1
|
van der Horst D, Carter-Timofte ME, Danneels A, Silva da Costa L, Kurmasheva N, Thielke AL, Hansen AL, Chorošajev V, Holm CK, Belouzard S, de Weber I, Beny C, Olagnier D. Large-scale deep learning identifies the antiviral potential of PKI-179 and MTI-31 against coronaviruses. Antiviral Res 2024; 231:106012. [PMID: 39332537 DOI: 10.1016/j.antiviral.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global pandemic of Coronavirus Disease (2019) (COVID-19), underscoring the urgency for effective antiviral drugs. Despite the development of different vaccination strategies, the search for specific antiviral compounds remains crucial. Here, we combine machine learning (ML) techniques with in vitro validation to efficiently identify potential antiviral compounds. We overcome the limited amount of SARS-CoV-2 data available for ML using various techniques, supplemented with data from diverse biomedical assays, which enables end-to-end training of a deep neural network architecture. We use its predictions to identify and prioritize compounds for in vitro testing. Two top-hit compounds, PKI-179 and MTI-31, originally identified as Pi3K-mTORC1/2 pathway inhibitors, exhibit significant antiviral activity against SARS-CoV-2 at low micromolar doses. Notably, both compounds outperform the well-known mTOR inhibitor rapamycin. Furthermore, PKI-179 and MTI-31 demonstrate broad-spectrum antiviral activity against SARS-CoV-2 variants of concern and other coronaviruses. In a physiologically relevant model, both compounds show antiviral effects in primary human airway epithelial (HAE) cultures derived from healthy donors cultured in an air-liquid interface (ALI). This study highlights the potential of ML combined with in vitro testing to expedite drug discovery, emphasizing the adaptability of AI-driven approaches across different viruses, thereby contributing to pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Adeline Danneels
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | - Naziia Kurmasheva
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Anne L Thielke
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | | | | | - Christian K Holm
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | | | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark.
| |
Collapse
|
2
|
de Hilster RHJ, Reinders-Luinge MA, Schuil A, Borghuis T, Harmsen MC, Burgess JK, Hylkema MN. A 3D Epithelial-Mesenchymal Co-Culture Model of the Airway Wall Using Native Lung Extracellular Matrix. Bioengineering (Basel) 2024; 11:946. [PMID: 39329688 PMCID: PMC11428669 DOI: 10.3390/bioengineering11090946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by ongoing inflammation, impaired tissue repair, and aberrant interplay between airway epithelium and fibroblasts, resulting in an altered extracellular matrix (ECM) composition. The ECM is the three-dimensional (3D) scaffold that provides mechanical support and biochemical signals to cells, now recognized not only as a consequence but as a potential driver of disease progression. To elucidate how the ECM influences pathophysiological changes occurring in COPD, in vitro models are needed that incorporate the ECM. ECM hydrogels are a novel experimental tool for incorporating the ECM in experimental setups. We developed an airway wall model by combining lung-derived ECM hydrogels with a co-culture of primary human fibroblasts and epithelial cells at an air-liquid interface. Collagen IV and a mixture of collagen I, fibronectin, and bovine serum albumin were used as basement membrane-mimicking coatings. The model was initially assembled using porcine lung-derived ECM hydrogels and subsequently with COPD and non-COPD human lung-derived ECM hydrogels. The resulting 3D construct exhibited considerable contraction and supported co-culture, resulting in a differentiated epithelial layer. This multi-component 3D model allows the investigation of remodelling mechanisms, exploring ECM involvement in cellular crosstalk, and holds promise as a model for drug discovery studies exploring ECM involvement in cellular interactions.
Collapse
Affiliation(s)
- Roderick H. J. de Hilster
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Marjan A. Reinders-Luinge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
| | - Annemarie Schuil
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
| | - Theo Borghuis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- KOLFF Institute—REGENERATE, University of Groningen, University Medical Center Groningen, FB41, 9713 AV Groningen, The Netherlands
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- KOLFF Institute—REGENERATE, University of Groningen, University Medical Center Groningen, FB41, 9713 AV Groningen, The Netherlands
| | - Machteld N. Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
3
|
González-Paz L, Lossada C, Hurtado-León ML, Vera-Villalobos J, Paz JL, Marrero-Ponce Y, Martinez-Rios F, Alvarado Y. Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data. ACS OMEGA 2024; 9:8923-8939. [PMID: 38434903 PMCID: PMC10905729 DOI: 10.1021/acsomega.3c06968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Recent reports have suggested that the susceptibility of cells to SARS-CoV-2 infection can be influenced by various proteins that potentially act as receptors for the virus. To investigate this further, we conducted simulations of viral dynamics using different cellular systems (Vero E6, HeLa, HEK293, and CaLu3) in the presence and absence of drugs (anthelmintic, ARBs, anticoagulant, serine protease inhibitor, antimalarials, and NSAID) that have been shown to impact cellular recognition by the spike protein based on experimental data. Our simulations revealed that the susceptibility of the simulated cell systems to SARS-CoV-2 infection was similar across all tested systems. Notably, CaLu3 cells exhibited the highest susceptibility to SARS-CoV-2 infection, potentially due to the presence of receptors other than ACE2, which may account for a significant portion of the observed susceptibility. Throughout the study, all tested compounds showed thermodynamically favorable and stable binding to the spike protein. Among the tested compounds, the anticoagulant nafamostat demonstrated the most favorable characteristics in terms of thermodynamics, kinetics, theoretical antiviral activity, and potential safety (toxicity) in relation to SARS-CoV-2 spike protein-mediated infections in the tested cell lines. This study provides mathematical and bioinformatic models that can aid in the identification of optimal cell lines for compound evaluation and detection, particularly in studies focused on repurposed drugs and their mechanisms of action. It is important to note that these observations should be experimentally validated, and this research is expected to inspire future quantitative experiments.
Collapse
Affiliation(s)
- Lenin González-Paz
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - Carla Lossada
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - María Laura Hurtado-León
- Facultad
Experimental de Ciencias (FEC). Departamento de Biología. Laboratorio
de Genética y Biología Molecular (LGBM),Universidad del Zulia (LUZ),Maracaibo 4001, República Bolivariana de Venezuela
| | - Joan Vera-Villalobos
- Facultad
de Ciencias Naturales y Matemáticas, Departamento de Química
y Ciencias Ambientales, Laboratorio de Análisis Químico
Instrumental (LAQUINS), Escuela Superior
Politécnica del Litoral, Guayaquil EC090112, Ecuador
| | - José L. Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Cercado de Lima, Lima 15081, Perú
| | - Yovani Marrero-Ponce
- Grupo
de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias
de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades
Médicas; e Instituto de Simulación Computacional (ISC-USFQ),
Diego de Robles y vía Interoceánica, Universidad San Francisco de Quito (USFQ), Quito, Pichincha 170157, Ecuador
| | - Felix Martinez-Rios
- Universidad
Panamericana. Facultad de Ingeniería. Augusto Rodin 498, Ciudad de México 03920, México
| | - Ysaías.
J. Alvarado
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Química Biofísica
Teórica y Experimental (LQBTE),Instituto
Venezolano de Investigaciones Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana
de Venezuela
| |
Collapse
|
4
|
Eastman RT, Rusinova R, Herold KF, Huang XP, Dranchak P, Voss TC, Rana S, Shrimp JH, White AD, Hemmings HC, Roth BL, Inglese J, Andersen OS, Dahlin JL. Nonspecific membrane bilayer perturbations by ivermectin underlie SARS-CoV-2 in vitro activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563088. [PMID: 37961094 PMCID: PMC10634736 DOI: 10.1101/2023.10.23.563088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Since it was proposed as a potential host-directed antiviral agent for SARS-CoV-2, the antiparasitic drug ivermectin has been investigated thoroughly in clinical trials, which have provided insufficient support for its clinical efficacy. To examine the potential for ivermectin to be repurposed as an antiviral agent, we therefore undertook a series of preclinical studies. Consistent with early reports, ivermectin decreased SARS-CoV-2 viral burden in in vitro models at low micromolar concentrations, five- to ten-fold higher than the reported toxic clinical concentration. At similar concentrations, ivermectin also decreased cell viability and increased biomarkers of cytotoxicity and apoptosis. Further mechanistic and profiling studies revealed that ivermectin nonspecifically perturbs membrane bilayers at the same concentrations where it decreases the SARS-CoV-2 viral burden, resulting in nonspecific modulation of membrane-based targets such as G-protein coupled receptors and ion channels. These results suggest that a primary molecular mechanism for the in vitro antiviral activity of ivermectin may be nonspecific membrane perturbation, indicating that ivermectin is unlikely to be translatable into a safe and effective antiviral agent. These results and experimental workflow provide a useful paradigm for performing preclinical studies on (pandemic-related) drug repurposing candidates.
Collapse
Affiliation(s)
- Richard T. Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Karl F. Herold
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Patricia Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ty C. Voss
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sandeep Rana
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jonathan H. Shrimp
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Alex D. White
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Hugh C. Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jayme L. Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
5
|
Folliero V, Dell’Annunziata F, Santella B, Roscetto E, Zannella C, Capuano N, Perrella A, De Filippis A, Boccia G, Catania MR, Galdiero M, Franci G. Repurposing Selamectin as an Antimicrobial Drug against Hospital-Acquired Staphylococcus aureus Infections. Microorganisms 2023; 11:2242. [PMID: 37764086 PMCID: PMC10535345 DOI: 10.3390/microorganisms11092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of multidrug-resistant strains requires the urgent discovery of new antibacterial drugs. In this context, an antibacterial screening of a subset of anthelmintic avermectins against gram-positive and gram-negative strains was performed. Selamectin completely inhibited bacterial growth at 6.3 μg/mL concentrations against reference gram-positive strains, while no antibacterial activity was found against gram-negative strains up to the highest concentration tested of 50 μg/mL. Given its relevance as a community and hospital pathogen, further studies have been performed on selamectin activity against Staphylococcus aureus (S. aureus), using clinical isolates with different antibiotic resistance profiles and a reference biofilm-producing strain. Antibacterial studies have been extensive on clinical S. aureus isolates with different antibiotic resistance profiles. Mean MIC90 values of 6.2 μg/mL were reported for all tested S. aureus strains, except for the macrolide-resistant isolate with constitutive macrolide-lincosamide-streptogramin B resistance phenotype (MIC90 9.9 μg/mL). Scanning Electron Microscopy (SEM) showed that selamectin exposure caused relevant cell surface alterations. A synergistic effect was observed between ampicillin and selamectin, dictated by an FIC value of 0.5 against methicillin-resistant strain. Drug administration at MIC concentration reduced the intracellular bacterial load by 81.3%. The effect on preformed biofilm was investigated via crystal violet and confocal laser scanning microscopy. Selamectin reduced the biofilm biomass in a dose-dependent manner with minimal biofilm eradication concentrations inducing a 50% eradication (MBEC50) at 5.89 μg/mL. The cytotoxic tests indicated that selamectin exhibited no relevant hemolytic and cytotoxic activity at active concentrations. These data suggest that selamectin may represent a timely and promising macrocyclic lactone for the treatment of S. aureus infections.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
| | - Federica Dell’Annunziata
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
| | - Biagio Santella
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (E.R.); (M.R.C.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
| | - Nicoletta Capuano
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
| | - Alessandro Perrella
- Division Emerging Infectious Disease and High Contagiousness, Hospital D Cotugno, 80131 Naples, Italy;
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
| | - Giovanni Boccia
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84126 Salerno, Italy
- Hospital Hygiene and Epidemiology Complex Operating Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84126 Salerno, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (E.R.); (M.R.C.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84126 Salerno, Italy
| |
Collapse
|
6
|
Arshad S, Raza S, Rafique R, Altaf I, Sattar A. Lack of antiviral activity of ivermectin against foot-and-mouth disease virus serotype O in BALB/c mice. Microb Pathog 2023; 182:106245. [PMID: 37422171 DOI: 10.1016/j.micpath.2023.106245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Ivermectin is an FDA approved drug and showed in vitro antiviral activity against different serotypes of Foot-and-mouth disease virus (FMDV). We here assessed the effect of ivermectin in 12 day old female BALB/c mice infected with 50LD50 FMDV serotype O intraperitoneally. Initially FMDV was adopted on 3-day old BALB/c mice by blind passages. After successful adaptation of virus mice showed hind limb paralysis. Mice were divided in 6 different groups and each group has 6 mice. Ivermectin was given at clinically prescribed dose of 500 μg/kg subcutaneously at different time interval. Ivermectin was given at 0 h post infection (hpi) and 12 hpi. Moreover we compared commercially available ivermectin with purified ivermectin preparation in sterilized DMSO. Viral load was evaluated through RT-qPCR and ELISA in different groups. Results showed that positive control and negative control has CT-value 26.28 and 38 respectively. Treated groups at 0hpi, 12hpi, purified ivermectin and pre-post treatment group has CT values 24.89, 29.44, 27.26 and 26.69 respectively that showed there was no significant reduction in virus load in treated groups as compare to positive control. In histopathology of lung tissue perialveolar capillaries were congested and alveoli were altelactic. Some emphysema was seen in alveoli and mild thickening in the alveolar wall was observed. In the alveolar epithelium mononuclear cells infiltration was seen. There was discoloration haemorrhages and enlargement of heart. Degeneration, fragmentation and loss of sarcoplasm were seen in the cardiac muscle fibers. Above results showed that ivermectin did not lessen lung and heart viral load. This study contributes that ivermectin does not have a significant antiviral effect when used in mice against FMDV serotype O, according to a growing body of research.
Collapse
Affiliation(s)
- Sheeza Arshad
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Rehan Rafique
- Foot-and-mouth disease Research Center, Lahore, Pakistan
| | - Imran Altaf
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Adeel Sattar
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
7
|
Alsmadi MM. The investigation of the complex population-drug-drug interaction between ritonavir-boosted lopinavir and chloroquine or ivermectin using physiologically-based pharmacokinetic modeling. Drug Metab Pers Ther 2023; 38:87-105. [PMID: 36205215 DOI: 10.1515/dmpt-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Therapy failure caused by complex population-drug-drug (PDDI) interactions including CYP3A4 can be predicted using mechanistic physiologically-based pharmacokinetic (PBPK) modeling. A synergy between ritonavir-boosted lopinavir (LPVr), ivermectin, and chloroquine was suggested to improve COVID-19 treatment. This work aimed to study the PDDI of the two CYP3A4 substrates (ivermectin and chloroquine) with LPVr in mild-to-moderate COVID-19 adults, geriatrics, and pregnancy populations. METHODS The PDDI of LPVr with ivermectin or chloroquine was investigated. Pearson's correlations between plasma, saliva, and lung interstitial fluid (ISF) levels were evaluated. Target site (lung epithelial lining fluid [ELF]) levels of ivermectin and chloroquine were estimated. RESULTS Upon LPVr coadministration, while the chloroquine plasma levels were reduced by 30, 40, and 20%, the ivermectin plasma levels were increased by a minimum of 425, 234, and 453% in adults, geriatrics, and pregnancy populations, respectively. The established correlation equations can be useful in therapeutic drug monitoring (TDM) and dosing regimen optimization. CONCLUSIONS Neither chloroquine nor ivermectin reached therapeutic ELF levels in the presence of LPVr despite reaching toxic ivermectin plasma levels. PBPK modeling, guided with TDM in saliva, can be advantageous to evaluate the probability of reaching therapeutic ELF levels in the presence of PDDI, especially in home-treated patients.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
8
|
Moxidectin induces autophagy arrest in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:211. [PMID: 36175702 DOI: 10.1007/s12032-022-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a cancer with a high morbidity and mortality worldwide. Hence, developing new therapeutic drugs for CRC is very important. Moxidectin (MOX) has shown good anti-glioblastoma effect both in vitro and in vivo. This study aimed to elucidate the anti-CRC effect of MOX and its potential mechanism by investigating the influence of MOX on the viability, apoptosis, necrosis and autophagy of colorectal cancer cells (HCT15 and SW620) and its underlying mechanisms. It was found that MOX can induce autophagy arrest, promote autophagy initiation, inhibit autophagic flux and cell proliferation, simultaneously PI3K-Akt-mTOR signaling pathway and microtubule acetylation. Furthermore, MOX suppressed the growth of xenograft tumors, which was consistent with the in vitro results.
Collapse
|
9
|
Awad H, Hassan B, Dweek S, Aboelata Y, Rawas-Qalaji M, Ahmed IS. Repurposing Potential of the Antiparasitic Agent Ivermectin for the Treatment and/or Prophylaxis of COVID-19. Pharmaceuticals (Basel) 2022; 15:1068. [PMID: 36145289 PMCID: PMC9506580 DOI: 10.3390/ph15091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the rapid, vast, and emerging global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, many drugs were quickly repurposed in a desperate attempt to unveil a miracle drug. Ivermectin (IVM), an antiparasitic macrocyclic lactone, was tested and confirmed for its in vitro antiviral activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in early 2020. Along with its potential antiviral activity, the affordability and availability of IVM resulted in a wide public interest. Across the world, trials have put IVM to test for both the treatment and prophylaxis of COVID-19, as well as its potential role in combination therapy. Additionally, the targeted delivery of IVM was studied in animals and COVID-19 patients. Through this conducted literature review, the potential value and effectiveness of the repurposed antiparasitic agent in the ongoing global emergency were summarized. The reviewed trials suggested a value of IVM as a treatment in mild COVID-19 cases, though the benefit was not extensive. On the other hand, IVM efficacy as a prophylactic agent was more evident and widely reported. In the most recent trials, novel nasal formulations of IVM were explored with the hope of an improved optimized effect.
Collapse
Affiliation(s)
- Hoda Awad
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Basmala Hassan
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara Dweek
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasmeen Aboelata
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
10
|
Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder. Pharmaceutics 2022; 14:pharmaceutics14071432. [PMID: 35890327 PMCID: PMC9325229 DOI: 10.3390/pharmaceutics14071432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, predominantly affects the respiratory tract. As a consequence, it seems intuitive to develop antiviral agents capable of targeting the virus right on its main anatomical site of replication. Ivermectin, a U.S. FDA-approved anti-parasitic drug, was originally shown to inhibit SARS-CoV-2 replication in vitro, albeit at relatively high concentrations, which is difficult to achieve in the lung. In this study, we tested the spray-drying conditions to develop an inhalable dry powder formulation that could ensure sufficient antiviral drug concentrations, which are difficult to achieve in the lungs based on the oral dosage used in clinical trials. Here, by using ivermectin as a proof-of-concept, we evaluated spray-drying conditions that could lead to the development of antivirals in an inhalable dry powder formulation, which could then be used to ensure sufficient drug concentrations in the lung. Thus, we used ivermectin in proof-of-principle experiments to evaluate our system, including physical characterization and in vitro aerosolization of prepared dry powder. The ivermectin dry powder was prepared with a mini spray-dryer (Buchi B-290), using a 23 factorial design and manipulating spray-drying conditions such as feed concentration (0.2% w/v and 0.8% w/v), inlet temperature (80 °C and 100 °C) and presence/absence of L-leucine (0% and 10%). The prepared dry powder was in the size range of 1−5 μm and amorphous in nature with wrinkle morphology. We observed a higher fine particle fraction (82.5 ± 1.4%) in high feed concentration (0.8% w/v), high inlet temperature (100 °C) and the presence of L-leucine (10% w/w). The stability study conducted for 28 days confirmed that the spray-dried powder was stable at 25 ± 2 °C/<15% RH and 25 ± 2 °C/ 53% RH. Interestingly, the ivermectin dry powder formulation inhibited SARS-CoV-2 replication in vitro with a potency similar to ivermectin solution (EC50 values of 15.8 µM and 14.1 µM, respectively), with a comparable cell toxicity profile in Calu-3 cells. In summary, we were able to manipulate the spray-drying conditions to develop an effective ivermectin inhalable dry powder. Ongoing studies based on this system will allow the development of novel formulations based on single or combinations of drugs that could be used to inhibit SARS-CoV-2 replication in the respiratory tract.
Collapse
|
11
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
12
|
Albariqi AH, Wang Y, Yoon Kyung Chang R, Quan DH, Wang X, Kalfas S, Drago J, Britton WJ, Chan HK. Pharmacokinetics and Safety of Inhaled Ivermectin in Mice as a Potential COVID-19 Treatment. Int J Pharm 2022; 619:121688. [PMID: 35314278 PMCID: PMC8933053 DOI: 10.1016/j.ijpharm.2022.121688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
Abstract
Pharmacokinetic limitations associated with oral ivermectin may limit its success as a potential COVID-19 treatment based on in vitro experiments which demonstrate antiviral efficacy against SARS-CoV-2 at high concentrations. Targeted delivery to the lungs is a practical way to overcome these limitations and ensure the presence of a therapeutic concentration of the drug in a clinically critical site of viral pathology. In this study, the pharmacokinetics (PK) and safety of inhaled dry powders of ivermectin with lactose were investigated in healthy mice. Female BALB/c mice received ivermectin formulation by intratracheal administration at high (3.15 mg/kg) or low doses (2.04 mg/kg). Plasma, bronchoalveolar lavage fluid (BALF), lung, kidney, liver, and spleen were collected at predetermined time points up to 48 h and analyzed for PK. Histological evaluation of lungs was used to examine the safety of the formulation. Inhalation delivery of ivermectin formulation showed improved pharmacokinetic performance as it avoided protein binding encountered in systemic delivery and maintained a high exposure above the in vitro antiviral concentration in the respiratory tract for at least 24 h. The local toxicity was mild with less than 20% of the lung showing histological damage at 24 h, which resolved to 10% by 48 h.
Collapse
Affiliation(s)
- Ahmed H Albariqi
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; The Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Yuncheng Wang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Diana H Quan
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, NSW, 2006, Australia
| | - Xiaonan Wang
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, NSW, 2006, Australia
| | - Stefanie Kalfas
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, 3052, Australia
| | - John Drago
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, 3052, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, VIC, 3010, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, NSW, 2006, Australia; Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
13
|
Ivermectin Does Not Protect against SARS-CoV-2 Infection in the Syrian Hamster Model. Microorganisms 2022; 10:microorganisms10030633. [PMID: 35336208 PMCID: PMC8955654 DOI: 10.3390/microorganisms10030633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Ivermectin, an FDA-approved antiparasitic drug, has been reported to have in vitro activity against SARS-CoV-2. Increased off-label use of ivermectin for COVID-19 has been reported. We here assessed the effect of ivermectin in Syrian hamsters infected with the SARS-CoV-2 Beta (B.1.351) variant. Infected animals received a clinically relevant dose of ivermectin (0.4 mg/kg subcutaneously dosed) once daily for four consecutive days after which the effect was quantified. Ivermectin monotherapy did not reduce lung viral load and even significantly worsened SARS-CoV-2-induced lung pathology. Additionally, it did not potentiate the activity of molnupiravir (LagevrioTM) when combined with this drug. This study contributes to the growing body of evidence that ivermectin does not result in a beneficial effect in the treatment of COVID-19. These findings are important given the increasing, dangerous off-label use of ivermectin for the treatment of COVID-19.
Collapse
|
14
|
Albariqi AH, Ke WR, Khanal D, Kalfas S, Tang P, Britton WJ, Drago J, Chan HK. Preparation and Characterization of Inhalable Ivermectin Powders as a Potential COVID-19 Therapy. J Aerosol Med Pulm Drug Deliv 2022; 35:239-251. [PMID: 35275749 DOI: 10.1089/jamp.2021.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Ivermectin has received worldwide attention as a potential COVID-19 treatment after showing antiviral activity against SARS-CoV-2 in vitro. However, the pharmacokinetic limitations associated with oral administration have been postulated as limiting factors to its bioavailability and efficacy. These limitations can be overcome by targeted delivery to the lungs. In this study, inhalable dry powders of ivermectin and lactose crystals were prepared and characterized for the potential treatment of COVID-19. Methods: Ivermectin was co-spray dried with lactose monohydrate crystals and conditioned by storage at two different relative humidity points (43% and 58% RH) for a week. The in vitro dispersion performance of the stored powders was examined using a medium-high resistance Osmohaler connecting to a next-generation impactor at 60 L/min flow rate. The solid-state characteristics including particle size distribution and morphology, crystallinity, and moisture sorption profiles of raw and spray-dried ivermectin samples were assessed by laser diffraction, scanning electron microscopy, Raman spectroscopy, X-ray powder diffraction, thermogravimetric analysis, differential scanning calorimetry, and dynamic vapor sorption. Results: All the freshly spray-dried formulation (T0) and the conditioned samples could achieve the anticipated therapeutic dose with fine particle dose of 300 μg, FPFrecovered of 70%, and FPFemitted of 83%. In addition, the formulations showed a similar volume median diameter of 4.3 μm and span of 1.9. The spray-dried formulations were stable even after conditioning and exposing to different RH points as ivermectin remained amorphous with predominantly crystalline lactose. Conclusion: An inhalable and stable dry powder of ivermectin and lactose crystals was successfully formulated. This powder inhaler ivermectin candidate therapy appears to be able to deliver doses that could be safe and effective to treat the SARS-COV-2 infection. Further development of this therapy is warranted.
Collapse
Affiliation(s)
- Ahmed H Albariqi
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,The Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Wei-Ren Ke
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,School of Pharmacy, Collage of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Stefanie Kalfas
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - John Drago
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Endo T, Takemae H, Sharma I, Furuya T. Multipurpose Drugs Active Against Both Plasmodium spp. and Microorganisms: Potential Application for New Drug Development. Front Cell Infect Microbiol 2021; 11:797509. [PMID: 35004357 PMCID: PMC8740689 DOI: 10.3389/fcimb.2021.797509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malaria, a disease caused by the protozoan parasites Plasmodium spp., is still causing serious problems in endemic regions in the world. Although the WHO recommends artemisinin combination therapies for the treatment of malaria patients, the emergence of artemisinin-resistant parasites has become a serious issue and underscores the need for the development of new antimalarial drugs. On the other hand, new and re-emergences of infectious diseases, such as the influenza pandemic, Ebola virus disease, and COVID-19, are urging the world to develop effective chemotherapeutic agents against the causative viruses, which are not achieved to the desired level yet. In this review article, we describe existing drugs which are active against both Plasmodium spp. and microorganisms including viruses, bacteria, and fungi. We also focus on the current knowledge about the mechanism of actions of these drugs. Our major aims of this article are to describe examples of drugs that kill both Plasmodium parasites and other microbes and to provide valuable information to help find new ideas for developing novel drugs, rather than merely augmenting already existing drug repurposing efforts.
Collapse
Affiliation(s)
- Takuro Endo
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Indu Sharma
- Department of Biological Sciences, Hampton University, Hampton, VA, United States
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
16
|
Echeverría-Esnal D, Grau S. Ivermectin: a pathway out of the pandemic or another dead end? Expert Rev Anti Infect Ther 2021; 20:645-647. [PMID: 34894986 DOI: 10.1080/14787210.2022.2012154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel Echeverría-Esnal
- Pharmacy Department, Hospital Del Mar, Parc de Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (Ipar) Institut Hospital Del Mar d'Investigacions Mèdiques (Imim), Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital Del Mar, Parc de Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (Ipar) Institut Hospital Del Mar d'Investigacions Mèdiques (Imim), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|