1
|
Wang Q, Li S, Chen J, Yang L, Qiu Y, Du Q, Wang C, Teng M, Wang T, Dong Y. A novel strategy for therapeutic drug monitoring: application of biosensors to quantify antimicrobials in biological matrices. J Antimicrob Chemother 2023; 78:2612-2629. [PMID: 37791382 DOI: 10.1093/jac/dkad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Over the past few years, therapeutic drug monitoring (TDM) has gained practical significance in antimicrobial precision therapy. Yet two categories of mainstream TDM techniques (chromatographic analysis and immunoassays) that are widely adopted nowadays retain certain inherent limitations. The use of biosensors, an innovative strategy for rapid evaluation of antimicrobial concentrations in biological samples, enables the implementation of point-of-care testing (POCT) and continuous monitoring, which may circumvent the constraints of conventional TDM and provide strong technological support for individualized antimicrobial treatment. This comprehensive review summarizes the investigations that have harnessed biosensors to detect antimicrobial drugs in biological matrices, provides insights into the performance and characteristics of each sensing form, and explores the feasibility of translating them into clinical practice. Furthermore, the future trends and obstacles to achieving POCT and continuous monitoring are discussed. More efforts are necessary to address the four key 'appropriateness' challenges to deploy biosensors in clinical practice, paving the way for personalized antimicrobial stewardship.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Wang J, Zhou X, Elazab ST, Park SC, Hsu WH. Should Airway Interstitial Fluid Be Used to Evaluate the Pharmacokinetics of Macrolide Antibiotics for Dose Regimen Determination in Respiratory Infection? Antibiotics (Basel) 2023; 12:antibiotics12040700. [PMID: 37107062 PMCID: PMC10135031 DOI: 10.3390/antibiotics12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Macrolide antibiotics are important drugs to combat infections. The pharmacokinetics (PK) of these drugs are essential for the determination of their optimal dose regimens, which affect antimicrobial pharmacodynamics and treatment success. For most drugs, the measurement of their concentrations in plasma/serum is the surrogate for drug concentrations in target tissues for therapy. However, for macrolides, simple reliance on total or free drug concentrations in serum/plasma might be misleading. The macrolide antibiotic concentrations of serum/plasma, interstitial fluid (ISF), and target tissue itself usually yield very different PK results. In fact, the PK of a macrolide antibiotic based on serum/plasma concentrations alone is not an ideal predictor for the in vivo efficacy against respiratory pathogens. Instead, the PK based on drug concentrations at the site of infection or ISF provide much more clinically relevant information than serum/plasma concentrations. This review aims to summarize and compare/discuss the use of drug concentrations of serum/plasma, airway ISF, and tissues for computing the PK of macrolides. A better understanding of the PK of macrolide antibiotics based on airway ISF concentrations will help optimize the antibacterial dose regimen as well as minimizing toxicity and the emergence of drug resistance in clinical practice.
Collapse
Affiliation(s)
- Jianzhong Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030810, China
| | - Xueying Zhou
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing 100107, China
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Mansoura 35516, Egypt
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Walter H. Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-2042, USA
| |
Collapse
|
3
|
Kobuchi S, Kanda N, Okumi T, Kano Y, Tachi H, Ito Y, Sakaeda T. Comparing the pharmacokinetics and organ/tissue distribution of anti-methicillin-resistant Staphylococcus aureus agents using a rat model of sepsis. Xenobiotica 2022; 52:583-590. [PMID: 35815433 DOI: 10.1080/00498254.2022.2098201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sepsis is a major cause of death, and sepsis-derived physiological changes complicate the understanding of drug distribution in organs/tissues, which determines the efficacy and toxicity of antimicrobial agents. In this study, we evaluated and compared the pharmacokinetics of methicillin-resistant Staphylococcus aureus treatment agents in sepsis with that of vancomycin, arbekacin, linezolid, and daptomycin.Rat models of sepsis were prepared using cecal ligation puncture. The pharmacokinetics of vancomycin, arbekacin, linezolid, and daptomycin were evaluated using their drug concentration profiles in plasma, kidneys, liver, lungs, skin, and muscles after intravenous administration in normal and septic rats.The kidney/plasma concentration ratio was higher in septic rats than in normal rats for vancomycin, arbekacin, and daptomycin but not for linezolid. The increase in the kidney/plasma concentration ratio for vancomycin was time-dependent, indicating an association between sepsis and stasis of vancomycin in the kidneys. In contrast, the distribution of linezolid from the blood to the organs/tissues in septic rats was comparable to that in normal rats.Sepsis-induced nephrotoxicity results in the stasis of vancomycin in the kidney, suggesting that this exacerbates proximal tubular epithelial cell injury. No dose modification of linezolid may be required for patients with sepsis.
Collapse
Affiliation(s)
- Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Naoya Kanda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Taichi Okumi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuma Kano
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Himawari Tachi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
4
|
Kobuchi S, Kita Y, Hiramatsu Y, Sasaki K, Uno T, Ito Y, Sakaeda T. Comparison of In Vivo Transportability of Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Agents Into Intracellular and Extracellular Tissue Spaces in Rats. J Pharm Sci 2020; 110:898-904. [PMID: 33164810 DOI: 10.1016/j.xphs.2020.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/01/2022]
Abstract
The pathogenic bacterium Staphylococcus aureus can penetrate host cells. However, intracellular S. aureus is not considered during antimicrobial agent selection in clinical chemotherapy because of the lack of information about drug transportability into cells in vivo. We focused on agents used to treat methicillin-resistant S. aureus (MRSA) (vancomycin, arbekacin, linezolid, and daptomycin) and indirectly assessed the drug levels in intracellular compartment using plasma, tissue homogenates, and interstitial fluid (ISF) samples from the skin of rats using the microneedle array technique. Lower drug levels were observed in the ISF than in the plasma for daptomycin but extracellular and intracellular drug levels were comparable. In contrast, vancomycin, arbekacin, and linezolid showed higher concentrations in the ISF than in the plasma. Intracellular transport was estimated only for arbekacin. Stasis of vancomycin in the ISF was also observed. These results suggest that both low vancomycin exposure against intracellular S. aureus infection and long-term subinhibitory drug levels in the ISF contribute to the failure of treatment and emergence of antibiotic resistance. Based on its pharmacokinetic characteristics in niche extravascular tissue spaces, arbekacin may be suitable for achieving sufficient clinical outcomes for MRSA infection because the drug is widely distributed in extracellular and intracellular compartments.
Collapse
Affiliation(s)
- Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yusuke Kita
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yukiko Hiramatsu
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kenji Sasaki
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Tomoya Uno
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
5
|
Kobuchi S, Kabata T, Maeda K, Ito Y, Sakaeda T. Pharmacokinetics of Macrolide Antibiotics and Transport into the Interstitial Fluid: Comparison among Erythromycin, Clarithromycin, and Azithromycin. Antibiotics (Basel) 2020; 9:antibiotics9040199. [PMID: 32331283 PMCID: PMC7235806 DOI: 10.3390/antibiotics9040199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022] Open
Abstract
Recent research has found higher levels and longer total exposure of azithromycin, a macrolide antibiotic agent, in the interstitial fluid of the skin than in the plasma. This unique distribution is expected to contribute to its antimicrobial activity at the primary infection site. However, it remains unclear whether this characteristic distribution in the extracellular tissue space is common to macrolide antibiotics or if it is azithromycin-specific, with most macrolides largely localized intracellularly. In this study, we investigated pharmacokinetic characteristics of erythromycin and clarithromycin in the interstitial fluid of the skin of rats after intravenous drug administration, and compared the results with our previously reported results on azithromycin. Interstitial fluid samples were directly collected from a pore on the skin using a dissolving microneedle array. We found that the total macrolide concentrations in the interstitial fluid were significantly different among three macrolides. The rank order of the interstitial fluid-plasma concentration ratio was azithromycin (3.8 to 4.9) > clarithromycin (1.2 to 1.5) > erythromycin (0.27 to 0.39), and this ratio was stable after dosing, whereas higher drug levels in the skin tissue than in the plasma were observed for all three macrolides. Our results suggest that lower erythromycin concentrations in the interstitial fluid than in the plasma contributes to the emergence of bacterial resistance in the extracellular tissue space. Monitoring of total macrolide concentrations in interstitial fluid may provide valuable information regarding antimicrobial effects and the emergence of bacterial resistance for the development of an appropriate pharmacokinetics-pharmacodynamics-based dosing strategy.
Collapse
|
6
|
Kobuchi S, Fujita A, Kato A, Kobayashi H, Ito Y, Sakaeda T. Pharmacokinetics and lung distribution of macrolide antibiotics in sepsis model rats. Xenobiotica 2019; 50:552-558. [DOI: 10.1080/00498254.2019.1654633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Akihiro Fujita
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Akihito Kato
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiromu Kobayashi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
7
|
Tian J, Sun S, Zhao Z, Li X. Pharmacokinetic interaction between shuanghuanglian and azithromycin injection: a nonlinear mixed-effects model analysis in rats. Xenobiotica 2019; 49:1344-1351. [PMID: 30457423 DOI: 10.1080/00498254.2018.1550588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. This study aimed to evaluate the pharmacokinetic interaction of shuanghuanglian (SHL) and azithromycin in rats, and to provide experimental support for rational drug use in clinics. 2. High-performance liquid chromatography with ultraviolet detection (HPLC-UV) and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) approaches were respectively developed to detect the forsythiaside (active component of SHL) and azithromycin concentrations. Both non-compartmental and compartmental analyzes were employed to calculate pharmacokinetic parameters. A nonlinear mixed-effects modeling method was applied to fit the drug concentration-time data. The influence of drug coadministration on pharmacokinetic parameters was tested using forward inclusion and backward elimination procedures. 3. After drug co-administration, areas under the drug concentration-time curve (AUC) and half-lives (T1/2) of both azithromycin and forsythiaside increased significantly, meanwhile, the drug clearance (CL) decreased compared to single drug administration. Both forsythiaside and azithromycin exposures increased after coadministration. Two-compartment models were suitable to describe the in vivo behavior of both azithromycin and forsythiaside. The coadministration of SHL could significantly decrease the central volume of azithromycin (VCA) and forsythiaside clearance (CLF) decreased after co-intravenous administration of azithromycin. 4. Co-intravenous administration of forsythiaside and azithromycin could significantly increase drug exposures for both drugs. Lower dose can provide sufficient drug exposure to obtain antibacterial activity. The coadministration may be a potential method to increase therapy efficiency while decrease adverse drug reactions.
Collapse
Affiliation(s)
- Jingchen Tian
- a Department of Pharmacy, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Shusen Sun
- b College of Pharmacy and Health Sciences, Western New England University , Springfield , MA , USA
| | - Zhigang Zhao
- a Department of Pharmacy, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Xingang Li
- a Department of Pharmacy, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| |
Collapse
|