1
|
Díaz-Navarro M, Hafian R, Pérez-Granda MJ, Cercenado E, Muñoz P, Guembe M. Addressing catheter lock therapy: Does heparin reduce the bioactivity of dalbavancin when together in solution during freezing? ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:435-438. [PMID: 38705748 DOI: 10.1016/j.eimce.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/06/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION The possible use of dalbavancin as a catheter lock solution was previously demonstrated by our study group. However, it was needed to assess whether heparin could affect dalbavancin bioactivity during freezing storage. METHODS We tested the bioactivity of a dalbavancin+heparin (DH) vs. dalbavancin (D) against Staphylococcal biofilms comparing DH median value of cfu counts and metabolic activity with that obtained for D before and during storage under freezing up to 6 months. RESULTS Despite there was a slight decrease in the median percentage reduction of metabolic activity at month 3 in Staphylococcus epidermidis between DH and D (97.6 vs. 100, p=0.037), considering the clinical criteria, no significant reduction in any of the variables tested was observed at the end of the experiment between D and DH solutions. CONCLUSION The addition of heparin to a dalbavancin lock solution did not affect its bioactivity against staphylococcal biofilms irrespective of its preservation time under freezing.
Collapse
Affiliation(s)
- Marta Díaz-Navarro
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rama Hafian
- Biology Department, School of Biology, Universidad Complutense de Madrid, Spain
| | - María Jesús Pérez-Granda
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Emilia Cercenado
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Spain
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
2
|
Di Domenico EG, Oliva A, Guembe M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022; 10:microorganisms10071259. [PMID: 35888978 PMCID: PMC9322301 DOI: 10.3390/microorganisms10071259] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm is the trigger for the majority of infections caused by the ability of microorganisms to adhere to tissues and medical devices. Microbial cells embedded in the biofilm matrix are highly tolerant to antimicrobials and escape the host immune system. Thus, the refractory nature of biofilm-related infections (BRIs) still represents a great challenge for physicians and is a serious health threat worldwide. Despite its importance, the microbiological diagnosis of a BRI is still difficult and not routinely assessed in clinical microbiology. Moreover, biofilm bacteria are up to 100–1000 times less susceptible to antibiotics than their planktonic counterpart. Consequently, conventional antibiograms might not be representative of the bacterial drug susceptibility in vivo. The timely recognition of a BRI is a crucial step to directing the most appropriate biofilm-targeted antimicrobial strategy.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-914-269-595
| |
Collapse
|
3
|
Sivori F, Cavallo I, Kovacs D, Guembe M, Sperduti I, Truglio M, Pasqua M, Prignano G, Mastrofrancesco A, Toma L, Pimpinelli F, Morrone A, Ensoli F, Di Domenico EG. Role of Extracellular DNA in Dalbavancin Activity against Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilms in Patients with Skin and Soft Tissue Infections. Microbiol Spectr 2022; 10:e0035122. [PMID: 35416701 PMCID: PMC9045124 DOI: 10.1128/spectrum.00351-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become the leading cause of skin and soft tissue infections (SSTIs). Biofilm production further complicates patient treatment, contributing to increased bacterial persistence and antibiotic tolerance. The study aimed to explore the efficacy of different antibiotics on biofilm-producing MRSA isolated from patients with SSTI. A total of 32 MRSA strains were collected from patients with SSTI. The MIC and minimal biofilm eradication concentration (MBEC) were measured in planktonic and biofilm growth. The study showed that dalbavancin, linezolid, and vancomycin all inhibited MRSA growth at their EUCAST susceptible breakpoint. Of the MRSA strains, 87.5% (n = 28) were strong biofilm producers (SBPs), while only 12.5% (n = 4) were weak biofilm producers (WBPs). The MBEC90 values for dalbavancin were significantly lower than those of linezolid and vancomycin in all tested strains. We also found that extracellular DNA (eDNA) contributes to the initial microbial attachment and biofilm formation. The amount of eDNA differed among MRSA strains and was significantly higher in those isolates with high dalbavancin and vancomycin tolerance. Exogenously added DNA increased the MBEC90 and protection of biofilm cells from dalbavancin activity. Of note, the relative abundance of eDNA was higher in MRSA biofilms exposed to MBEC90 dalbavancin than in untreated MRSA biofilms and those exposed to sub-MIC90. Overall, dalbavancin was the most active antibiotic against MRSA biofilms at concentrations achievable in the human serum. Moreover, the evidence of a drug-related increase of eDNA and its contribution to antimicrobial drug tolerance reveals novel potential targets for antibiofilm strategies against MRSA. IMPORTANCE Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs) worldwide. In addition, methicillin-resistant S. aureus (MRSA) is increasingly frequent in postoperative infections and responsible for a large number of hospital readmissions and deaths. Biofilm formation by S. aureus is a primary risk factor in SSTIs, due to a higher antibiotic tolerance. Our study showed that the biofilm-forming capacity varied among MRSA strains, although strong biofilm producers were significantly more abundant than weak biofilm producer strains. Notably, dalbavancin demonstrated a potent antibiofilm activity at concentrations achievable in human serum. Nevertheless, dalbavancin activity was affected by an increased concentration of extracellular DNA in the biofilm matrix. This study provides novel insight for designing more targeted therapeutic strategies against MRSA and to prevent or eradicate harmful biofilms.
Collapse
Affiliation(s)
- Francesca Sivori
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Daniela Kovacs
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Maria Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Isabella Sperduti
- Biostatistical Unit-Clinical Trials Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mauro Truglio
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, Rome, Italy
| | - Grazia Prignano
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | | | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Aldo Morrone
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Fabrizio Ensoli
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Enea Gino Di Domenico
- Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Rome, Italy
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Effect of Tranexamic Acid against Staphylococcus spp. and Cutibacterium acnes Associated with Peri-Implant Infection: Results from an In Vitro Study. Microbiol Spectr 2022; 10:e0161221. [PMID: 35171021 PMCID: PMC8849059 DOI: 10.1128/spectrum.01612-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tranexamic acid (TXA) is extensively used in orthopedic surgery and traumatology as an antifibrinolytic agent to control intra- and postoperative bleeding and, therefore, indirectly, to reduce postsurgery infection rates. The hypothesis of an additional antibiotic effect against microorganisms associated with periprosthetic joint infection needs to be further evaluated. We aimed to assess whether TXA could reduce bacterial growth using an in vitro model. ATCC and clinical strains of staphylococci and Cutibacterium acnes were tested against TXA in both planktonic and sessile forms. We recorded the percent reduction in the following variables: log CFU/mL by microbiological culture, percentage of live cells by confocal laser scanning microscopy, and, additionally in sessile cells, metabolic activity by the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT) assay. Variables were compared between groups using the Kruskal-Wallis test, and the results were reported as median (interquartile range [IQR]). Statistical significance was set at a P value of <0.05. Clinical significance was defined as a reduction of ≥25%. TXA at 50 mg/mL led to a slight reduction in CFU counts (4.5%). However, it was at 10 mg/mL that the reduction reached 27.2% and 33.0% for log CFU/mL counts and percentage of live cells, respectively. TXA was not efficacious for reducing preformed 24-h mature staphylococci and 48-h mature C. acnes biofilms, regardless of its concentration. TXA did not exert an antimicrobial effect against bacterial biofilms. However, when bacteria were in the planktonic form, it led to a clinically and statistically significant reduction in bacterial growth at 10 mg/mL. IMPORTANCE The possible use of TXA as an antibiotic agent in addition to its antifibrinolytic effect may play an important role in the prevention of prosthetic joint infection.
Collapse
|
5
|
Díaz-Navarro M, Hafian R, Manzano I, Pérez-Granda MJ, Cercenado E, Pascual C, Rodríguez C, Muñoz P, Guembe M. A Dalbavancin Lock Solution Can Reduce Enterococcal Biofilms After Freezing. Infect Dis Ther 2022; 11:743-755. [PMID: 35034289 PMCID: PMC8960518 DOI: 10.1007/s40121-021-00579-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction We previously demonstrated the efficacy of a frozen dalbavancin–heparin (DH) lock solution against biofilms of staphylococci. However, as enterococci also commonly cause catheter-related bloodstream infections (C-RBSI), we assessed the bioactivity of frozen dalbavancin (D) and DH against enterococci. Methods Over 6 months, we compared the bioactivity of a solution of DH (1 mg/ml) with that of D in terms of cfu counts and metabolic activity against biofilms of Enterococcus faecalis and Enterococcus faecium (four strains each). For each solution, we individually compared results obtained at each time point (months 3 and 6) with baseline (month 0). We also compared the median DH value of each variable at baseline and at months 3 and 6 of freezing with the values obtained for D alone. We used both statistical and clinical criteria when results were within 25% of the reference value. Results At the end of the experiment (month 6), neither a statistically nor a clinically significant reduction in the bioactivity of D solution was observed in terms of cfu count and metabolic activity against enterococcal biofilms. Regarding the DH solution, we found both statistical and clinical significance in the median percentage reduction in metabolic activity between months 0 and 6 in E. faecalis strains (51.8% vs. 77.8%, P = 0.007). Moreover, after freezing, the DH solution lost significant bioactivity compared with the D solution, especially in E. faecalis. Conclusion A dalbavancin lock solution can be frozen for up to 6 months with no negative effect on its bioactivity against enterococcal biofilms. However, when combined with heparin, its efficacy was reduced. Therefore, we recommend that if lock therapy with frozen dalbavancin is used in the management of enterococcal C-RBSI, heparin should be added simultaneously at the time of catheter lock.
Collapse
Affiliation(s)
- Marta Díaz-Navarro
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rama Hafian
- Biology Department, School of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Manzano
- Biology Department, School of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Pérez-Granda
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Emilia Cercenado
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo, 46, 28007, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Pascual
- Hematology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Carmen Rodríguez
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo, 46, 28007, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|