1
|
Miari VF, Bonnin W, Smith IKG, Horney MF, Saint-Geris SJ, Stabler RA. Carriage and antimicrobial susceptibility of commensal Neisseria species from the human oropharynx. Sci Rep 2024; 14:25017. [PMID: 39443592 PMCID: PMC11499998 DOI: 10.1038/s41598-024-75130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Commensal Neisseria (Nc) mainly occupy the oropharynx of humans and animals. These organisms do not typically cause disease; however, they can act as a reservoir for antimicrobial resistance genes that can be acquired by pathogenic Neisseria species. This study characterised the carriage and antimicrobial susceptibility profiles of Nc from the oropharynx of 50 participants. Carriage prevalence of Nc species was 86% with 66% of participants colonised with more than one isolate. Isolates were identified by MALDI-ToF and the most common species was N. subflava (61.4%). Minimum inhibitory concentrations (MICs) to penicillin, ceftriaxone, ciprofloxacin, azithromycin, tetracycline, and gentamicin were determined by agar dilution and E-test was used for cefixime. Using Ng CLSI/EUCAST guidelines, Nc resistance rates were above the WHO threshold of 5% resistance in circulating strains for changing the first line treatment empirical antimicrobial: 5% (CLSI) and 13 (EUCAST) for ceftriaxone and 29.3% for azithromycin. Whole genome sequencing of 30 Nc isolates was performed, which identified AMR genes to macrolides and tetracycline. Core gene MLST clustered Nc into three main groups. Gonococcal DNA uptake sequences were identified in two Nc clusters. This suggests that Nc have the potential AMR gene pool and transfer sequences that can result in resistance transfer to pathogenic Neisseria within the nasopharyngeal niche.
Collapse
Affiliation(s)
- Victoria F Miari
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK.
| | - Wesley Bonnin
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Imogen K G Smith
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Megan F Horney
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | | | - Richard A Stabler
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| |
Collapse
|
2
|
Huang PW, Liou CY, Lee YC, Wei TY, Ho HC, Yang TY, Wang LC. The Evaluation of Teleost-Derived Antimicrobial Peptides Against Neisseria gonorrhoeae. Cureus 2024; 16:e57168. [PMID: 38681331 PMCID: PMC11056026 DOI: 10.7759/cureus.57168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Gonorrhea has become an emerging sexually transmitted infection worldwide. The multi-antibiotic resistance facilitates the transmission; thus, new antibiotics or alternatives are needed. Antimicrobial peptides (AMP) are antimicrobials naturally secreted by the host as a defense material. Teleost-derived AMP have gained attention over the past two decades due to their potent efficacy toward microorganisms. This study examines teleost-derived AMP against Neisseria gonorrhoeae (GC), the responsible bacteria for gonorrhea, to evaluate the antibiotic potential as a future alternative for preventing gonorrhea. Methods Minimal inhibitory concentration (MIC) and time-killed assay were conducted to evaluate the inhibition concentration of each AMP. Transmission electron microscopy was used to confirm the potential mode of action. The inhibition of microcolony formation and adherence to epithelial cells were examined to assess the infection inhibition. Results Pardaxin-based (flatfish pardaxin {PB2}) and piscidin-based (striped bass piscidin 1 {PIS} and tilapia piscidin {TP} 4) AMP were effective toward GC under or equal to 7.5 μg/mL as of minimal inhibitory concentration. Transmission electron microscopy images revealed that these AMP attack bacterial membranes as membrane blebbing and breakage were observed. These AMP also effectively reduced the GC biofilm formation, as well as their adherence to human endocervical epithelial cells. Conclusion Pardaxin-based (PB2) and piscidin-based (PIS and TP4) teleost-derived AMP can inhibit GC and potentially serve as the new antibiotic alternative for preventing GC colonization and infection. This study will shed some light on the future development of teleost-derived AMP in treating gonorrhea and maintaining reproductive health.
Collapse
Affiliation(s)
- Po-Wei Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
- Division of Urology, Department of Surgery, Zuoying Armed Forces General Hospital, Kaohsiung, TWN
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Kaohsiung, TWN
- Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung, TWN
| | - Chung-Yi Liou
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| | - Ying-Chen Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| | - Tzu-Yu Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, TWN
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, TWN
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| |
Collapse
|
3
|
Yao L, Liu Q, Lei Z, Sun T. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review. Int J Biol Macromol 2023; 253:126819. [PMID: 37709236 DOI: 10.1016/j.ijbiomac.2023.126819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The escalating global prevalence of antimicrobial resistance poses a critical threat, prompting concerns about its impact on public health. This predicament is exacerbated by the acute shortage of novel antimicrobial agents, a scarcity attributed to the rapid surge in bacterial resistance. This review delves into the realm of antimicrobial peptides, a diverse class of compounds ubiquitously present in plants and animals across various natural organisms. Renowned for their intrinsic antibacterial activity, these peptides provide a promising avenue to tackle the intricate challenge of bacterial resistance. However, the clinical utility of peptide-based drugs is hindered by limited bioavailability and susceptibility to rapid degradation, constraining efforts to enhance the efficacy of bacterial infection treatments. The emergence of nanocarriers marks a transformative approach poised to revolutionize peptide delivery strategies. This review elucidates a promising framework involving nanocarriers within the realm of antimicrobial peptides. This paradigm enables meticulous and controlled peptide release at infection sites by detecting dynamic shifts in microenvironmental factors, including pH, ROS, GSH, and reactive enzymes. Furthermore, a glimpse into the future reveals the potential of targeted delivery mechanisms, harnessing inflammatory responses and intricate signaling pathways, including adenosine triphosphate, macrophage receptors, and pathogenic nucleic acid entities. This approach holds promise in fortifying immunity, thereby amplifying the potency of peptide-based treatments. In summary, this review spotlights peptide nanosystems as prospective solutions for combating bacterial infections. By bridging antimicrobial peptides with advanced nanomedicine, a new therapeutic era emerges, poised to confront the formidable challenge of antimicrobial resistance head-on.
Collapse
Affiliation(s)
- Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
4
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional regulation of the mtrCDE efflux pump operon: importance for Neisseria gonorrhoeae antimicrobial resistance. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35916832 DOI: 10.1099/mic.0.001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review focuses on the mechanisms of transcriptional control of an important multidrug efflux pump system (MtrCDE) possessed by Neisseria gonorrhoeae, the aetiological agent of the sexually transmitted infection termed gonorrhoea. The mtrCDE operon that encodes this tripartite protein efflux pump is subject to both cis- and trans-acting transcriptional factors that negatively or positively influence expression. Critically, levels of MtrCDE can influence levels of gonococcal susceptibility to classical antibiotics, host-derived antimicrobials and various biocides. The regulatory systems that control mtrCDE can have profound influences on the capacity of gonococci to resist current and past antibiotic therapy regimens as well as virulence. The emergence, mechanisms of action and clinical significance of the transcriptional regulatory systems that impact mtrCDE expression in gonococci are reviewed here with the aim of linking bacterial antimicrobial resistance with multidrug efflux capability.
Collapse
Affiliation(s)
- Julio C Ayala
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Jacqueline T Balthazar
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - William M Shafer
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA.,Laboratories of Bacterial Pathogenesis, VA Medical Center (Atlanta), Decatur, Georgia, 30033, USA.,The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|