1
|
Zhang B, Phetsang W, Stone MRL, Kc S, Butler MS, Cooper MA, Elliott AG, Łapińska U, Voliotis M, Tsaneva-Atanasova K, Pagliara S, Blaskovich MAT. Synthesis of vancomycin fluorescent probes that retain antimicrobial activity, identify Gram-positive bacteria, and detect Gram-negative outer membrane damage. Commun Biol 2023; 6:409. [PMID: 37055536 PMCID: PMC10102067 DOI: 10.1038/s42003-023-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
Antimicrobial resistance is an urgent threat to human health, and new antibacterial drugs are desperately needed, as are research tools to aid in their discovery and development. Vancomycin is a glycopeptide antibiotic that is widely used for the treatment of Gram-positive infections, such as life-threatening systemic diseases caused by methicillin-resistant Staphylococcus aureus (MRSA). Here we demonstrate that modification of vancomycin by introduction of an azide substituent provides a versatile intermediate that can undergo copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction with various alkynes to readily prepare vancomycin fluorescent probes. We describe the facile synthesis of three probes that retain similar antibacterial profiles to the parent vancomycin antibiotic. We demonstrate the versatility of these probes for the detection and visualisation of Gram-positive bacteria by a range of methods, including plate reader quantification, flow cytometry analysis, high-resolution microscopy imaging, and single cell microfluidics analysis. In parallel, we demonstrate their utility in measuring outer-membrane permeabilisation of Gram-negative bacteria. The probes are useful tools that may facilitate detection of infections and development of new antibiotics.
Collapse
Affiliation(s)
- Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sanjaya Kc
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew A Cooper
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alysha G Elliott
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Urszula Łapińska
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Margaritis Voliotis
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, EX4 4QJ, UK
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Street, 1113, Sofia, Bulgaria
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
2
|
Horetski M, Gorlova A, Płocińska R, Brzostek A, Faletrov Y, Dziadek J, Shkumatov V. Synthesis, Optical Properties, Preliminary Antimycobacterial Evaluation and Docking Studies of Trifluoroacetylated 3‐Pyrrolyl Boron‐Dipyrromethene. ChemistrySelect 2022. [DOI: 10.1002/slct.202200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matvey Horetski
- Department of Macromolecular Compounds Belarusian State University 14 Leningradskaya Street. Minsk 220030 Belarus
| | - Anna Gorlova
- Department of Natural Sciences Novosibirsk State University 1 Pirogova Street. Novosibirsk 630090 Russia
| | - Renata Płocińska
- The Institute of Medical Biology Polish Academy of Sciences 106 Lodowa Street. Lodz 93-232 Poland
| | - Anna Brzostek
- The Institute of Medical Biology Polish Academy of Sciences 106 Lodowa Street. Lodz 93-232 Poland
| | - Yaroslav Faletrov
- Department of Macromolecular Compounds Belarusian State University 14 Leningradskaya Street. Minsk 220030 Belarus
| | - Jarosław Dziadek
- The Institute of Medical Biology Polish Academy of Sciences 106 Lodowa Street. Lodz 93-232 Poland
| | - Vladimir Shkumatov
- Department of Macromolecular Compounds Belarusian State University 14 Leningradskaya Street. Minsk 220030 Belarus
| |
Collapse
|
3
|
Godoy-Santos F, Pitts B, Stewart PS, Mantovani HC. Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions. MICROBIOLOGY-SGM 2019; 165:761-771. [PMID: 31088602 DOI: 10.1099/mic.0.000804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofilms may enhance the tolerance of bacterial pathogens to disinfectants, biocides and other stressors by restricting the penetration of antimicrobials into the matrix-enclosed cell aggregates, which contributes to the recalcitrance of biofilm-associated infections. In this work, we performed real-time monitoring of the penetration of nisin into the interior of Staphylococcus aureus biofilms under continuous flow and compared the efficacy of this lantibiotic against planktonic and sessile cells of S. aureus. Biofilms were grown in Center for Disease Control (CDC) reactors and the spatial and temporal effects of nisin action on S. aureus cells were monitored by real-time confocal microscopy. Under continuous flow, nisin caused loss of membrane integrity of sessile cells and reached the bottom of the biofilms within ~20 min of exposure. Viability analysis using propidium iodide staining indicated that nisin was bactericidal against S. aureus biofilm cells. Time-kill assays showed that S. aureus viability reduced 6.71 and 1.64 log c.f.u. ml-1 for homogenized planktonic cells in exponential and stationary phase, respectively. For the homogenized and intact S. aureus CDC biofilms, mean viability decreased 1.25 and 0.50 log c.f.u. ml-1, respectively. Our results demonstrate the kinetics of biofilm killing by nisin under continuous-flow conditions, and shows that alterations in the physiology of S. aureus cells contribute to variations in sensitivity to the lantibiotic. The approach developed here could be useful to evaluate the antibiofilm efficacy of other bacteriocins either independently or in combination with other antimicrobials.
Collapse
Affiliation(s)
- Fernanda Godoy-Santos
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Betsey Pitts
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Hilario C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
4
|
Thiagaraj AK, Malviya M, Htun WW, Telila T, Lerner SA, Elder MD, Schreiber TL. A novel approach in the management of right-sided endocarditis: percutaneous vegectomy using the AngioVac cannula. Future Cardiol 2017; 13:211-217. [PMID: 28326804 DOI: 10.2217/fca-2016-0076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The AngioVac is a vacuum-based device introduced in 2012 to percutaneously remove undesirable material from the intravascular system. In scattered reports, the AngioVac has been used for removal of device-led vegetations and right-sided thrombi. In this article, we describe three cases of right-sided endocarditis treated with AngioVac: a mobile mass extending from the vena cava into the right atrium, large native tricuspid vegetations, and bioprosthetic tricuspid vegetations. This device shows benefit in reducing vegetation load, decreasing septic lung embolization, and reducing reinfection in active intravenous drug users. These cases exhibit the AngioVac's arrival as a new and exciting tool in endocarditis treatment, providing an alternative to open surgery and accessorizing antimicrobial treatment.
Collapse
Affiliation(s)
- Ashwin K Thiagaraj
- Department of Cardiology, Harper University Hospital, 3990 John R Rd, 4 Hudson, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Meenal Malviya
- Department of Infectious Diseases, Harper University Hospital, 3990 John R Rd, 5 Hudson, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Wah W Htun
- Department of Interventional Cardiology, Detroit Medical Center, Wayne State University, 311 Mack Ave, Detroit, MI 48201, USA
| | - Tesfaye Telila
- Department of Cardiology, Harper University Hospital, 3990 John R Rd, 4 Hudson, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Stephen A Lerner
- Department of Infectious Diseases, Harper University Hospital, 3990 John R Rd, 5 Hudson, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Mahir D Elder
- Department of Interventional Cardiology, Detroit Medical Center, Wayne State University, 311 Mack Ave, Detroit, MI 48201, USA
| | - Theodore L Schreiber
- Department of Interventional Cardiology, Detroit Medical Center, Wayne State University, 311 Mack Ave, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Das B, Sarkar C, Das D, Gupta A, Kalra A, Sahni S. Telavancin: a novel semisynthetic lipoglycopeptide agent to counter the challenge of resistant Gram-positive pathogens. Ther Adv Infect Dis 2017; 4:49-73. [PMID: 28634536 PMCID: PMC5467880 DOI: 10.1177/2049936117690501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Telavancin (TD-6424), a semisynthetic lipoglycopeptide vancomycin-derivative, is a novel antimicrobial agent developed by Theravance for overcoming resistant Gram-positive bacterial infections, specifically methicillin-resistant Staphylococcus aureus (MRSA). The US Food and Drug Administration (USFDA) had approved telavancin in 2009 for the treatment of complicated skin and skin structure infections (cSSSIs) caused by Gram-positive bacteria, including MRSA (S. aureus, Streptococcus agalactiae, Streptococcus pyogenes, Streptococcus anginosus group, or Enterococcus faecalis). Telavancin has two proposed mechanisms of action. In vitro, telavancin has a rapid, concentration-dependent bactericidal effect, due to disruption of cell membrane integrity. Telavancin has demonstrable in vitro activity against aerobic and anaerobic Gram-positive bacteria. Telavancin and vancomycin have similar spectra of activity. Gram-negative bacteria are usually non-susceptible to telavancin. Telavancin has been successfully tested in various animal models of bacteremia, endocarditis, meningitis, and pneumonia. Phase II Telavancin versus Standard Therapy for Treatment of Complicated Skin and Soft-Tissue Infections due to Gram-Positive Bacteria (FAST 1 and FAST 2) and phase III [Assessment of Telavancin in Complicated Skin and Skin Structure Infections 1 (ATLAS 1 and ATLAS 2)] clinical trials have been conducted for evaluating telavancin's efficacy and safety in cSSSIs. Phase III clinical trials have been carried out for evaluating telavancin's safety and efficacy in nosocomial pneumonia [Assessment of Telavancin for Treatment of Hospital acquired Pneumonia 1 and 2 (ATTAIN 1 and ATTAIN 2)]. A phase II randomized, double-blind, clinical trial has been carried out for evaluating telavancin's safety and efficacy in uncomplicated S. aureus bacteremia [Telavancin for Treatment of Uncomplicated S. aureus Bacteremia (ASSURE)]. Pacemaker lead-related infective endocarditis due to a vancomycin intermediate S. aureus (VISA) strain (non-daptomycin susceptible) was successfully treated with parenteral telavancin for 8 weeks. Telavancin extensively binds to serum albumin (~93%) and has a relatively small volume of distribution. Telavancin is not biotransformed by any cytochrome P450 microsomal enzymes and excreted mainly in the urine. Though well-tolerated, worrisome adverse effects, including renal dysfunction and QTc prolongation are of potential concern. Given its extensive binding to plasma proteins, long half-life, and a long post-antibiotic effect, it represents a promising addition to the therapeutic armamentarium in combating infections caused by resistant Gram-positive pathogens, namely, MRSA.
Collapse
Affiliation(s)
- Biswadeep Das
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, India
| | - Chayna Sarkar
- Department of Pharmacology & Clinical Pharmacology, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences (NEIGRIHMS) Shillong, Shillong, India
| | - Debasmita Das
- Department of Computer Science & Engineering, Faculty of Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur Ajmer Expressway, Rajasthan, India
| | - Amit Gupta
- Department of Surgery, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, India
| | - Arnav Kalra
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, India
| | - Shubham Sahni
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, India
| |
Collapse
|
6
|
Liapikou A, Dimakou K, Toumbis M. Telavancin in the treatment of Staphylococcus aureus hospital-acquired and ventilator-associated pneumonia: clinical evidence and experience. Ther Adv Respir Dis 2016; 10:368-78. [PMID: 27340253 DOI: 10.1177/1753465816651594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Telavancin (TLV) is a lipoglycopeptide derivative of vancomycin (VAN), which has activity against Gram-positive aerobic bacteria, and is especially effective against methicillin-resistant Staphylococcus aureus (MRSA) and Gram-positive bacteria resistant to VAN. Comparative clinical studies of TLV have demonstrated noninferiority compared with VAN in the treatment of hospital-acquired Gram-positive pneumonia, with high cure rates for TLV-treated patients with monomicrobial S. aureus infection, including isolates with reduced VAN susceptibility. The results based on the patients' clinical response were supported by supplemental post-hoc analyses of 28-day mortality. In Europe and the USA, TLV is approved as a useful alternative for patients with difficult-to-treat, hospital-acquired MRSA pneumonia when there are very few alternatives. The present article reviews TLV's pharmacological characteristics and clinical efficacy resulting from clinical trials giving a detailed picture of its properties and position in the management of hospital-acquired pneumonia.
Collapse
|
7
|
Baddour LM, Wilson WR, Bayer AS, Fowler VG, Tleyjeh IM, Rybak MJ, Barsic B, Lockhart PB, Gewitz MH, Levison ME, Bolger AF, Steckelberg JM, Baltimore RS, Fink AM, O'Gara P, Taubert KA. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation 2015; 132:1435-86. [PMID: 26373316 DOI: 10.1161/cir.0000000000000296] [Citation(s) in RCA: 1939] [Impact Index Per Article: 215.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Infective endocarditis is a potentially lethal disease that has undergone major changes in both host and pathogen. The epidemiology of infective endocarditis has become more complex with today's myriad healthcare-associated factors that predispose to infection. Moreover, changes in pathogen prevalence, in particular a more common staphylococcal origin, have affected outcomes, which have not improved despite medical and surgical advances. METHODS AND RESULTS This statement updates the 2005 iteration, both of which were developed by the American Heart Association under the auspices of the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease of the Young. It includes an evidence-based system for diagnostic and treatment recommendations used by the American College of Cardiology and the American Heart Association for treatment recommendations. CONCLUSIONS Infective endocarditis is a complex disease, and patients with this disease generally require management by a team of physicians and allied health providers with a variety of areas of expertise. The recommendations provided in this document are intended to assist in the management of this uncommon but potentially deadly infection. The clinical variability and complexity in infective endocarditis, however, dictate that these recommendations be used to support and not supplant decisions in individual patient management.
Collapse
|
8
|
Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 2015; 59:6882-90. [PMID: 26303796 DOI: 10.1128/aac.01440-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
The antimicrobial effects of copper ions and salts are well known, but the effects of cuprous oxide nanoparticles (Cu2O-NPs) on staphylococcal biofilms have not yet been clearly revealed. The present study evaluated Cu2O-NPs for their antibacterial and antibiofilm activities against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and vancomycin-intermediate S. aureus (VISA). Nanoscaled Cu2O, generated by solution phase technology, contained Cu2O octahedral nanoparticles. Field emission electron microscopy demonstrated particles with sizes ranging from 100 to 150 nm. Cu2O-NPs inhibited the growth of S. aureus and showed antibiofilm activity. The MICs and minimum biofilm inhibitory concentrations ranged from 625 μg/ml to 5,000 μg/ml and from 2,500 μg/ml to 10,000 μg/ml, respectively. Exposure of S. aureus to Cu2O-NPs caused leakage of the cellular constituents and increased uptake of ethidium bromide and propidium iodide. Exposure also caused a significant reduction in the overall vancomycin-BODIPY (dipyrromethene boron difluoride [4,4-difluoro-4-bora-3a,4a-diaza-s-indacene] fluorescent dye) binding and a decrease in the viable cell count in the presence of 7.5% sodium chloride. Cu2O-NP toxicity assessment by hemolysis assay showed no cytotoxicity at 625 to 10,000 μg/ml concentrations. The results suggest that Cu2O-NPs exert their action by disruption of the bacterial cell membrane and can be used as effective antistaphylococcal and antibiofilm agents in diverse medical devices.
Collapse
|
9
|
Telavancin demonstrates activity against methicillin-resistant Staphylococcus aureus isolates with reduced susceptibility to vancomycin, daptomycin, and linezolid in broth microdilution MIC and one-compartment pharmacokinetic/pharmacodynamic models. Antimicrob Agents Chemother 2015; 59:5529-34. [PMID: 26124162 DOI: 10.1128/aac.00773-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/20/2015] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) isolates have arisen with reduced susceptibility to several anti-MRSA agents. Telavancin (TLV), a novel anti-MRSA agent, retains low MICs against these organisms. Our objective was to determine the MICs for TLV, daptomycin (DAP), vancomycin (VAN), and linezolid (LZD) against daptomycin-nonsusceptible (DNS) S. aureus, vancomycin-intermediate S. aureus (VISA), heteroresistant VISA (hVISA), and linezolid-resistant (LZD(r)) S. aureus. We also evaluated these agents against each phenotype in pharmacokinetic/pharmacodynamic (PK/PD) models. Seventy DNS, 100 VISA, 180 hVISA, and 25 LZD(r) MRSA isolates were randomly selected from our library and tested to determine their MICs against TLV, DAP, VAN, and LZD via broth microdilution and a Trek panel. Four isolates were randomly selected for 168-h in vitro models to evaluate treatment with TLV at 10 mg/kg of body weight/day, DAP at 10 mg/kg/day, VAN at 1 g every 12 h (q12h), and LZD at 600 mg q12h. The MIC50/90 for TLV, DAP, VAN, and LZD against 70 DNS S. aureus isolates were 0.06/0.125 μg/ml, 2/4 μg/ml, 1/2 μg/ml, and 2/2 μg/ml, respectively. Against 100 VISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 1/1 μg/ml, 4/8 μg/ml, and 1/2 μg/ml, respectively. Against 170 hVISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 0.5/1 μg/ml, 1/2 μg/ml, and 1/2 μg/ml, respectively. Against 25 LZD(r) isolates, the MIC50/90 were 0.03/0.06 μg/ml, 1/1 μg/ml, 2/2 μg/ml, and 8/8 μg/ml, respectively. The TLV MIC was >0.125 μg/ml for 10/365 (2.7%) isolates. In PK/PD models, TLV was universally bactericidal at 168 h and statistically superior to all antibiotics against DNS S. aureus strain R2334. These data further establish the potency of TLV against resistant MRSA. The model data demonstrate in vitro bactericidal activity of TLV against hVISA, VISA, DNS S. aureus, and LZD(r) S. aureus strains. Further clinical research is warranted.
Collapse
|
10
|
Ruggero MA, Peaper DR, Topal JE. Telavancin for refractory methicillin-resistantStaphylococcus aureusbacteremia and infective endocarditis. Infect Dis (Lond) 2015; 47:379-84. [DOI: 10.3109/00365548.2014.995696] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Hegde SS, Janc JW. Efficacy of telavancin, a lipoglycopeptide antibiotic, in experimental models of Gram-positive infection. Expert Rev Anti Infect Ther 2014; 12:1463-75. [DOI: 10.1586/14787210.2014.979789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Rubinstein E, Stryjewski ME, Barriere SL. Clinical utility of telavancin for treatment of hospital-acquired pneumonia: focus on non-ventilator-associated pneumonia. Infect Drug Resist 2014; 7:129-35. [PMID: 24876786 PMCID: PMC4035308 DOI: 10.2147/idr.s25930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Hospital-acquired pneumonia (HAP) is the most common health care-associated infection contributing to death. Studies have indicated that there may be differences in the causative pathogens and outcomes of ventilator-associated pneumonia (VAP) and non-ventilator-associated pneumonia (NV-HAP). However, with limited NV-HAP-specific data available, treatment is generally based on data from studies of VAP. The Phase 3 Assessment of Telavancin for Treatment of Hospital-Acquired Pneumonia (ATTAIN) studies were two double-blind randomized controlled trials that demonstrated the non-inferiority of telavancin to vancomycin for treatment of Gram-positive HAP. We conducted a post hoc subgroup analysis of patients enrolled in the ATTAIN studies who had NV-HAP. Methods Data from the two ATTAIN studies were pooled, and patients with NV-HAP were analyzed. The all-treated (AT) population consisted of all randomized patients who received ≥1 dose of study medication, and the clinically evaluable (CE) population consisted of AT patients who were protocol-adherent or who died on or after study day 3, where death was attributable to the HAP episode under study. The primary endpoint was clinical response (cure, failure, or indeterminate) at the follow-up/test of cure visit, conducted 7–14 days after the end of therapy. Results A total of 1,076 patients (71.6% of overall ATTAIN AT population) had NV-HAP (533 and 543 patients in the telavancin and vancomycin treatment groups, respectively). Clinical cure rates in the CE population were similar for patients with NV-HAP treated with telavancin and vancomycin (83.1% [201/242] and 84.1% [233/277], respectively). In patients with methicillin-resistant Staphylococcus aureus isolated at baseline, cure rates in the CE population were 74.8% (77/103) for telavancin and 79.3% (96/121) for vancomycin. The incidence of adverse events, serious adverse events, and deaths in patients with NV-HAP was similar whether patients received telavancin or vancomycin. Conclusion This post hoc subgroup analysis of the ATTAIN studies demonstrated similar cure rates for telavancin and vancomycin for treatment of NV-HAP.
Collapse
Affiliation(s)
| | - Martin E Stryjewski
- Department of Medicine, Section of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | | |
Collapse
|
13
|
Bunschoten A, Welling MM, Termaat MF, Sathekge M, van Leeuwen FWB. Development and Prospects of Dedicated Tracers for the Molecular Imaging of Bacterial Infections. Bioconjug Chem 2013; 24:1971-89. [PMID: 24200346 DOI: 10.1021/bc4003037] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A. Bunschoten
- Department
of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - M. M. Welling
- Department
of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - M. F. Termaat
- Department
of Trauma Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - M. Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - F. W. B. van Leeuwen
- Department
of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 2013; 57:5572-9. [PMID: 23979748 DOI: 10.1128/aac.00888-13] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Control of biofilms formed by microbial pathogens is an important subject for medical researchers, since the development of biofilms on foreign-body surfaces often causes biofilm-associated infections in patients with indwelling medical devices. The present study examined the effects of different kinds of bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by certain bacteria, on biofilms formed by a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). The activities and modes of action of three bacteriocins with different structures (nisin A, lacticin Q, and nukacin ISK-1) were evaluated. Vancomycin, a glycopeptide antibiotic used in the treatment of MRSA infections, showed bactericidal activity against planktonic cells but not against biofilm cells. Among the tested bacteriocins, nisin A showed the highest bactericidal activity against both planktonic cells and biofilm cells. Lacticin Q also showed bactericidal activity against both planktonic cells and biofilm cells, but its activity against biofilm cells was significantly lower than that of nisin A. Nukacin ISK-1 showed bacteriostatic activity against planktonic cells and did not show bactericidal activity against biofilm cells. Mode-of-action studies indicated that pore formation leading to ATP efflux is important for the bactericidal activity against biofilm cells. Our results suggest that bacteriocins that form stable pores on biofilm cells are highly potent for the treatment of MRSA biofilm infections.
Collapse
|
15
|
Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. mBio 2013; 4:mBio.00281-13. [PMID: 23882013 PMCID: PMC3735187 DOI: 10.1128/mbio.00281-13] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Treatment of multidrug-resistant enterococci has become a challenging clinical problem in hospitals around the world due to the lack of reliable therapeutic options. Daptomycin (DAP), a cell membrane-targeting cationic antimicrobial lipopeptide, is the only antibiotic with in vitro bactericidal activity against vancomycin-resistant enterococci (VRE). However, the clinical use of DAP against VRE is threatened by emergence of resistance during therapy, but the mechanisms leading to DAP resistance are not fully understood. The mechanism of action of DAP involves interactions with the cell membrane in a calcium-dependent manner, mainly at the level of the bacterial septum. Previously, we demonstrated that development of DAP resistance in vancomycin-resistant Enterococcus faecalis is associated with mutations in genes encoding proteins with two main functions, (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase). In this work, we show that these VRE can resist DAP-elicited cell membrane damage by diverting the antibiotic away from its principal target (division septum) to other distinct cell membrane regions. DAP septal diversion by DAP-resistant E. faecalis is mediated by initial redistribution of cell membrane cardiolipin-rich microdomains associated with a single amino acid deletion within the transmembrane protein LiaF (a member of a three-component regulatory system [LiaFSR] involved in cell envelope homeostasis). Full expression of DAP resistance requires additional mutations in enzymes
(glycerophosphoryl diester phosphodiesterase and cardiolipin synthase) that alter cell membrane phospholipid content. Our findings describe a novel mechanism of bacterial resistance to cationic antimicrobial peptides. IMPORTANCE The emergence of antibiotic resistance in bacterial pathogens is a threat to public health. Understanding the mechanisms of resistance is of crucial importance to develop new strategies to combat multidrug-resistant microorganisms. Vancomycin-resistant enterococci (VRE) are one of the most recalcitrant hospital-associated pathogens against which new therapies are urgently needed. Daptomycin (DAP) is a calcium-decorated antimicrobial lipopeptide whose target is the bacterial cell membrane. A current paradigm suggests that Gram-positive bacteria become resistant to cationic antimicrobial peptides via an electrostatic repulsion of the antibiotic molecule from a more positively charged cell surface. In this work, we provide evidence that VRE use a novel strategy to avoid DAP-elicited killing. Instead of “repelling” the antibiotic from the cell surface, VRE diverts the antibiotic molecule from the septum and “traps” it in distinct membrane regions. We provide genetic and biochemical bases responsible for the mechanism of resistance and disclose new targets for potential antimicrobial development. The emergence of antibiotic resistance in bacterial pathogens is a threat to public health. Understanding the mechanisms of resistance is of crucial importance to develop new strategies to combat multidrug-resistant microorganisms. Vancomycin-resistant enterococci (VRE) are one of the most recalcitrant hospital-associated pathogens against which new therapies are urgently needed. Daptomycin (DAP) is a calcium-decorated antimicrobial lipopeptide whose target is the bacterial cell membrane. A current paradigm suggests that Gram-positive bacteria become resistant to cationic antimicrobial peptides via an electrostatic repulsion of the antibiotic molecule from a more positively charged cell surface. In this work, we provide evidence that VRE use a novel strategy to avoid DAP-elicited killing. Instead of “repelling” the antibiotic from the cell surface, VRE diverts the antibiotic molecule from the septum and “traps” it in distinct membrane regions. We provide genetic and biochemical bases responsible for the mechanism of resistance and disclose new targets for potential antimicrobial development.
Collapse
|
16
|
Ortwine JK, Werth BJ, Sakoulas G, Rybak MJ. Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the “seesaw effect”: Taking advantage of the back door left open? Drug Resist Updat 2013; 16:73-9. [DOI: 10.1016/j.drup.2013.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Werth BJ, Vidaillac C, Murray KP, Newton KL, Sakoulas G, Nonejuie P, Pogliano J, Rybak MJ. Novel combinations of vancomycin plus ceftaroline or oxacillin against methicillin-resistant vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA. Antimicrob Agents Chemother 2013; 57:2376-9. [PMID: 23422917 PMCID: PMC3632910 DOI: 10.1128/aac.02354-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/13/2013] [Indexed: 11/20/2022] Open
Abstract
We demonstrated a significant inverse correlation between vancomycin and beta-lactam susceptibilities in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) isolates. Using time-kill assays, vancomycin plus oxacillin or ceftaroline was synergistic against 3 of 5 VISA and 1 of 5 hVISA isolates or 5 of 5 VISA and 4 of 5 hVISA isolates, respectively. Beta-lactam exposure reduced overall vancomycin-Bodipy (dipyrromethene boron difluoride [4,4-difluoro-4-bora-3a,4a-diaza-s-indacene] fluorescent dye) binding but may have improved vancomycin-cell wall interactions to improve vancomycin activity. Further research is warranted to elucidate the mechanism behind vancomycin and beta-lactam synergy.
Collapse
Affiliation(s)
- B. J. Werth
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences
| | - C. Vidaillac
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences
| | - K. P. Murray
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences
| | - K. L. Newton
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences
| | - G. Sakoulas
- Department of Pediatric Pharmacology and Drug Discovery, University of California San Diego School of Medicine, La Jolla, California, USA
| | - P. Nonejuie
- University of California San Diego, Division of Biology, La Jolla, California, USA
| | - J. Pogliano
- University of California San Diego, Division of Biology, La Jolla, California, USA
| | - M. J. Rybak
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences
- School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
18
|
Krause KM, Blais J, Lewis SR, Lunde CS, Barriere SL, Friedland HD, Kitt MM, Benton BM. In vitro activity of telavancin and occurrence of vancomycin heteroresistance in isolates from patients enrolled in phase 3 clinical trials of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 2012; 74:429-31. [DOI: 10.1016/j.diagmicrobio.2012.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
|
19
|
Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 2012; 194:4494-504. [PMID: 22661688 DOI: 10.1128/jb.00011-12] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Daptomycin is a lipopeptide antibiotic used clinically for the treatment of certain types of Gram-positive infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Details of the mechanism of action of daptomycin continue to be elucidated, particularly the question of whether daptomycin acts on the cell membrane, the cell wall, or both. Here, we use fluorescence microscopy to directly visualize the interaction of daptomycin with the model Gram-positive bacterium Bacillus subtilis. We show that the first observable cellular effects are the formation of membrane distortions (patches of membrane) that precede cell death by more than 30 min. Membrane patches are able to recruit the essential cell division protein DivIVA. Recruitment of DivIVA correlates with membrane defects and changes in cell morphology, suggesting a localized alteration in the activity of enzymes involved in cell wall synthesis that could account for previously described effects of daptomycin on cell wall morphology and septation. Membrane defects colocalize with fluorescently labeled daptomycin, DivIVA, and fluorescent reporters of peptidoglycan biogenesis (Bocillin FL and BODIPY FL-vancomycin), suggesting that daptomycin plays a direct role in these events. Our results support a mechanism for daptomycin with a primary effect on cell membranes that in turn redirects the localization of proteins involved in cell division and cell wall synthesis, causing dramatic cell wall and membrane defects, which may ultimately lead to a breach in the cell membrane and cell death. These results help resolve the longstanding questions regarding the mechanism of action of this important class of antibiotics.
Collapse
|
20
|
Song Y, Lunde CS, Benton BM, Wilkinson BJ. Further insights into the mode of action of the lipoglycopeptide telavancin through global gene expression studies. Antimicrob Agents Chemother 2012; 56:3157-64. [PMID: 22411615 PMCID: PMC3370745 DOI: 10.1128/aac.05403-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/02/2012] [Indexed: 11/20/2022] Open
Abstract
Telavancin is a novel semisynthetic lipoglycopeptide derivative of vancomycin with a decylaminoethyl side chain that is active against Gram-positive bacteria, including Staphylococcus aureus strains resistant to methicillin or vancomycin. A dual mechanism of action has been proposed for telavancin involving inhibition of peptidoglycan biosynthesis and membrane depolarization. Here we report the results of genome-wide transcriptional profiling of the response of S. aureus to telavancin using microarrays. Short (15-min) challenge of S. aureus with telavancin revealed strong expression of the cell wall stress stimulon, a characteristic response to inhibition of cell wall biosynthesis. In the transcriptome obtained after 60-min telavancin challenge, in addition to induction of the cell wall stress stimulon, there was induction of various genes, including lrgA and lrgB, lysine biosynthesis operon (dap) genes, vraD and vraE, and hlgC, that have been reported to be induced by known membrane-depolarizing and active agents, including carbonyl cyanide m-chlorophenylhydrazone, daptomycin, bacitracin, and other antimicrobial peptides These genes were either not induced or only weakly induced by the parent molecule vancomycin. We suggest that expression of these genes is a response of the cell to mitigate and detoxify such molecules and is diagnostic of a membrane-depolarizing or membrane-active molecule. The results indicate that telavancin causes early and significant induction of the cell wall stress stimulon due to strong inhibition of peptidoglycan biosynthesis, with evidence in support of membrane depolarization and membrane activity that is expressed after a longer duration of drug treatment.
Collapse
Affiliation(s)
- Yang Song
- Microbiology Group, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | | | | | - Brian J. Wilkinson
- Microbiology Group, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
21
|
Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. J Bacteriol 2012; 194:2509-19. [PMID: 22389474 DOI: 10.1128/jb.06704-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamine synthetase (GS) and glucose-6-phosphate isomerase (GPI) were identified as novel adhesive moonlighting proteins of Lactobacillus crispatus ST1. Both proteins were bound onto the bacterial surface at acidic pHs, whereas a suspension of the cells to pH 8 caused their release into the buffer, a pattern previously observed with surface-bound enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. crispatus. The pH shift was associated with a rapid and transient increase in cell wall permeability, as measured by cell staining with propidium iodide. A gradual increase in the release of the four moonlighting proteins was also observed after the treatment of L. crispatus ST1 cells with increasing concentrations of the antimicrobial cationic peptide LL-37, which kills bacteria by disturbing membrane integrity and was here observed to increase the cell wall permeability of L. crispatus ST1. At pH 4, the fusion proteins His(6)-GS, His(6)-GPI, His(6)-enolase, and His(6)-GAPDH showed localized binding to cell division septa and poles of L. crispatus ST1 cells, whereas no binding to Lactobacillus rhamnosus GG was detected. Strain ST1 showed a pH-dependent adherence to the basement membrane preparation Matrigel. Purified His(6)-GS and His(6)-GPI proteins bound to type I collagen, and His(6)-GS also bound to laminin, and their level of binding was higher at pH 5.5 than at pH 6.5. His(6)-GS also expressed a plasminogen receptor function. The results show the strain-dependent surface association of moonlighting proteins in lactobacilli and that these proteins are released from the L. crispatus surface after cell trauma, under conditions of alkaline stress, or in the presence of the antimicrobial peptide LL-37 produced by human cells.
Collapse
|
22
|
Evaluation of telavancin activity versus daptomycin and vancomycin against daptomycin-nonsusceptible Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2011; 56:955-9. [PMID: 22123693 DOI: 10.1128/aac.05849-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Daptomycin-nonsusceptible (DNS) Staphylococcus aureus strains have been reported over the last several years. Telavancin is a lipoglycopeptide with a dual mechanism of action, as it inhibits peptidoglycan polymerization/cross-linking and disrupts the membrane potential. Three clinical DNS S. aureus strains, CB1814, R6212, and SA-684, were evaluated in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model with simulated endocardial vegetations (starting inoculum, 10(8.5) CFU/g) for 120 h. Simulated regimens included telavancin at 10 mg/kg every 24 h (q24h; peak, 87.5 mg/liter; t(1/2), 7.5 h), daptomycin at 6 mg/kg q24h (peak, 95.7 mg/liter; t(1/2), 8 h), and vancomycin at 1 g q12h (peak, 30 mg/liter; t(1/2), 6 h). Differences in CFU/g between regimens at 24 through 120 h were evaluated by analysis of variance with a Tukey's post hoc test. Bactericidal activity was defined as a ≥3-log(10) CFU/g decrease in colony count from the initial inoculum. MIC values were 1, 0.25, and 0.5 mg/liter (telavancin), 4, 2, and 2 mg/liter (daptomycin), and 2, 2, and 2 mg/liter (vancomycin) for CB1814, R6212, and SA-684, respectively. Telavancin displayed bactericidal activities against R6212 (32 to 120 h; -4.31 log(10) CFU/g), SA-684 (56 to 120 h; -3.06 log(10) CFU/g), and CB1814 (48 to 120 h; -4.9 log(10) CFU/g). Daptomycin displayed initial bactericidal activity followed by regrowth with all three strains. Vancomycin did not exhibit sustained bactericidal activity against any strain. At 120 h, telavancin was significantly better at reducing colony counts than vancomycin against all three tested strains and better than daptomycin against CB1814 (P < 0.05). Telavancin displayed bactericidal activity in vitro against DNS S. aureus isolates.
Collapse
|
23
|
Affiliation(s)
- S E Damodaran
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry - 605 006, India
| | | |
Collapse
|
24
|
Telavancin: a lipoglycopeptide antimicrobial for the treatment of complicated skin and skin structure infections caused by gram-positive bacteria in adults. Clin Ther 2011; 32:2160-85. [PMID: 21316534 DOI: 10.1016/s0149-2918(11)00020-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Telavancin, a lipoglycopeptide antibiotic, is a semisynthetic derivative of vancomycin. It was approved by the US Food and Drug Administration (FDA) in 2009 for the treatment of complicated skin and skin structure infections (cSSSIs) caused by gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. OBJECTIVE This article summarizes the pharmacology, in vitro and in vivo activity, pharmacokinetic properties, and clinical efficacy and tolerability of telavancin. METHODS Relevant information was identified through a search of MEDLINE (1966-August 2010), Iowa Drug Information Service (1966-August 2010), International Pharmaceutical Abstracts (1970-August 2010), and Google Scholar using the terms telavancin, lipoglycopeptide, and TD-6424. Abstracts and posters from scientific meetings, as well as documents submitted by the manufacturer of telavancin to the FDA as part of the approval process, were consulted. In vivo and in vitro experimental and clinical studies and review articles that provided information on the activity, mechanism of action, pharmacologic and pharmacokinetic properties, clinical efficacy, and tolerability of telavancin were reviewed. RESULTS In vitro, telavancin has potent activity against S aureus, including methicillin-resistant strains; Streptococcus pneumoniae; and vancomycin-susceptible enterococci with MICs generally <1 μg/mL. Telavancin appears to have a dual mechanism of action, inhibiting cell wall formation and disrupting the cell membrane. In Phase III studies (ATLAS 1 and ATLAS 2), telavancin was found to be noninferior to vancomycin, with clinical cure rates of 88.3% and 87.1%, respectively, in clinically evaluable patients in the treatment of cSSSIs (difference, 1.2%; 95% CI, -2.1 to 4.6; P = NS). The effectiveness of telavancin in the treatment of hospital-acquired pneumonia was assessed in 2 Phase III studies (ATTAIN 1 and ATTAIN 2). Preliminary findings were that the effectiveness of telavancin was not significantly different from that of vancomycin, with cure rates of 82.7% and 80.9% in the clinically evaluable population, respectively (difference, 1.8%; 95% CI, -4.1 to 7.7; P = NS). The most commonly (>10%) reported adverse events included taste disturbances, nausea, headache, vomiting, foamy urine, constipation, and insomnia. CONCLUSION In clinical trials, the effectiveness of telavancin was not significantly different from that of vancomycin in the treatment of cSSSIs, and telavancin was generally well tolerated.
Collapse
|