1
|
Shchemelev AN, Semenov AV, Ostankova YV, Naidenova EV, Zueva EB, Valutite DE, Churina MA, Virolainen PA, Totolian AA. [Genetic diversity of the human immunodeficiency virus (HIV-1) in the Kaliningrad region]. Vopr Virusol 2022; 67:310-321. [PMID: 36097712 DOI: 10.36233/0507-4088-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION As is currently known, the epidemic process in the Kaliningrad Region was mainly associated with the spread of the recombinant form of HIV-1 (CRF03_AB); however, regular HIV importations from other countries and continents has created favorable conditions for emergence and spread of various recombinant forms of the virus.The most complete information on the diversity of recombinant forms in the region is also necessary to understand the structure of drug resistance (DR). The aim of the study was to explore the HIV-1 genetic diversity in the Kaliningrad Region. MATERIALS AND METHODS We studied 162 blood plasma samples obtained from patients from the Kaliningrad Region, both with confirmed virological failure of antiretroviral therapy (ART) and with newly diagnosed HIV infection. For reverse transcription and amplification of HIV genome fragments, diagnostic «AmpliSense HIVResist-Seq». RESULTS AND DISCUSSION The various recombinants between subtypes A and B (74%) were predominant in study group: recombinant was between CRF03_AB and subtype A (33.95%) and CRF03_AB-like (13.58%) were the most common. Among the "pure" subtypes of the virus, subtype A6 (16.67%). The circulation of subtypes B (3.70%) and G (1.23%) was also noted.Ninety-six patients (59.26%) were identified with at least one mutation associated with antiretroviral (ARV) drug resistance. CONCLUSION The observed diversity of subtypes and recombinant forms of the virus implies that the new recombinants are actively emerging in the studied region, both between existing recombinant forms and "pure" subtypes, as well as between "pure" subtypes.
Collapse
Affiliation(s)
- A N Shchemelev
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A V Semenov
- Ekaterinburg Research Institute of Viral Infections of the Federal Research Institute, State Research Center for Virology and Biotechnology "Vector" of the Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - Yu V Ostankova
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E V Naidenova
- FSSI Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E B Zueva
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - D E Valutite
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - M A Churina
- St. Petersburg GBUZ «Botkin Clinical Infectious Diseases Hospital»
| | - P A Virolainen
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A A Totolian
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| |
Collapse
|
2
|
Giacomelli A, Pezzati L, Rusconi S. The crosstalk between antiretrovirals pharmacology and HIV drug resistance. Expert Rev Clin Pharmacol 2020; 13:739-760. [PMID: 32538221 DOI: 10.1080/17512433.2020.1782737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The clinical development of antiretroviral drugs has been followed by a rapid and concomitant development of HIV drug resistance. The development and spread of HIV drug resistance is due on the one hand to the within-host intrinsic HIV evolutionary rate and on the other to the wide use of low genetic barrier antiretrovirals. AREAS COVERED We searched PubMed and Embase on 31 January 2020, for studies reporting antiretroviral resistance and pharmacology. In this review, we assessed the molecular target and mechanism of drug resistance development of the different antiretroviral classes focusing on the currently approved antiretroviral drugs. Then, we assessed the main pharmacokinetic/pharmacodynamic of the antiretrovirals. Finally, we retraced the history of antiretroviral treatment and its interconnection with antiretroviral worldwide resistance development both in , and middle-income countries in the perspective of 90-90-90 World Health Organization target. EXPERT OPINION Drug resistance development is an invariably evolutionary driven phenomenon, which challenge the 90-90-90 target. In high-income countries, the antiretroviral drug resistance seems to be stable since the last decade. On the contrary, multi-intervention strategies comprehensive of broad availability of high genetic barrier regimens should be implemented in resource-limited setting to curb the rise of drug resistance.
Collapse
Affiliation(s)
- Andrea Giacomelli
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| | - Laura Pezzati
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| | - Stefano Rusconi
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| |
Collapse
|
3
|
Himmel DM, Arnold E. Non-Nucleoside Reverse Transcriptase Inhibitors Join Forces with Integrase Inhibitors to Combat HIV. Pharmaceuticals (Basel) 2020; 13:ph13060122. [PMID: 32545407 PMCID: PMC7345359 DOI: 10.3390/ph13060122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the treatment of acquired immune deficiency syndrome (AIDS), the diarylpyrimidine (DAPY) analogs etravirine (ETR) and rilpivirine (RPV) have been widely effective against human immunodeficiency virus (HIV) variants that are resistant to other non-nucleoside reverse transcriptase inhibitors (NNRTIs). With non-inferior or improved efficacy, better safety profiles, and lower doses or pill burdens than other NNRTIs in the clinic, combination therapies including either of these two drugs have led to higher adherence than other NNRTI-containing treatments. In a separate development, HIV integrase strand transfer inhibitors (INSTIs) have shown efficacy in treating AIDS, including raltegravir (RAL), elvitegravir (EVG), cabotegravir (CAB), bictegravir (BIC), and dolutegravir (DTG). Of these, DTG and BIC perform better against a wide range of resistance mutations than other INSTIs. Nevertheless, drug-resistant combinations of mutations have begun to emerge against all DAPYs and INSTIs, attributable in part to non-adherence. New dual therapies that may promote better adherence combine ETR or RPV with an INSTI and have been safer and non-inferior to more traditional triple-drug treatments. Long-acting dual- and triple-therapies combining ETR or RPV with INSTIs are under study and may further improve adherence. Here, highly resistant emergent mutations and efficacy data on these novel treatments are reviewed. Overall, ETR or RPV, in combination with INSTIs, may be treatments of choice as long-term maintenance therapies that optimize efficacy, adherence, and safety.
Collapse
Affiliation(s)
- Daniel M. Himmel
- Himmel Sci Med Com, L.L.C., Bala Cynwyd, PA 19004, USA
- Correspondence: ; Tel.: +1-848-391-5973
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
4
|
Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. J Med Chem 2018; 62:4851-4883. [PMID: 30516990 DOI: 10.1021/acs.jmedchem.8b00843] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection is now pandemic. Targeting HIV-1 reverse transcriptase (HIV-1 RT) has been considered as one of the most successful targets for the development of anti-HIV treatment. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity, and low toxicity in antiretroviral combination therapies used to treat HIV. Until now, >50 structurally diverse classes of compounds have been reported as NNRTIs. Among them, six NNRTIs were approved for HIV-1 treatment, namely, nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV), and doravirine (DOR). In this perspective, we focus on the six NNRTIs and lessons learned from their journey through development to clinical studies. It demonstrates the obligatory need of understanding the physicochemical and biological principles (lead optimization), resistance mutations, synthesis, and clinical requirements for drugs.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry , Sree Vidyanikethan College of Pharmacy , Tirupathi , Andhra Pradesh 517102 , India
| | | | - Sonali Kurup
- College of Pharmacy , Roosevelt University , Schaumburg , Illinois 60173 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 , Odense M , Denmark
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha 68198-5880 , United States
| |
Collapse
|
5
|
Diphoko T, Gaseitsiwe S, Kasvosve I, Moyo S, Okatch H, Musonda R, Wainberg M, Makhema J, Marlink R, Novitsky V, Essex M. Prevalence of Rilpivirine and Etravirine Resistance Mutations in HIV-1 Subtype C-Infected Patients Failing Nevirapine or Efavirenz-Based Combination Antiretroviral Therapy in Botswana. AIDS Res Hum Retroviruses 2018; 34:667-671. [PMID: 29732907 PMCID: PMC6079649 DOI: 10.1089/aid.2017.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rilpivirine (RPV) and Etravirine (ETR) are approved second-generation non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment. There is a cross-resistance HIV mutation profile between first- and second-generation NNRTI drugs. We determined the prevalence of HIV-1 drug resistance mutations (DRMs) to RPV and ETR in Botswana. A total of 168 HIV-1 polymerase gene sequences from participants failing nevirapine (NVP)- or efavirenz (EFV)-containing regimens were analyzed for DRMs using the Stanford University HIV drug resistance database. Forty-one sequences were from an adult antiretroviral therapy (ART) study, the Tshepo study, and 127 from a prevention of mother-to-child transmission (PMTCT) study, the Mashi study, all conducted in Botswana. Prevalence of RPV and ETR highest DRM in the adult ART study (n = 41) were K101E (26.2%), E138A (23.8%), and Y181C (26.2%). The PMTCT cohort's (n = 127) high prevalence mutations were Y181C (15.7%), E138A (15%), and K101E (11%). A total of 42.9% and 3.2% of patients in the adult ART study and PMTCT study, respectively, had three or more NNRTI mutations at virologic failure. We identified HIV-1 mutations conferring resistance to RPV and ETR even though they have not been used in Botswana. Of concern was the high proportion of sequences from the adult ART study that displayed multiple DRMs; as the number of NNRTI mutations increases, the level of cross-resistance increases. It is plausible that patients displaying such profiles maybe at increased risk of failing second-generation NNRTI drugs, hence, calls for genotyping in patients with prior NVP or efavirenz exposure before prescription of RPV- or ETR-containing cART.
Collapse
Affiliation(s)
- Thabo Diphoko
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts
| | - Ishmael Kasvosve
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts
| | - Harriet Okatch
- Centre for Public Health Initiatives, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rosemary Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts
| | - Mark Wainberg
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts
| | - Richard Marlink
- Rutgers Global Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey
| | - Vladimir Novitsky
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts
| | - Max Essex
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts
| |
Collapse
|
6
|
Frequent Cross-Resistance to Dapivirine in HIV-1 Subtype C-Infected Individuals after First-Line Antiretroviral Therapy Failure in South Africa. Antimicrob Agents Chemother 2017; 61:AAC.01805-16. [PMID: 27895013 DOI: 10.1128/aac.01805-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC50) from 12 recombinant subtype C HIV-1LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC50s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring.
Collapse
|
7
|
Moura MES, da Guarda Reis MN, Lima YAR, Eulálio KD, Cardoso LPV, Stefani MMA. HIV-1 transmitted drug resistance and genetic diversity among patients from Piauí State, Northeast Brazil. J Med Virol 2015; 87:798-806. [PMID: 25649362 DOI: 10.1002/jmv.24087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2014] [Indexed: 11/10/2022]
Abstract
HIV-1 transmitted-drug-resistance and genetic diversity are dynamic and may differ in distinct locations/risk groups. In Brazil, increased AIDS incidence and related mortality have been detected in the Northeast region, differently from the epicenter in the Southeast. This cross-sectional study describes transmitted-dru- resistance and HIV-1 subtypes in protease/PR and reverse transcriptase/RT regions among antiretroviral naïve patients from Piauí State, Northeast Brazil. Among 96 patients recruited 89 (92.7%) had HIV-1 PR/RT regions sequenced: 44 females and 45 males, 22 self-declared as men who have sex with men. Transmitted-drug-resistance was investigated by CPR tool (Stanford HIV-1 Drug Resistance/SDRM). HIV-1 subtypes were assigned by REGA and phylogenetic inference. Overall, transmitted-drug-resistance rate was 11.2% (10/89; CI 95%: 5.8-19.1%); 22.7% among men who have sex with men (5/22; CI 95%: 8.8-43.4%), 10% in heterosexual men (2/20; CI 95%: 1.7-29.3%) and 6.8% in women (3/44; CI 95%: 1.8-17.4%). Singleton mutations to protease-inhibitor/PI, nucleoside-reverse-transcriptase-inhibitor/NRTI or non-nucleoside-reverse-transcriptase-inhibitor/NNRTI predominated (8/10): PI mutations (M46L, V82F, L90M); NRTI mutations (M41L, D67N) and NNRTI mutations (K103N/S). Dual class resistance mutations to NRTI and NNRTI were observed: T215L (NRTI), Y188L (NNRTI) and T215N (NRTI), F227L (NNRTI). Subtype B prevailed (86.6%; 77/89), followed by subtype F1 (1.1%, 1/89) and subtype C (1.1%, 1/89). B/F1 and B/C intersubtype recombinants represented 11.2% (10/89). In Piauí State extensive testing of incidence and transmitted-drug-resistance in all populations with risk behaviors may help control AIDS epidemic locally.
Collapse
|
8
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Effects of the W153L substitution in HIV reverse transcriptase on viral replication and drug resistance to multiple categories of reverse transcriptase inhibitors. Antimicrob Agents Chemother 2014; 58:4515-26. [PMID: 24867966 DOI: 10.1128/aac.02729-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A W153L substitution in HIV-1 reverse transcriptase (RT) was recently identified by selection with a novel nucleotide-competing RT inhibitor (NcRTI) termed compound A that is a member of the benzo[4,5]furo[3,2,d]pyrimidin-2-one NcRTI family of drugs. To investigate the impact of W153L, alone or in combination with the clinically relevant RT resistance substitutions K65R (change of Lys to Arg at position 65), M184I, K101E, K103N, E138K, and Y181C, on HIV-1 phenotypic susceptibility, viral replication, and RT enzymatic function, we generated recombinant RT enzymes and viruses containing each of these substitutions or various combinations of them. We found that W153L-containing viruses were impaired in viral replicative capacity and were hypersusceptible to tenofovir (TFV) while retaining susceptibility to most nonnucleoside RT inhibitors. The nucleoside 3TC retained potency against W153L-containing viruses but not when the M184I substitution was also present. W153L was also able to reverse the effects of the K65R substitution on resistance to TFV, and K65R conferred hypersusceptibility to compound A. Biochemical assays demonstrated that W153L alone or in combination with K65R, M184I, K101E, K103N, E138K, and Y181C impaired enzyme processivity and polymerization efficiency but did not diminish RNase H activity, providing mechanistic insights into the low replicative fitness associated with these substitutions. We show that the mechanism of the TFV hypersusceptibility conferred by W153L is mainly due to increased efficiency of TFV-diphosphate incorporation. These results demonstrate that compound A and/or derivatives thereof have the potential to be important antiretroviral agents that may be combined with tenofovir to achieve synergistic results.
Collapse
|
10
|
Abstract
OBJECTIVE The M184V mutation in the HIV-1 reverse transcriptase gene is frequent (>50%) in patients, both in resource-rich and resource-limited countries, conferring high-level resistance (>100-fold) to the cytosine analog reverse transcriptase inhibitors lamivudine and emtricitabine. The reverse transcriptase enzyme of M184V HIV-1 mutants has reduced processivity, resulting in reduced viral replication, particularly at low deoxynucleotide (dNTP) levels. We hypothesized that lowering intracellular dNTPs with resveratrol, a dietary supplement, could interfere with replication of M184V HIV-1 mutants. DESIGN AND METHODS Evaluation of the activity of resveratrol on infection of primary peripheral blood lymphocytes by wild-type and M184V mutant HIV-1. We assayed both molecular clones and primary isolates of HIV-1, containing M184V alone and in combination with other reverse transcriptase mutations. Viral infection was quantified by p24 ELISA and by quantitative real-time PCR analysis. Cell viability was measured by colorimetric 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. RESULTS In virus-infectivity assays, resveratrol did not inhibit replication of wild-type NL4-3 (resveratrol EC50 > 10 μmol/l), but it inhibited NL4-3 184V mutant (resveratrol EC50 = 5.8 μmol/l). These results were confirmed by real-time PCR analysis of early and late products of reverse transcription. Resveratrol inhibited molecular clones and primary isolates carrying M184V, alone or in combination with other reverse transcriptase mutations (resveratrol EC50 values ranging from 2.5 to 7.7 μmol/l). CONCLUSIONS Resveratrol inhibits HIV-1 strains carrying the M184V mutation in reverse transcriptase. We propose resveratrol as a potential adjuvant in HIV-1 therapy, particularly in resource-limited settings, to help control emtricitabine-resistant M184V HIV-1 mutants.
Collapse
|