1
|
de Souza GH, Vaz MS, Dos Santos Radai JA, Fraga TL, Rossato L, Simionatto S. Synergistic interaction of polymyxin B with carvacrol: antimicrobial strategy against polymyxin-resistant Klebsiella pneumoniae. Future Microbiol 2024; 19:181-193. [PMID: 38329374 DOI: 10.2217/fmb-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/09/2023] [Indexed: 02/09/2024] Open
Abstract
Objective: The antimicrobial activities of the synergistic combination of carvacrol and polymyxin B against polymyxin-resistant Klebsiella pneumoniae were evaluated. Methods: The methods employed checkerboard assays to investigate synergism, biofilm inhibition assessment and membrane integrity assay. In addition, the study included in vivo evaluation using a mouse infection model. Results: The checkerboard method evaluated 48 combinations, with 23 indicating synergistic action. Among these, carvacrol 10 mg/kg plus polymyxin B 2 mg/kg exhibited in vivo antimicrobial activity in a mouse model of infection, resulting in increased survival and a significant decrease in bacterial load in the blood. Conclusion: Polymyxin in synergy with carvacrol represents a promising alternative to be explored in the development of new antimicrobials.
Collapse
Affiliation(s)
- Gleyce Ha de Souza
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Marcia Sm Vaz
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Joyce A Dos Santos Radai
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Thiago L Fraga
- Centro Universitário da Grande Dourados - UNIGRAN, Dourados, Mato Grosso do Sul, 79824-900, Brazil
| | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| |
Collapse
|
2
|
Hurst MN, Beebout CJ, Hollingsworth A, Guckes KR, Purcell A, Bermudez TA, Williams D, Reasoner SA, Trent MS, Hadjifrangiskou M. The QseB response regulator imparts tolerance to positively charged antibiotics by controlling metabolism and minor changes to LPS. mSphere 2023; 8:e0005923. [PMID: 37676915 PMCID: PMC10597456 DOI: 10.1128/msphere.00059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 09/09/2023] Open
Abstract
The modification of lipopolysaccharide (LPS) in Escherichia coli and Salmonella spp. is primarily controlled by the two-component system PmrAB. LPS modification allows bacteria to avoid killing by positively charged antibiotics like polymyxin B (PMB). We previously demonstrated that in uropathogenic E. coli (UPEC), the sensor histidine kinase PmrB also activates a non-cognate transcription factor, QseB, and this activation somehow augments PMB tolerance in UPEC. Here, we demonstrate-for the first time-that in the absence of the canonical LPS transcriptional regulator, PmrA, QseB can direct some modifications on the LPS. In agreement with this observation, transcriptional profiling analyses demonstrate regulatory overlaps between PmrA and QseB in terms of regulating LPS modification genes. However, both PmrA and QseB must be present for UPEC to mount robust tolerance to PMB. Transcriptional and metabolomic analyses also reveal that QseB transcriptionally regulates the metabolism of glutamate and 2-oxoglutarate, which are consumed and produced during the modification of lipid A. We show that deletion of qseB alters glutamate levels in the bacterial cells. The qseB deletion mutant, which is susceptible to positively charged antibiotics, is rescued by exogenous addition of 2-oxoglutarate. These findings uncover a previously unknown mechanism of metabolic control of antibiotic tolerance that may be contributing to antibiotic treatment failure in the clinic. IMPORTANCE Although antibiotic prescriptions are guided by well-established susceptibility testing methods, antibiotic treatments oftentimes fail. The presented work is significant because it uncovers a mechanism by which bacteria transiently avoid killing by antibiotics. This mechanism involves two closely related transcription factors, PmrA and QseB, which are conserved across Enterobacterales. We demonstrate that PmrA and QseB share regulatory targets in lipid A modification pathway and prove that QseB can orchestrate modifications of lipid A in Escherichia coli in the absence of PmrA. Finally, we show that QseB controls glutamate metabolism during the antibiotic response. These results suggest that rewiring of QseB-mediated metabolic genes could lead to stable antibiotic resistance in subpopulations within the host, thereby contributing to antibiotic treatment failure.
Collapse
Affiliation(s)
- Melanie N. Hurst
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor J. Beebout
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexis Hollingsworth
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Kirsten R. Guckes
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandria Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Tomas A. Bermudez
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diamond Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Seth A. Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
- Center for Personalized Microbiology, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Carfrae LA, Rachwalski K, French S, Gordzevich R, Seidel L, Tsai CN, Tu MM, MacNair CR, Ovchinnikova OG, Clarke BR, Whitfield C, Brown ED. Inhibiting fatty acid synthesis overcomes colistin resistance. Nat Microbiol 2023:10.1038/s41564-023-01369-z. [PMID: 37127701 DOI: 10.1038/s41564-023-01369-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Treating multidrug-resistant infections has increasingly relied on last-resort antibiotics, including polymyxins, for example colistin. As polymyxins are given routinely, the prevalence of their resistance is on the rise and increases mortality rates of sepsis patients. The global dissemination of plasmid-borne colistin resistance, driven by the emergence of mcr-1, threatens to diminish the therapeutic utility of polymyxins from an already shrinking antibiotic arsenal. Restoring sensitivity to polymyxins using combination therapy with sensitizing drugs is a promising approach to reviving its clinical utility. Here we describe the ability of the biotin biosynthesis inhibitor, MAC13772, to synergize with colistin exclusively against colistin-resistant bacteria. MAC13772 indirectly disrupts fatty acid synthesis (FAS) and restores sensitivity to the last-resort antibiotic, colistin. Accordingly, we found that combinations of colistin and other FAS inhibitors, cerulenin, triclosan and Debio1452-NH3, had broad potential against both chromosomal and plasmid-mediated colistin resistance in chequerboard and lysis assays. Furthermore, combination therapy with colistin and the clinically relevant FabI inhibitor, Debio1452-NH3, showed efficacy against mcr-1 positive Klebsiella pneumoniae and colistin-resistant Escherichia coli systemic infections in mice. Using chemical genomics, lipidomics and transcriptomics, we explored the mechanism of the interaction. We propose that inhibiting FAS restores colistin sensitivity by depleting lipid synthesis, leading to changes in phospholipid composition. In all, this work reveals a surprising link between FAS and colistin resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Rachwalski
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Rodion Gordzevich
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Laura Seidel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Caressa N Tsai
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Megan M Tu
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Craig R MacNair
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Eric D Brown
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Hurst MN, Beebout CJ, Hollingsworth A, Guckes KR, Purcell A, Bermudez TA, Williams D, Reasoner SA, Trent MS, Hadjifrangiskou M. The QseB response regulator imparts tolerance to positively charged antibiotics by controlling metabolism and minor changes to LPS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523522. [PMID: 36711705 PMCID: PMC9882033 DOI: 10.1101/2023.01.10.523522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The modification of lipopolysaccharide (LPS) in Escherichia coli and Salmonella spp . is primarily controlled by the two-component system PmrAB. LPS modification allows bacteria to avoid killing by positively charged antibiotics like polymyxin B. We previously demonstrated that in uropathogenic E. coli (UPEC), the sensor histidine kinase PmrB also activates a non-cognate transcription factor, QseB, and this activation somehow augments polymyxin B tolerance in UPEC. Here, we demonstrate - for the first time - that in the absence of the canonical LPS transcriptional regulator, PmrA, QseB can direct some modifications on the LPS. In agreement with this observation, transcriptional profiling analyses demonstrate regulatory overlaps between PmrA and QseB in terms of regulating LPS modification genes. However, both PmrA and QseB must be present for UPEC to mount robust tolerance to polymyxin B. Transcriptional and metabolomic analyses also reveal that QseB transcriptionally regulates the metabolism of glutamate and 2-oxoglutarate, which are consumed and produced during the modification of lipid A. We show that deletion of qseB alters glutamate levels in the bacterial cells. The qseB deletion mutant, which is susceptible to positively charged antibiotics, is rescued by exogenous addition of 2-oxoglutarate. These findings uncover a previously unknown mechanism of metabolic control of antibiotic tolerance that may be contributing to antibiotic treatment failure in the clinic. IMPORTANCE Although antibiotic prescriptions are guided by well-established susceptibility testing methods, antibiotic treatments oftentimes fail. The presented work is significant, because it uncovers a mechanism by which bacteria transiently avoid killing by antibiotics. This mechanism involves two closely related transcription factors, PmrA and QseB, which are conserved across Enterobacteriaceae. We demonstrate that PmrA and QseB share regulatory targets in lipid A modification pathway and prove that QseB can orchestrate modifications of lipid A in E. coli in the absence of PmrA. Finally, we show that QseB controls glutamate metabolism during the antibiotic response. These results suggest that rewiring of QseB-mediated metabolic genes can lead to stable antibiotic resistance in subpopulations within the host, thereby contributing to antibiotic treatment failure.
Collapse
Affiliation(s)
- Melanie N. Hurst
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Connor J. Beebout
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kirsten R. Guckes
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Tomas A. Bermudez
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diamond Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Seth A. Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN, USA
- Center for Personalized Microbiology, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Brigmon MM, Brigmon RL. Infectious Diseases Impact on Biomedical Devices and Materials. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2022; 1:1-8. [PMID: 38625309 PMCID: PMC9616421 DOI: 10.1007/s44174-022-00035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Infectious diseases and nosocomial infections may play a significant role in healthcare issues associated with biomedical materials and devices. Many current polymer materials employed are inadequate for resisting microbial growth. The increase in microbial antibiotic resistance is also a factor in problematic biomedical implants. In this work, the difficulty in diagnosing biomedical device-related infections is reviewed and how this leads to an increase in microbial antibiotic resistance. A conceptualization of device-related infection pathogenesis and current and future treatments is made. Within this conceptualization, we focus specifically on biofilm formation and the role of host immune and antimicrobial therapies. Using this framework, we describe how current and developing preventative strategies target infectious disease. In light of the significant increase in antimicrobial resistance, we also emphasize the need for parallel development of improved treatment strategies. We also review potential production methods for manufacturing specific nanostructured materials with antimicrobial functionality for implantable devices. Specific examples of both preventative and novel treatments and how they align with the improved care with biomedical devices are described.
Collapse
Affiliation(s)
- Matthew M. Brigmon
- Department of Infectious Diseases and Pulmonary Critical Care, Long School of Medicine, UT Health San Antonio, San Antonio, USA
| | - Robin L. Brigmon
- Savannah River National Laboratory, Bldg 999W, Aiken, SC 29808 USA
| |
Collapse
|
6
|
Yu B, Choudhury MR, Yang X, Benoit SL, Womack E, Van Mouwerik Lyles K, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M, Yuan Z, Gumbart JC, Boykin DW, Maier RJ, Eichenbaum Z, Wang B. Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infect Dis 2022; 8:1491-1508. [PMID: 35801980 PMCID: PMC11227883 DOI: 10.1021/acsinfecdis.2c00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | | | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Atanu Acharya
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Anna Pavlova
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - James C. Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
7
|
Strharsky T, Pindjakova D, Kos J, Vrablova L, Michnova H, Hosek J, Strakova N, Lelakova V, Leva L, Kavanova L, Oravec M, Cizek A, Jampilek J. Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides. Int J Mol Sci 2022; 23:ijms23063159. [PMID: 35328580 PMCID: PMC8951032 DOI: 10.3390/ijms23063159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/05/2023] Open
Abstract
A series of eighteen 4-chlorocinnamanilides and eighteen 3,4-dichlorocinnamanilides were designed, prepared and characterized. All compounds were evaluated for their activity against gram-positive bacteria and against two mycobacterial strains. Viability on both cancer and primary mammalian cell lines was also assessed. The lipophilicity of the compounds was experimentally determined and correlated together with other physicochemical properties of the prepared derivatives with biological activity. 3,4-Dichlorocinnamanilides showed a broader spectrum of action and higher antibacterial efficacy than 4-chlorocinnamanilides; however, all compounds were more effective or comparable to clinically used drugs (ampicillin, isoniazid, rifampicin). Of the thirty-six compounds, six derivatives showed submicromolar activity against Staphylococcus aureus and clinical isolates of methicillin-resistant S. aureus (MRSA). (2E)-N-[3,5-bis(trifluoromethyl)phenyl]- 3-(4-chlorophenyl)prop-2-enamide was the most potent in series 1. (2E)-N-[3,5-bis(Trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-enamide, (2E)-3-(3,4-dichlorophenyl)-N-[3-(trifluoromethyl)phenyl]prop-2-enamide, (2E)-3-(3,4-dichloro- phenyl)-N-[4-(trifluoromethyl)phenyl]prop-2-enamide and (2E)-3-(3,4-dichlorophenyl)- N-[4-(trifluoromethoxy)phenyl]prop-2-enamide were the most active in series 2 and in addition to activity against S. aureus and MRSA were highly active against Enterococcus faecalis and vancomycin-resistant E. faecalis isolates and against fast-growing Mycobacterium smegmatis and against slow-growing M. marinum, M. tuberculosis non-hazardous test models. In addition, the last three compounds of the above-mentioned showed insignificant cytotoxicity to primary porcine monocyte-derived macrophages.
Collapse
Affiliation(s)
- Tomas Strharsky
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (T.S.); (H.M.); (J.H.); (J.J.)
| | - Dominika Pindjakova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; (D.P.); (L.V.)
| | - Jiri Kos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (T.S.); (H.M.); (J.H.); (J.J.)
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; (D.P.); (L.V.)
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Correspondence:
| | - Lucia Vrablova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; (D.P.); (L.V.)
| | - Hana Michnova
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (T.S.); (H.M.); (J.H.); (J.J.)
| | - Jan Hosek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (T.S.); (H.M.); (J.H.); (J.J.)
| | - Nicol Strakova
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (N.S.); (V.L.)
| | - Veronika Lelakova
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (N.S.); (V.L.)
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (L.L.); (L.K.)
| | - Lenka Kavanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (L.L.); (L.K.)
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic;
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic;
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (T.S.); (H.M.); (J.H.); (J.J.)
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; (D.P.); (L.V.)
| |
Collapse
|
8
|
Naskar A, Shin J, Kim KS. A MoS 2 based silver-doped ZnO nanocomposite and its antibacterial activity against β-lactamase expressing Escherichia coli. RSC Adv 2022; 12:7268-7275. [PMID: 35424650 PMCID: PMC8982128 DOI: 10.1039/d2ra00163b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria including Escherichia coli are increasingly resistant to current antibiotics. Among the strategies implemented to eradicate such MDR pathogens, approaches based on two-dimensional (2D) nanomaterials have received considerable attention. In particular, the excellent physicochemical properties of 2D molybdenum disulfide (MoS2) nanosheets, including a high surface area, good conductivity, and good surface retention, are advantageous for their use as bactericidal agents. Herein, we report the fabrication of a MoS2-based nanocomposite conjugated with silver-doped zinc oxide (AZM) as an effective antibacterial agent against E. coli species. The properties of AZM were characterized, and its antibacterial activity against MDR E. coli strains with different resistance types was evaluated. MoS2 was found to activate the antibacterial activity of AZM and provide enhanced selectivity against MDR E. coli strains expressing β-lactamases. We proposed that membrane disruption of bacterial cell walls was the major cell death mechanism for MDR E. coli. Furthermore, surface charge perturbation could explain the differences in AZM activity against MDR E. coli strains expressing a β-lactamase and a mobilized colistin resistance (mcr-1) gene product. Thus, a MoS2-based nanocomposite with a functional conjugation strategy could be a selective nano-antibacterial platform against infections caused by MDR E. coli with resistance against β-lactam antibiotics.
Collapse
Affiliation(s)
- Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University Busan 46241 South Korea +82-51-516-7421 +82-51-510-2241
| | - Joonho Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University Busan 46241 South Korea +82-51-516-7421 +82-51-510-2241
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University Busan 46241 South Korea +82-51-516-7421 +82-51-510-2241
| |
Collapse
|
9
|
Furniss RCD, Kaderabkova N, Barker D, Bernal P, Maslova E, Antwi AA, McNeil HE, Pugh HL, Dortet L, Blair JM, Larrouy-Maumus GJ, McCarthy RR, Gonzalez D, Mavridou DA. Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. eLife 2022; 11:57974. [PMID: 35025730 PMCID: PMC8863373 DOI: 10.7554/elife.57974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers. Antibiotics, like penicillin, are the foundation of modern medicine, but bacteria are evolving to resist their effects. Some of the most harmful pathogens belong to a group called the 'Gram-negative bacteria', which have an outer layer – called the cell envelope – that acts as a drug barrier. This envelope contains antibiotic resistance proteins that can deactivate or repel antibiotics or even pump them out of the cell once they get in. One way to tackle antibiotic resistance could be to stop these proteins from working. Proteins are long chains of building blocks called amino acids that fold into specific shapes. In order for a protein to perform its role correctly, it must fold in the right way. In bacteria, a protein called DsbA helps other proteins fold correctly by holding them in place and inserting links called disulfide bonds. It was unclear whether DsbA plays a role in the folding of antibiotic resistance proteins, but if it did, it might open up new ways to treat antibiotic resistant infections. To find out more, Furniss, Kaderabkova et al. collected the genes that code for several antibiotic resistance proteins and put them into Escherichia coli bacteria, which made the bacteria resistant to antibiotics. Furniss, Kaderabkova et al. then stopped the modified E. coli from making DsbA, which led to the antibiotic resistance proteins becoming unstable and breaking down because they could not fold correctly. Further experiments showed that blocking DsbA with a chemical inhibitor in other pathogenic species of Gram-negative bacteria made these bacteria more sensitive to antibiotics that they would normally resist. To demonstrate that using this approach could work to stop infections by these bacteria, Furniss, Kaderabkova et al. used Gram-negative bacteria that produced antibiotic resistance proteins but could not make DsbA to infect insect larvae. The larvae were then treated with antibiotics, which increased their survival rate, indicating that blocking DsbA may be a good approach to tackling antibiotic resistant bacteria. According to the World Health Organization, developing new treatments against Gram-negative bacteria is of critical importance, but the discovery of new drugs has ground to a halt. One way around this is to develop ways to make existing drugs work better. Making drugs that block DsbA could offer a way to treat resistant infections using existing antibiotics in the future.
Collapse
Affiliation(s)
| | - Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Declan Barker
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Patricia Bernal
- Department of Microbiology, Universidad de Sevilla, Seville, Spain
| | - Evgenia Maslova
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Amanda Aa Antwi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Helen E McNeil
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Hannah L Pugh
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Paris-Sud University, Paris, France
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Ronan R McCarthy
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Diego Gonzalez
- Department of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Despoina Ai Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
10
|
Li H, Mattingly AE, Jania LA, Smith R, Melander RJ, Ernst RK, Koller BH, Melander C. Benzimidazole Isosteres of Salicylanilides Are Highly Active Colistin Adjuvants. ACS Infect Dis 2021; 7:3303-3313. [PMID: 34752055 DOI: 10.1021/acsinfecdis.1c00463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multidrug-resistant bacterial infections have become a global threat. We recently disclosed that the known IKK-β inhibitor IMD-0354 and subsequent analogues abrogate colistin resistance in several Gram-negative strains. Herein, we report the activity of a second-generation library of IMD-0354 analogues incorporating a benzimidazole moiety as an amide isostere. We identified several analogues that show increased colistin potentiation activity against Gram-negative bacteria.
Collapse
Affiliation(s)
- Haoting Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anne E. Mattingly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Richard Smith
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland 21201, United States
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland 21201, United States
| | - Beverley H. Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
11
|
Zhang Z, Ortega D, Rush A, Blankenship LR, Cheng ZJ, Moore RE, Tran MLN, Sandoval LG, Aboulhosn K, Watanabe S, Cortez KS, Perlman DH, Semmelhack MF, Miller Conrad LC. Antibiotic Adjuvant Activity Revealed in a Photoaffinity Approach to Determine the Molecular Target of Antipyocyanin Compounds. ACS Infect Dis 2021; 7:535-543. [PMID: 33587590 DOI: 10.1021/acsinfecdis.0c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infections with Pseudomonas aeruginosa are a looming threat to public health. New treatment strategies are needed to combat this pathogen, for example, by blocking the production of virulence factors like pyocyanin. A photoaffinity analogue of an antipyocyanin compound was developed to interrogate the inhibitor's molecular mechanism of action. While we sought to develop antivirulence inhibitors, the proteomics results suggested that the compounds had antibiotic adjuvant activity. Unexpectedly, we found that these compounds amplify the bactericidal activity of colistin, a well-characterized antibiotic, suggesting they may represent a first-in-class antibiotic adjuvant therapy. Analogues have the potential not only to widen the therapeutic index of cationic antimicrobial peptides like colistin, but also to be effective against colistin-resistant strains, strengthening our arsenal to combat P. aeruginosa infections.
Collapse
Affiliation(s)
- Zinan Zhang
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - Dominic Ortega
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| | - Anthony Rush
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Lauren R. Blankenship
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| | - Zi Jun Cheng
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| | - Rebecca E. Moore
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| | - Minh L. N. Tran
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| | - Lucero G. Sandoval
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| | - Kareem Aboulhosn
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| | - Seiichiro Watanabe
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| | - Kendra S. Cortez
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| | - David H. Perlman
- Princeton Proteomics and Mass Spectrometry Center, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - Martin F. Semmelhack
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - Laura C. Miller Conrad
- Department of Chemistry, San José State University, 1 Washington Square, San Jose, California 95192, United States
| |
Collapse
|
12
|
Cho H, Naskar A, Lee S, Kim S, Kim KS. A New Surface Charge Neutralizing Nano-Adjuvant to Potentiate Polymyxins in Killing Mcr-1 Mediated Drug-Resistant Escherichia coli. Pharmaceutics 2021; 13:250. [PMID: 33670388 PMCID: PMC7917812 DOI: 10.3390/pharmaceutics13020250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/03/2023] Open
Abstract
Resistance to polymyxins when treating multidrug-resistant (MDR) Gram-negative bacterial infections limit therapeutic options. Here, we report the synthesis of a nickel (Ni) doped Zinc oxide (NZO) combined with black phosphorus (BP) (NZB) nanocomposite and its synergistic action with polymyxin B (PolB) against polymyxin-resistant Escherichia coli harboring mobilized colistin resistance (mcr-1) gene. NZB and PolB combination therapy expressed a specific and strong synergy against Mcr-1 expressing E. coli cells. The underlying mechanism of the synergy is the charge neutralization of the E. coli cell surface by NZB, resulting in a more feasible incorporation of PolB to E. coli. The synergistic concentration of NZB with PolB was proved biocompatible. Thus, the NZB is the first biocompatible nano-adjuvant to polymyxins against polymyxin-resistant E. coli cells, recognizing the physical status of bacteria instead of known adjuvants targeting cellular gene products. Therefore, NZB has the potential to revive polymyxins as leading last-resort antibiotics to combat polymyxin-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (H.C.); (A.N.); (S.L.)
| | - Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (H.C.); (A.N.); (S.L.)
| | - Sohee Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (H.C.); (A.N.); (S.L.)
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (H.C.); (A.N.); (S.L.)
| |
Collapse
|
13
|
Thielen MK, Vaneerd CK, Goswami M, Carlson EE, May JF. 2-Aminobenzothiazoles Inhibit Virulence Gene Expression and Block Polymyxin Resistance in Salmonella enterica. Chembiochem 2020; 21:3500-3503. [PMID: 32750193 DOI: 10.1002/cbic.202000422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Indexed: 01/01/2023]
Abstract
One promising strategy to combat antibiotic-resistant bacteria is to develop compounds that block bacterial defenses against antibacterial conditions produced by the innate immune system. Salmonella enterica, which causes food-borne gastroenteritis and typhoid fever, requires histidine kinases (HKs) to resist innate immune defenses such as cationic antimicrobial peptides (CAMPs). Herein, we report that 2-aminobenzothiazoles block histidine kinase-dependent phenotypes in Salmonella enterica serotype Typhimurium. We found that 2-aminobenzothiazoles inhibited growth under low Mg2+ , a stressful condition that requires histidine kinase-mediated responses, and decreased expression of the virulence genes pagC and pagK. Furthermore, we discovered that 2-aminobenzothiazoles weaken Salmonella's resistance to polymyxin B and polymyxin E, which are last-line antibiotics and models for host defense CAMPs. These findings raise the possibilities that 2-aminobenzothiazoles can block HK-mediated bacterial defenses and can be used in combination with polymyxins to treat infections caused by Salmonella.
Collapse
Affiliation(s)
- Michaela K Thielen
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, 1725 State St, La Crosse, WI 54601, USA
| | - Cody K Vaneerd
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, 1725 State St, La Crosse, WI 54601, USA
| | - Manibarsha Goswami
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - John F May
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, 1725 State St, La Crosse, WI 54601, USA
| |
Collapse
|
14
|
Tsai CN, MacNair CR, Cao MPT, Perry JN, Magolan J, Brown ED, Coombes BK. Targeting Two-Component Systems Uncovers a Small-Molecule Inhibitor of Salmonella Virulence. Cell Chem Biol 2020; 27:793-805.e7. [PMID: 32413287 DOI: 10.1016/j.chembiol.2020.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/27/2022]
Abstract
Salmonella serovars are leading causes of gastrointestinal disease and have become increasingly resistant to fluoroquinolone and cephalosporin antibiotics. Overcoming this healthcare crisis requires new approaches in antibiotic discovery and the identification of unique bacterial targets. In this work, we describe a chemical genomics approach to identify inhibitors of Salmonella virulence. From a cell-based, promoter reporter screen of ∼50,000 small molecules, we identified dephostatin as a non-antibiotic compound that inhibits intracellular virulence factors and polymyxin resistance genes. Dephostatin disrupts signaling through both the SsrA-SsrB and PmrB-PmrA two-component regulatory systems and restores sensitivity to the last-resort antibiotic, colistin. Cell-based experiments and mouse models of infection demonstrate that dephostatin attenuates Salmonella virulence in vitro and in vivo, suggesting that perturbing regulatory networks is a promising strategy for the development of anti-infectives.
Collapse
Affiliation(s)
- Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Craig R MacNair
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - My P T Cao
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jordyn N Perry
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
15
|
Dubashynskaya NV, Skorik YA. Polymyxin Delivery Systems: Recent Advances and Challenges. Pharmaceuticals (Basel) 2020; 13:E83. [PMID: 32365637 PMCID: PMC7281078 DOI: 10.3390/ph13050083] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Polymyxins are vital antibiotics for the treatment of multiresistant Gram-negative ESKAPE pathogen infections. However, their clinical value is limited by their high nephrotoxicity and neurotoxicity, as well as their poor permeability and absorption in the gastrointestinal tract. This review focuses on various polymyxin delivery systems that improve polymyxin bioavailability and reduce drug toxicity through targeted and controlled release. Currently, the most suitable systems for improving oral, inhalation, and parenteral polymyxin delivery are polymer particles, liposomes, and conjugates, while gels, polymer fibers, and membranes are attractive materials for topical administration of polymyxin for the treatment of infected wounds and burns. In general, the application of these systems protects polymyxin molecules from the negative effects of both physiological and pathological factors while achieving higher concentrations at the target site and reducing dosage and toxicity. Improving the properties of polymyxin will be of great interest to researchers who are focused on developing antimicrobial drugs that show increased efficacy and safety.
Collapse
Affiliation(s)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia;
| |
Collapse
|