1
|
Preijers T, Muller AE, Abdulla A, de Winter BCM, Koch BCP, Sassen SDT. Dose Individualisation of Antimicrobials from a Pharmacometric Standpoint: The Current Landscape. Drugs 2024; 84:1167-1178. [PMID: 39240531 PMCID: PMC11512831 DOI: 10.1007/s40265-024-02084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Successful antimicrobial therapy depends on achieving optimal drug concentrations within individual patients. Inter-patient variability in pharmacokinetics (PK) and differences in pathogen susceptibility (reflected in the minimum inhibitory concentration, [MIC]) necessitate personalised approaches. Dose individualisation strategies aim to address this challenge, improving treatment outcomes and minimising the risk of toxicity and antimicrobial resistance. Therapeutic drug monitoring (TDM), with the application of population pharmacokinetic (popPK) models, enables model-informed precision dosing (MIPD). PopPK models mathematically describe drug behaviour across populations and can be combined with patient-specific TDM data to optimise dosing regimens. The integration of machine learning (ML) techniques promises to further enhance dose individualisation by identifying complex patterns within extensive datasets. Implementing these approaches involves challenges, including rigorous model selection and validation to ensure suitability for target populations. Understanding the relationship between drug exposure and clinical outcomes is crucial, as is striking a balance between model complexity and clinical usability. Additionally, regulatory compliance, outcome measurement, and practical considerations for software implementation will be addressed. Emerging technologies, such as real-time biosensors, hold the potential for revolutionising TDM by enabling continuous monitoring, immediate and frequent dose adjustments, and near patient testing. The ongoing integration of TDM, advanced modelling techniques, and ML within the evolving digital health care landscape offers a potential for enhancing antimicrobial therapy. Careful attention to model development, validation, and ethical considerations of the applied techniques is paramount for successfully optimising antimicrobial treatment for the individual patient.
Collapse
Affiliation(s)
- Tim Preijers
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
| | - Anouk E Muller
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands.
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands.
| | - Sebastiaan D T Sassen
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| |
Collapse
|
2
|
Nix DE, Al-Obaidi M, Zangeneh T. Hypoalbuminemia and Posaconazole Therapeutic Drug Monitoring. Open Forum Infect Dis 2024; 11:ofae452. [PMID: 39205926 PMCID: PMC11350285 DOI: 10.1093/ofid/ofae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- David E Nix
- Pharmacy Practice & Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Mohanad Al-Obaidi
- Division of Infectious Diseases, The University of Arizona, Tucson, Arizona, USA
| | - Tirdad Zangeneh
- Division of Infectious Diseases, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Wehbe E, Patanwala AE, Lu CY, Kim HY, Stocker SL, Alffenaar JWC. Therapeutic Drug Monitoring and Biomarkers; towards Better Dosing of Antimicrobial Therapy. Pharmaceutics 2024; 16:677. [PMID: 38794338 PMCID: PMC11125587 DOI: 10.3390/pharmaceutics16050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Due to variability in pharmacokinetics and pharmacodynamics, clinical outcomes of antimicrobial drug therapy vary between patients. As such, personalised medication management, considering both pharmacokinetics and pharmacodynamics, is a growing concept of interest in the field of infectious diseases. Therapeutic drug monitoring is used to adjust and individualise drug regimens until predefined pharmacokinetic exposure targets are achieved. Minimum inhibitory concentration (drug susceptibility) is the best available pharmacodynamic parameter but is associated with many limitations. Identification of other pharmacodynamic parameters is necessary. Repurposing diagnostic biomarkers as pharmacodynamic parameters to evaluate treatment response is attractive. When combined with therapeutic drug monitoring, it could facilitate making more informed dosing decisions. We believe the approach has potential and justifies further research.
Collapse
Affiliation(s)
- Eman Wehbe
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia; (E.W.); (A.E.P.); (C.Y.L.); (H.Y.K.); (S.L.S.)
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Asad E. Patanwala
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia; (E.W.); (A.E.P.); (C.Y.L.); (H.Y.K.); (S.L.S.)
- Department of Pharmacy, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Christine Y. Lu
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia; (E.W.); (A.E.P.); (C.Y.L.); (H.Y.K.); (S.L.S.)
- Department of Pharmacy, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, The Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| | - Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia; (E.W.); (A.E.P.); (C.Y.L.); (H.Y.K.); (S.L.S.)
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia
| | - Sophie L. Stocker
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia; (E.W.); (A.E.P.); (C.Y.L.); (H.Y.K.); (S.L.S.)
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent’s Hospital, Sydney, NSW 2010, Australia
| | - Jan-Willem C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia; (E.W.); (A.E.P.); (C.Y.L.); (H.Y.K.); (S.L.S.)
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
4
|
Boyer J, Hoenigl M, Kriegl L. Therapeutic drug monitoring of antifungal therapies: do we really need it and what are the best practices? Expert Rev Clin Pharmacol 2024; 17:309-321. [PMID: 38379525 DOI: 10.1080/17512433.2024.2317293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Despite advancements, invasive fungal infections (IFI) still carry high mortality rates, often exceeding 30%. The challenges in diagnosis, coupled with limited effective antifungal options, make managing IFIs complex. Antifungal drugs are essential for IFI management, but their efficacy can be diminished by drug-drug interactions and pharmacokinetic variability. Therapeutic Drug Monitoring (TDM), especially in the context of triazole use, has emerged as a valuable strategy to optimize antifungal therapy. AREAS COVERED This review provides current evidence regarding the potential benefits of TDM in IFI management. It discusses how TDM can enhance treatment response, safety, and address altered pharmacokinetics in specific patient populations. EXPERT OPINION TDM plays a crucial role in achieving optimal therapeutic outcomes in IFI management, particularly for certain antifungal agents. Preclinical studies consistently show a link between therapeutic drug levels and antifungal efficacy. However, clinical research in mycology faces challenges due to patient heterogeneity and the diversity of fungal infections. TDM's potential advantages in guiding Echinocandin therapy for critically ill patients warrant further investigation. Additionally, for drugs like Posaconazole, assessing whether serum levels or alternative markers like saliva offer the best measure of efficacy is an intriguing question.
Collapse
Affiliation(s)
- Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Kane Z, Cheng I, McGarrity O, Chiesa R, Klein N, Cortina-Borja M, Standing JF, Gastine S. Model Based Estimation of Posaconazole Tablet and Suspension Bioavailability in Hospitalized Children Using Real-World Therapeutic Drug Monitoring Data in Patients Receiving Intravenous and Oral Dosing. Antimicrob Agents Chemother 2023; 67:e0007723. [PMID: 37260401 PMCID: PMC10353366 DOI: 10.1128/aac.00077-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
Invasive fungal infections are a major cause of morbidity and mortality for immunocompromised patients. Posaconazole is approved for treatment and prophylaxis of invasive fungal infection in adult patients, with intravenous, oral suspension, and gastroresistant/delayed-released tablet formulations available. In Europe, until very recently, posaconazole was used off-label in children, although a new delayed-release suspension approved for pediatric use is expected to become available soon. A population pharmacokinetic model was developed which uses posaconazole therapeutic drug monitoring data following intravenous and oral dosing in hospitalized children, thus enabling estimation of pediatric suspension and tablet oral bioavailability. In total, 297 therapeutic drug monitoring plasma levels from 104 children were included in this analysis. The final model was a one-compartment model with first-order absorption and nonlinear elimination. Allometric scaling on clearance and volume of distribution was included a priori. Tablet bioavailability was estimated to be 66%. Suspension bioavailability was estimated to decrease with increasing doses, ranging from 3.8% to 32.2% in this study population. Additionally, concomitant use of proton pump-inhibitors was detected as a significant covariate, reducing suspension bioavailability by 41.0%. This is the first population pharmacokinetic study to model posaconazole data from hospitalized children following intravenous, tablet, and suspension dosing simultaneously. The incorporation of saturable posaconazole clearance into the model has been key to the credible joint estimation of tablet and suspension bioavailability. To aid rational posaconazole dosing in children, this model was used alongside published pharmacodynamic targets to predict the probability of target attainment using typical pediatric dosing regimen.
Collapse
Affiliation(s)
- Zoe Kane
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Iek Cheng
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Pharmacy, Great Ormond Street Hospital, London, United Kingdom
| | - Orlagh McGarrity
- Department of Pharmacy, Great Ormond Street Hospital, London, United Kingdom
| | - Robert Chiesa
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital, London, United Kingdom
| | - Nigel Klein
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mario Cortina-Borja
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Joseph F. Standing
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Pharmacy, Great Ormond Street Hospital, London, United Kingdom
| | - Silke Gastine
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
6
|
Howard A, Hope W. Assessment of Antifungal Pharmacodynamics. J Fungi (Basel) 2023; 9:jof9020192. [PMID: 36836307 PMCID: PMC9960731 DOI: 10.3390/jof9020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Pharmacokinetic-pharmacodynamic (PK-PD) analysis is of central importance to the progress of an antifungal agent into clinical use. It is crucial to ensure that preclinical studies give the best possible prediction of the way drugs are likely to behave in a clinical setting. This review details the last 30 years of progress in terms of disease model design, efficacy outcome selection and translational modelling in antifungal PK-PD studies. The principles of how PK-PD parameters inform current clinical practice are also discussed, including a review of how these apply to existing and novel agents.
Collapse
|
7
|
Long-Term Kinetics of Serum Galactomannan during Treatment of Complicated Invasive Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:jof9020157. [PMID: 36836274 PMCID: PMC9965572 DOI: 10.3390/jof9020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Several studies have evaluated the serum galactomannan (GM) antigen assay in pediatric patients, and there is convincing evidence for its usefulness as a diagnostic tool for invasive Aspergillus infections in patients with acute leukemias or post allogeneic hematopoietic cell transplantation (HCT). Less is known about the utility of the assay in monitoring responses to treatment in patients with established invasive aspergillosis (IA). Here, we present the long-term kinetics of serum galactomannan in two severely immunocompromised adolescents with invasive pulmonary aspergillosis (IPA) who were cured after complicated clinical courses. We also review the utility of the GM antigen assay in serum as a prognostic tool around the time of diagnosis of IA and as a biomarker to monitor disease activity in patients with established IA and assess responses to systemic antifungal therapy.
Collapse
|
8
|
Ding Q, Huang S, Sun Z, Chen K, Li X, Pei Q. A Review of Population Pharmacokinetic Models of Posaconazole. Drug Des Devel Ther 2022; 16:3691-3709. [PMID: 36277600 PMCID: PMC9584355 DOI: 10.2147/dddt.s384637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Posaconazole is often used for the prophylaxis and treatment of invasive fungal infections (IFI). However, intra- and inter-individual differences and drug interactions affect the efficacy and safety of posaconazole. Precision dosing of posaconazole based on the population pharmacokinetic (PopPK) model may assist in making significant clinical decisions. This review aimed to comprehensively summarize the published PopPK models of posaconazole and analyze covariates that significantly influence posaconazole exposure. Articles published until May 2022 for PopPK analysis of posaconazole were searched in PubMed and EMBASE databases. Demographic characteristics, model characteristics, and results of PopPK analysis were extracted from the selected articles. In addition, the steady-state pharmacokinetic profiles of posaconazole were simulated at different covariate levels and dosing regimens. Out of the 13 studies included in our review, nine studies included adults, three included children, and one included both adults and children. All oral administration models were one-compartment models, and all intravenous administration models were two-compartment models. Body weight, proton pump inhibitors, and incidence of diarrhea were found to be important covariates. Clinically, the potential impact of factors such as patient physiopathologic characteristics and comorbid medications on posaconazole pharmacokinetics should be considered. Dose adjustment in combination with TDM or replacement with a tablet or intravenous formulation with higher exposure may be an effective way to ensure drug efficacy as well as to reduce fungal resistance. Meanwhile, published models require further external evaluation to examine extrapolation.
Collapse
Affiliation(s)
- Qin Ding
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Shuqi Huang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zexu Sun
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, People’s Republic of China
| | - Kaifeng Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Xin Li, Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China, Email
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Correspondence: Qi Pei, Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China, Tel +86 1 317 041 9804, Email
| |
Collapse
|
9
|
Bentley S, Davies JC, Gastine S, Donovan J, Standing JF. Clinical pharmacokinetics and dose recommendations for posaconazole gastroresistant tablets in children with cystic fibrosis. J Antimicrob Chemother 2021; 76:3247-3254. [PMID: 34458906 PMCID: PMC8598294 DOI: 10.1093/jac/dkab312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate the population pharmacokinetics of posaconazole gastroresistant tablets in children with cystic fibrosis (CF) and perform simulations to recommend optimal doses. Patients and methods Children from a paediatric CF centre who had received posaconazole tablets and underwent therapeutic drug monitoring were identified from pharmacy records. Relevant clinical data were collated from case notes and electronic patient records and used to develop an allometrically scaled population pharmacokinetic model. A stepwise covariate model-building exercise evaluated the influence of interacting medicines and liver function. Results One hundred posaconazole serum concentrations were collected from 37 children with a median age of 14 years (range 7–17). Posaconazole pharmacokinetics were adequately described by a one-compartment model with inter-individual variability on clearance. Dose simulations demonstrated a 77%–83% probability of attaining a trough target of 1 mg/L with a dose of 300 mg every 12 h for two doses then 300 mg once daily (OD) in children aged 6–11 years; and 86%–88% with a dose of 400 mg every 12 h for two doses then 400 mg OD in adolescents aged 12–17 years. This dose scheme also yielded a 90% probability of achieving an AUC of 30 mg·h/L. AUC and trough concentration were highly correlated (r2 = 0.98). Simulations showed that trough concentrations of >0.75 mg/L would exceed an AUC of 30 mg·h/L in 90% of patients. Conclusions A starting dose of 300 mg OD in those aged 6–11 years and 400 mg OD in those aged 12–17 years (following loading doses) yields a 90% probability of attaining an AUC of 30 mg·h/L.
Collapse
Affiliation(s)
- Siân Bentley
- Pharmacy Department, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK.,Paediatric Respiratory Medicine Department, Royal Brompton Hospital, London, UK
| | - Silke Gastine
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jackie Donovan
- Clinical Biochemistry Department, Royal Brompton Hospital, London, UK
| | - Joseph F Standing
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK.,Pharmacy Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| |
Collapse
|