, Claesson C, Högdahl M, Forsberg J, Hanberger H, Nilsson LE, Hällgren A. Phenotypic screening for quinolone resistance in Escherichia coli. Eur J Clin Microbiol Infect Dis 2019; 38:1765-1771. [PMID: 31214796 PMCID: PMC6695352 DOI: 10.1007/s10096-019-03608-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023]
Abstract
Recent studies show that rectal colonization with low-level ciprofloxacin-resistant Escherichia coli (ciprofloxacin minimal inhibitory concentration (MIC) above the epidemiological cutoff point, but below the clinical breakpoint for resistance), i.e., in the range > 0.06-0.5 mg/L is an independent risk factor for febrile urinary tract infection after transrectal ultrasound-guided biopsy (TRUS-B) of the prostate, adding to the other risk posed by established ciprofloxacin resistance in E. coli (MIC > 0.5 mg/L) as currently defined. We aimed to identify the quinolone that by disk diffusion best discriminates phenotypic wild-type isolates (ciprofloxacin MIC ≤ 0.06 mg/L) of E. coli from isolates with acquired resistance, and to determine the resistance genotype of each isolate. The susceptibility of 108 E. coli isolates was evaluated by ciprofloxacin, levofloxacin, moxifloxacin, nalidixic acid, and pefloxacin disk diffusion and correlated to ciprofloxacin MIC (broth microdilution) using EUCAST methodology. Genotypic resistance was identified by PCR and DNA sequencing. The specificity was 100% for all quinolone disks. Sensitivity varied substantially, as follows: ciprofloxacin 59%, levofloxacin 46%, moxifloxacin 59%, nalidixic acid 97%, and pefloxacin 97%. We suggest that in situations where low-level quinolone resistance might be of importance, such as when screening for quinolone resistance in fecal samples pre-TRUS-B, a pefloxacin (S ≥ 24 mm) or nalidixic acid (S ≥ 19 mm) disk, or a combination of the two, should be used. In a setting where plasmid-mediated resistance is prevalent, pefloxacin might perform better than nalidixic acid.
Collapse
Affiliation(s)
- Linus Dellgren
- Department of Infectious Diseases, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Carina Claesson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Microbiology, Linköping University, Linköping, Sweden
| | - Marie Högdahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Microbiology, Linköping University, Linköping, Sweden
| | - Jon Forsberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Urology, Linköping University, Linköping, Sweden
| | - Håkan Hanberger
- Department of Infectious Diseases, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lennart E Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anita Hällgren
- Department of Infectious Diseases, Linköping University, Linköping, Sweden. .,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
18
|
Seok H, Cha MK, Kang CI, Cho SY, Kim SH, Ha YE, Chung DR, Peck KR, Song JH. Failure of Ciprofloxacin Therapy in the Treatment of Community-Acquired Acute Pyelonephritis caused by In-Vitro Susceptible Escherichia coli Strain Producing CTX-Type Extended-Spectrum β-Lactamase. Infect Chemother 2018; 50:357-361. [PMID: 30600660 PMCID: PMC6312905 DOI: 10.3947/ic.2018.50.4.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022] Open
Abstract
While carbapenems are the drug of choice to treat extended-spectrum-β-lactamase (ESBL)-producing strains, some alternative carbapenem-sparing regimens are suggested for antibiotic stewardship. We experienced a case of ciprofloxacin treatment failure for acute pyelonephritis caused by an apparently susceptible Escherichia coli. A 71-year-old woman presented the emergency department with fever for 7 days and bilateral flank pain for 2 days. The laboratory results and abdominopelvic computed tomography finding were compatible with acute pyelonephritis. During 3-day ciprofloxacin therapy, the patient remained febrile with persistent bacteremia. After the change in antibiotics to ertapenem, the patient’s clinical course started to improve. ESBL-producing E. coli isolates were identified in all three consecutive blood samples. Pulsed-field gel electrophoresis (PFGE) patterns, serotypes, and sequence types showed the three isolates were derived from the identical strain. The isolates produced CTX-M-14 type ESBL belonging to the ST69 clonal group. Despite in vitro susceptibility, the failure was attributed to a gyrA point mutation encoding Ser83Leu within quinolone resistance-determining regions. This case suggests that ciprofloxacin should be used cautiously in the treatment of serious infections caused by ciprofloxacin-susceptible, ESBL-producing E. coli, even in acute pyelonephritis because in-vitro susceptibility tests could fail to detect certain genetic mutations.
Collapse
Affiliation(s)
- Hyeri Seok
- Division of Infectious Disease, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Kyeong Cha
- Asia Pacific Foundation for Infectious Diseases, Seoul, Korea
| | - Cheol In Kang
- Division of Infectious Disease, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Sun Young Cho
- Division of Infectious Disease, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Hyun Kim
- Division of Infectious Disease, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Asia Pacific Foundation for Infectious Diseases, Seoul, Korea
| | - Young Eun Ha
- Division of Infectious Disease, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doo Ryeon Chung
- Division of Infectious Disease, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Asia Pacific Foundation for Infectious Diseases, Seoul, Korea
| | - Kyong Ran Peck
- Division of Infectious Disease, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hoon Song
- Division of Infectious Disease, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Spread of Klebsiella pneumoniae ST395 non-susceptible to carbapenems and resistant to fluoroquinolones in North-Eastern France. J Glob Antimicrob Resist 2017; 13:98-103. [PMID: 29113933 DOI: 10.1016/j.jgar.2017.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/04/2017] [Accepted: 10/29/2017] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Fluoroquinolones (FQs) are a potential treatment for infections caused by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae that are susceptible to these agents. METHODS Owing to increasing non-susceptibility to carbapenems among Enterobacteriaceae, in this study FQ resistance mechanisms were characterised in 36 ertapenem-non-susceptible Klebsiella pneumoniae isolated from North-Eastern France in 2012. The population structure was described by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS Among the 36 isolates, 13 (36%) carried a carbapenemase encoding-gene. Decreased expression of the OmpK35-encoding gene might be considered a major resistance determinant that could explain the non-susceptibility to carbapenems. The carbapenemase-producing isolates carried the well-known IncL pOXA-48a plasmid. All 36 K. pneumoniae isolates also harboured a FQ resistance determinant. The aac(6')-Ib-cr gene was the major plasmid-mediated quinolone resistance (PMQR) determinant found in K. pneumoniae (89%; 32/36). MLST identified five sequence types (STs), with the most common being ST395 (69%; 25/36), followed by ST147 (17%; 6/36). ST395 strains showed ertapenem minimum inhibitory concentrations (MICs) ranging from 0.75-32μg/mL. Klebsiella pneumoniae ST395 isolates did not show enhanced biofilm formation or environmental survival but showed higher chlorhexidine MICs compared with ST147 isolates. CONCLUSIONS These findings showed that (i) K. pneumoniae ST395 carrying pOXA-48a has spread in North-Eastern France, (ii) aac(6')-Ib-cr is predominant in carbapenem-non-susceptible K. pneumoniae, (iii) K. pneumoniae ST395 is resistant to chlorhexidine and (iv) FQs as an alternative to β-lactams to treat ertapenem-non-susceptible K. pneumoniae are compromised.
Collapse
|
20
|
Margaritis A, Galani I, Chatzikonstantinou M, Petrikkos G, Souli M. Plasmid-mediated quinolone resistance determinants among Gram-negative bacteraemia isolates: a hidden threat. J Med Microbiol 2017; 66:266-275. [DOI: 10.1099/jmm.0.000397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Athanasios Margaritis
- 4th Department of Internal Medicine, Infectious Diseases Laboratory, Molecular Biology Section, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Irene Galani
- Present address: 4th Department of Internal Medicine, National and Kapodistrian University of Athens, School of Mecicine, Athens, Greece
- 4th Department of Internal Medicine, Infectious Diseases Laboratory, Molecular Biology Section, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marianthi Chatzikonstantinou
- 4th Department of Internal Medicine, Infectious Diseases Laboratory, Molecular Biology Section, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - George Petrikkos
- 4th Department of Internal Medicine, Infectious Diseases Laboratory, Molecular Biology Section, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Souli
- 4th Department of Internal Medicine, Infectious Diseases Laboratory, Molecular Biology Section, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
- Present address: 4th Department of Internal Medicine, National and Kapodistrian University of Athens, School of Mecicine, Athens, Greece
| |
Collapse
|
21
|
Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China. Sci Rep 2017; 7:40610. [PMID: 28094345 PMCID: PMC5240147 DOI: 10.1038/srep40610] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Emerging antimicrobial resistance is a major threat to human’s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6′)-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought.
Collapse
|
22
|
Plasmid-mediated quinolone resistance in Enterobacteriaceae: a systematic review with a focus on Mediterranean countries. Eur J Clin Microbiol Infect Dis 2016; 36:421-435. [PMID: 27889879 DOI: 10.1007/s10096-016-2847-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
Quinolones are a family of synthetic broad-spectrum antimicrobial drugs. These molecules have been widely prescribed to treat various infectious diseases and have been classified into several generations based on their spectrum of activity. Quinolones inhibit bacterial DNA synthesis by interfering with the action of DNA gyrase and topoisomerase IV. Mutations in the genes encoding these targets are the most common mechanisms of high-level fluoroquinolone resistance. Moreover, three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998 and include Qnr proteins, the aminoglycoside acetyltransferase AAC(6')-Ib-cr, and plasmid-mediated efflux pumps QepA and OqxAB. Plasmids with these mechanisms often encode additional antimicrobial resistance (extended spectrum beta-lactamases [ESBLs] and plasmidic AmpC [pAmpC] ß-lactamases) and can transfer multidrug resistance. The PMQR determinants are disseminated in Mediterranean countries with prevalence relatively high depending on the sources and the regions, highlighting the necessity of long-term surveillance for the future monitoring of trends in the occurrence of PMQR genes.
Collapse
|
23
|
Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat 2016; 29:13-29. [PMID: 27912841 DOI: 10.1016/j.drup.2016.09.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022]
Abstract
After two decades of the discovery of plasmid-mediated quinolone resistance (PMQR), three different mechanisms have been associated to this phenomenon: target protection (Qnr proteins, including several families with multiple alleles), active efflux pumps (mainly QepA and OqxAB pumps) and drug modification [AAC(6')-Ib-cr acetyltransferase]. PMQR genes are usually associated with mobile or transposable elements on plasmids, and, in the case of qnr genes, are often incorporated into sul1-type integrons. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. Although the three PMQR mechanisms alone cause only low-level resistance to quinolones, they can complement other mechanisms of chromosomal resistance to reach clinical resistance level and facilitate the selection of higher-level resistance, raising a threat to the treatment of infections by microorganisms that host these mechanisms.
Collapse
|
24
|
Machuca J, Ortiz M, Recacha E, Díaz-De-Alba P, Docobo-Perez F, Rodríguez-Martínez JM, Pascual Á. Impact of AAC(6′)-Ib-cr in combination with chromosomal-mediated mechanisms on clinical quinolone resistance inEscherichia coli. J Antimicrob Chemother 2016; 71:3066-3071. [DOI: 10.1093/jac/dkw258] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 11/12/2022] Open
|
25
|
The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity. Molecules 2016; 21:268. [PMID: 27043501 PMCID: PMC6274096 DOI: 10.3390/molecules21040268] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 11/17/2022] Open
Abstract
Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites--the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. Quinolones increase the concentration of drug-enzyme-DNA cleavage complexes and convert them into cellular toxins; as a result they are bactericidal. High bioavailability, relative low toxicity and favorable pharmacokinetics have resulted in the clinical success of fluoroquinolones and quinolones. Due to these superior properties, quinolones have been extensively utilized and this increased usage has resulted in some quinolone-resistant bacterial strains. Bacteria become resistant to quinolones by three mechanisms: (1) mutation in the target site (gyrase and/or topoisomerase IV) of quinolones; (2) plasmid-mediated resistance; and (3) chromosome-mediated quinolone resistance. In plasmid-mediated resistance, the efflux of quinolones is increased along with a decrease in the interaction of the drug with gyrase (topoisomerase IV). In the case of chromosome-mediated quinolone resistance, there is a decrease in the influx of the drug into the cell.
Collapse
|
26
|
Guillard T, Cholley P, Limelette A, Hocquet D, Matton L, Guyeux C, Lebreil AL, Bajolet O, Brasme L, Madoux J, Vernet-Garnier V, Barbe C, Bertrand X, de Champs On Behalf Of CarbaFrEst Group C. Fluoroquinolone Resistance Mechanisms and population structure of Enterobacter cloacae non-susceptible to Ertapenem in North-Eastern France. Front Microbiol 2015; 6:1186. [PMID: 26557115 PMCID: PMC4616961 DOI: 10.3389/fmicb.2015.01186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
Fluoroquinolone (FQ) agents are a potential resort to treat infection due to Enterobacteriaceae producing extended spectrum β-lactamase and susceptible to FQ. In a context of increase of non-susceptibility to carbapenems among Enterobacteriaceae, we characterized FQ resistance mechanisms in 75 Enterobacter cloacae isolates non-susceptible to ertapenem in North-Eastern France in 2012 and describe the population structure by pulsed field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Among them, 14.7% (12/75) carried a carbapenemase-encoding gene. Except one isolate producing VIM-1, the carbapenemase-producing isolates carried the well-known IncL/M pOXA48a plasmid. Most of the isolates (59/75) harbored at least a FQ-R determinant. qnr genes were predominant (40%, 30/75). The MLST study revealed that E. cloacae isolates’ clonality was wide [24 different sequence types (STs)]. The more widespread STs were ST74, ST101, ST110, ST114, and ST133. Carbapenem MICs were higher for E. cloacae ST74 than for other E. cloacae isolates. Plasmid-mediated quinolone resistance determinants were more often observed in E. cloacae ST74 isolates. These findings showed that (i) pOXA-48a is spreading in North-Eastern France, (ii) qnr is preponderant in E. cloacae, (iii) E. cloacae comprised a large amount of lineages spreading in North-Eastern France, and (iv) FQ as an alternative to β-lactams to treat ertapenem non-susceptible Enterobacteriaceae are compromised.
Collapse
Affiliation(s)
- Thomas Guillard
- Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Robert Debré, CHU Reims Reims, France ; Structure Fédérative de Recherche CAP-Santé, UFR Médecine, Université de Reims Champagne-Ardenne Reims, France
| | - Pascal Cholley
- Service d'Hygiène Hospitalière, CHRU Besançon Besançon, France ; UMR 6249 Chrono-environnement, Université de Franche-Comté Besançon, France
| | - Anne Limelette
- Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Robert Debré, CHU Reims Reims, France ; Structure Fédérative de Recherche CAP-Santé, UFR Médecine, Université de Reims Champagne-Ardenne Reims, France
| | - Didier Hocquet
- Service d'Hygiène Hospitalière, CHRU Besançon Besançon, France ; UMR 6249 Chrono-environnement, Université de Franche-Comté Besançon, France
| | - Lucie Matton
- Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Robert Debré, CHU Reims Reims, France ; Structure Fédérative de Recherche CAP-Santé, UFR Médecine, Université de Reims Champagne-Ardenne Reims, France
| | - Christophe Guyeux
- UMR 6174 CNRS, Département d'Informatique des Systèmes Complexes, Université de Franche-Comté Belfort, France
| | - Anne-Laure Lebreil
- Structure Fédérative de Recherche CAP-Santé, UFR Médecine, Université de Reims Champagne-Ardenne Reims, France
| | - Odile Bajolet
- Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Robert Debré, CHU Reims Reims, France ; Structure Fédérative de Recherche CAP-Santé, UFR Médecine, Université de Reims Champagne-Ardenne Reims, France
| | - Lucien Brasme
- Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Robert Debré, CHU Reims Reims, France ; Structure Fédérative de Recherche CAP-Santé, UFR Médecine, Université de Reims Champagne-Ardenne Reims, France
| | - Janick Madoux
- Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Robert Debré, CHU Reims Reims, France
| | - Véronique Vernet-Garnier
- Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Robert Debré, CHU Reims Reims, France ; Structure Fédérative de Recherche CAP-Santé, UFR Médecine, Université de Reims Champagne-Ardenne Reims, France
| | - Coralie Barbe
- Centre de Recherche et d'Investigation Clinique, Hôpital Robert Debré, CHU Reims Reims, France
| | - Xavier Bertrand
- Service d'Hygiène Hospitalière, CHRU Besançon Besançon, France ; UMR 6249 Chrono-environnement, Université de Franche-Comté Besançon, France
| | - Christophe de Champs On Behalf Of CarbaFrEst Group
- Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Robert Debré, CHU Reims Reims, France ; Structure Fédérative de Recherche CAP-Santé, UFR Médecine, Université de Reims Champagne-Ardenne Reims, France
| |
Collapse
|
27
|
Kubicek-Sutherland JZ, Heithoff DM, Ersoy SC, Shimp WR, House JK, Marth JD, Smith JW, Mahan MJ. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure. EBioMedicine 2015; 2:1169-78. [PMID: 26501114 PMCID: PMC4588393 DOI: 10.1016/j.ebiom.2015.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 01/03/2023] Open
Abstract
Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies. Standard MIC testing does not consider the influence of the host milieu, potentially hindering therapeutic intervention. Salmonella induce polymyxin resistance during infection at levels of drug that far exceed dosages determined by MIC testing. Polymyxin treatment failed to control Salmonella infection and promotes the emergence of drug-resistant mutants.
Physicians rely on laboratory antimicrobial susceptibility testing of clinical isolates to identify a suitable antibiotic for therapy. Although the recommended antibiotics clear most bacterial infections, some patients fail to respond and require prolonged therapy, higher dosing or different antibiotics. Why does this occur and what are the possible implications? By studying antibiotic resistance in the context of infection, we identified a host-dependent mechanism that promotes antibiotic resistance at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. These findings question current antibiotic testing methods that have guided physician treatment practices and drug development for the last several decades.
Collapse
Affiliation(s)
| | - Douglas M Heithoff
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA ; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA
| | - Selvi C Ersoy
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - William R Shimp
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - John K House
- University of Sydney, Faculty of Veterinary Science, Camden, NSW, Australia
| | - Jamey D Marth
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA ; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA ; Sanford-Burnham Medical Research Institute, Cancer Research Center, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Sanford-Burnham Medical Research Institute, Cancer Research Center, La Jolla, CA 92037, USA
| | - Michael J Mahan
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA ; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
28
|
Bactericidal Activity of Ceragenin CSA-13 in Cell Culture and in an Animal Model of Peritoneal Infection. Antimicrob Agents Chemother 2015; 59:6274-82. [PMID: 26248361 DOI: 10.1128/aac.00653-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022] Open
Abstract
Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5). Additionally, the biodistribution and bactericidal activity of a CSA-13-IRDye 800CW derivate were assessed using an animal model of peritoneal infection after PAO1 challenge. In cell culture, CSA-13 bactericidal activities against PAO1 and Xen5 were higher than the activities of the human cathelicidin peptide LL-37. Increased CSA-13 activity was observed in polarized human lung epithelial cell cultures subjected to butyric acid treatment, which is known to increase endogenous LL-37 production. Eight hours after intravenous or intraperitoneal injection, the greatest CSA-13-IRDye 800CW accumulation was observed in mouse liver and kidneys. CSA-13-IRDye 800CW administration resulted in decreased bacterial outgrowth from abdominal fluid collected from animals subjected to intraperitoneal PAO1 infection. These observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity. Cationic lipids such as CSA-13 represent excellent candidates for the development of new antibacterial compounds.
Collapse
|
29
|
Discrimination between native and Tn6010-associated oqxAB in Klebsiella spp., Raoultella spp., and other Enterobacteriaceae by using a two-step strategy. Antimicrob Agents Chemother 2015; 59:5838-40. [PMID: 26124163 DOI: 10.1128/aac.00669-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
We developed a two-step PCR-based strategy to detect genes encoding OqxAB, allowing a specific assignment of Tn6010-associated oqxAB in Enterobacteriaceae. Chromosomal location in this setup was confirmed by hybridization with I-CeuI-restricted genomes. This approach led us to find that Klebsiella sp. and Raoultella sp. reference strains chromosomally carried oqxAB.
Collapse
|
30
|
Rodriguez-Martinez JM, Machuca J, Calvo J, Diaz-de-Alba P, Rodríguez-Mirones C, Gimeno C, Martinez-Martinez L, Pascual Á. Challenges to accurate susceptibility testing and interpretation of quinolone resistance in Enterobacteriaceae: results of a Spanish multicentre study. J Antimicrob Chemother 2015; 70:2038-47. [PMID: 25745103 DOI: 10.1093/jac/dkv059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/11/2015] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES The objective of this study was to evaluate the proficiency of Spanish laboratories with respect to accurate susceptibility testing and the detection and interpretation of quinolone resistance phenotypes in Enterobacteriaceae. METHODS Thirteen strains of Enterobacteriaceae were sent to 62 participating centres throughout Spain; strains harboured GyrA/ParC modifications, reduced permeability and/or plasmid-mediated quinolone resistance genes. The centres were requested to evaluate nalidixic acid and five quinolones, provide raw/interpreted clinical categories and to detect/infer resistance mechanisms. Consensus results from reference centres were used to assign minor, major and very major errors (mEs, MEs and VMEs, respectively). RESULTS Susceptibility testing in the participating centres was frequently performed using the MicroScan WalkAway, Vitek 2 and Wider systems (48%, 30% and 8%, respectively). CLSI/EUCAST breakpoints were used in 71%/29% of the determinations. The percentage of VMEs for all quinolones was well below 2%. Only ofloxacin and moxifloxacin showed higher values for raw VMEs (6.6%), which decreased to 0% and 2.9%, respectively, in the interpreted VMEs. These errors were particularly associated with the CC-03 strain [qnrS2 + aac(6')-Ib-cr]. For MEs, percentages were always <10%, except in the case of ofloxacin and nalidixic acid. There was a significantly higher percentage of all types of errors for strains whose MICs were at the border of clinical breakpoints. CONCLUSIONS The use of different breakpoints and methods, the complexity of mutation-driven and transferable resistance mechanisms and the absence of specific tests for detecting low-level resistance lead to high variability and represent a challenge to accuracy in susceptibility testing, particularly in strains with MICs on the border of clinical breakpoints.
Collapse
Affiliation(s)
- José-Manuel Rodriguez-Martinez
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Machuca
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Jorge Calvo
- Hospital Universitario Marques de Valdecilla and Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | - Cristina Rodríguez-Mirones
- Hospital Universitario Marques de Valdecilla and Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Concha Gimeno
- Servicio de Microbiología, Hospital General de Valencia, Valencia, Spain
| | - Luis Martinez-Martinez
- Hospital Universitario Marques de Valdecilla and Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Álvaro Pascual
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| |
Collapse
|
31
|
aac(6′)-Ib-cr is the major plasmid-mediated quinolone resistance determinant in extended-spectrum β-lactamase-producing Escherichia coli in eastern France. J Glob Antimicrob Resist 2014; 2:111-113. [DOI: 10.1016/j.jgar.2014.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 11/24/2022] Open
|
32
|
Abstract
![]()
Quinolones
are one of the most commonly prescribed classes of antibacterials
in the world and are used to treat a variety of bacterial infections
in humans. Because of the wide use (and overuse) of these drugs, the
number of quinolone-resistant bacterial strains has been growing steadily
since the 1990s. As is the case with other antibacterial agents, the
rise in quinolone resistance threatens the clinical utility of this
important drug class. Quinolones act by converting their targets,
gyrase and topoisomerase IV, into toxic enzymes that fragment the
bacterial chromosome. This review describes the development of the
quinolones as antibacterials, the structure and function of gyrase
and topoisomerase IV, and the mechanistic basis for quinolone action
against their enzyme targets. It will then discuss the following three
mechanisms that decrease the sensitivity of bacterial cells to quinolones.
Target-mediated resistance is the most common and clinically significant
form of resistance. It is caused by specific mutations in gyrase and
topoisomerase IV that weaken interactions between quinolones and these
enzymes. Plasmid-mediated resistance results from extrachromosomal
elements that encode proteins that disrupt quinolone–enzyme
interactions, alter drug metabolism, or increase quinolone efflux.
Chromosome-mediated resistance results from the underexpression of
porins or the overexpression of cellular efflux pumps, both of which
decrease cellular concentrations of quinolones. Finally, this review
will discuss recent advancements in our understanding of how quinolones
interact with gyrase and topoisomerase IV and how mutations in these
enzymes cause resistance. These last findings suggest approaches to
designing new drugs that display improved activity against resistant
strains.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ‡Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | |
Collapse
|
33
|
Jlili NEH, Réjiba S, Smaoui H, Guillard T, Chau F, Kechrid A, Cambau E. Trend of plasmid-mediated quinolone resistance genes at the Children's Hospital in Tunisia. J Med Microbiol 2013; 63:195-202. [PMID: 24194556 DOI: 10.1099/jmm.0.062216-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prevalence of plasmid-mediated quinolone resistance genes [qnr, aac(6')-Ib-cr and qepA] was sought among Enterobacteriaceae strains obtained from the Children's Hospital of Tunis (Tunisia). Non-duplicate isolates (n = 278) with resistance to extended-spectrum cephalosporins and collected in 2003, 2007, 2008 and 2009 were screened for qnr genes. Forty (14.4 %) isolates were qnr positive and were screened for the presence of the aac(6')-Ib-cr and qepA genes. qnrB was detected in 21 Klebsiella pneumoniae, 11 Escherichia coli and 6 Enterobacter cloacae isolates. Sequence analysis of the qnrB amplicons revealed variants including 24 qnrB1, 11 qnrB2 and 3 qnrB6. qnrS (qnrS1 allele) was detected only in K. pneumoniae isolates, either alone (two isolates) or with the qnrB gene (one isolate). The qnrA, qnrC and qnrD genes were not found in any of the 278 isolates. No qnr-positive isolates carried the qepA gene. Pyrosequencing results showed that aac(6')-Ib-cr, a variant of the aac(6')-Ib gene, was present in 31 qnr-positive isolates (21 K. pneumoniae isolates, seven Escherichia coli isolates and three Enterobacter cloacae isolates). aac(6')-Ib was also found either alone (two isolates) or in association with aac(6')-Ib-cr (one isolate). Of the 40 qnr-positive isolates, 92.5, 82.5, 57.5, 85 and 82.5 % were non-susceptible to nalidixic acid, ciprofloxacin, levofloxacin, ofloxacin and norfloxacin, respectively, and all were extended-spectrum β-lactamase producers. Random amplified polymorphic DNA-PCR typing of these isolates showed 16, 8 and 5 different genotypes in K. pneumoniae, Escherichia coli and Enterobacter cloacae isolates, respectively. Our study highlights the high prevalence of qnr in association with aac(6')-Ib-cr among Enterobacteriaceae isolates, even from children, who are patients not overtreated with quinolones.
Collapse
Affiliation(s)
- Nour El-Houda Jlili
- EA3964, Université Paris Diderot, Paris, France.,Unité de Recherche UR12ES01, Faculté de Médecine de Tunis, Université de Tunis El Manar; Laboratoire de Microbiologie, Hôpital d'Enfants Béchir Hamza, Bab Saadoun 1068, Tunis, Tunisia
| | - Samia Réjiba
- Département des Sciences Biologiques, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunis, Tunisia.,Unité de Recherche UR12ES01, Faculté de Médecine de Tunis, Université de Tunis El Manar; Laboratoire de Microbiologie, Hôpital d'Enfants Béchir Hamza, Bab Saadoun 1068, Tunis, Tunisia
| | - Hanen Smaoui
- Unité de Recherche UR12ES01, Faculté de Médecine de Tunis, Université de Tunis El Manar; Laboratoire de Microbiologie, Hôpital d'Enfants Béchir Hamza, Bab Saadoun 1068, Tunis, Tunisia
| | - Thomas Guillard
- Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Robert Debré, CHU Reims, F-51092 Reims, France.,EA3964, Université Paris Diderot, Paris, France
| | | | - Amel Kechrid
- Unité de Recherche UR12ES01, Faculté de Médecine de Tunis, Université de Tunis El Manar; Laboratoire de Microbiologie, Hôpital d'Enfants Béchir Hamza, Bab Saadoun 1068, Tunis, Tunisia
| | - Emmanuelle Cambau
- Laboratoire de Bactériologie, APHP, Hôpital Lariboisière, Paris, France.,EA3964, Université Paris Diderot, Paris, France
| |
Collapse
|