1
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
2
|
Matsuda K, Wakimoto T. Penicillin-binding protein-type thioesterases: An emerging family of non-ribosomal peptide cyclases with biocatalytic potentials. Curr Opin Chem Biol 2024; 80:102465. [PMID: 38759287 DOI: 10.1016/j.cbpa.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
Macrocyclization of peptides reduces conformational flexibilities, potentially leading to improved drug-like properties, such as target specificities and metabolic stabilities. As chemical methodologies often allow side reactions like epimerization and oligomerization, keen attention has been directed toward enzymatic peptide cyclization using peptide cyclases from specialized metabolic pathways. Penicillin-binding protein-type thioesterases (PBP-type TEs) are a recently identified family of peptide cyclases involved in the biosynthesis of non-ribosomal peptides in actinobacteria. PBP-type TEs have undergone intensive investigation due to their outstanding potential as biocatalysts. This review summarizes the rapidly growing knowledge on PBP-type TEs, with special emphasis on their functions, scopes, and structures, and efforts towards their biocatalytic applications.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
3
|
Kobayashi M, Onozawa N, Matsuda K, Wakimoto T. Chemoenzymatic tandem cyclization for the facile synthesis of bicyclic peptides. Commun Chem 2024; 7:67. [PMID: 38548970 PMCID: PMC10978974 DOI: 10.1038/s42004-024-01147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Bicyclic peptides exhibit improved metabolic stabilities and target specificities when compared to their linear or mono-cyclic counterparts; however, efficient and straightforward synthesis remains challenging due to their intricate architectures. Here, we present a highly selective and operationally simple one-pot chemoenzymatic tandem cyclization approach to synthesize bicyclic peptides with small to medium ring sizes. Penicillin-binding protein-type thioesterases (PBP-type TEs) efficiently cyclized azide/alkyne-containing peptides in a head-to-tail manner. Successive copper (I)-catalyzed azide-alkyne cycloaddition generated bicyclic peptides in one-pot, thus omitting the purification of monocyclic intermediates. This chemoenzymatic strategy enabled the facile synthesis of bicyclic peptides bearing hexa-, octa-, and undecapeptidyl head-to-tail cyclic scaffolds.
Collapse
Affiliation(s)
- Masakazu Kobayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Naho Onozawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
4
|
Boshoff HI, Malhotra N, Barry CE, Oh S. The Antitubercular Activities of Natural Products with Fused-Nitrogen-Containing Heterocycles. Pharmaceuticals (Basel) 2024; 17:211. [PMID: 38399426 PMCID: PMC10892018 DOI: 10.3390/ph17020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB) is notorious as the leading cause of death worldwide due to a single infectious entity and its causative agent, Mycobacterium tuberculosis (Mtb), has been able to evolve resistance to all existing drugs in the treatment arsenal complicating disease management programs. In drug discovery efforts, natural products are important starting points in generating novel scaffolds that have evolved to specifically bind to vulnerable targets not only in pathogens such as Mtb, but also in mammalian targets associated with human diseases. Structural diversity is one of the most attractive features of natural products. This review provides a summary of fused-nitrogen-containing heterocycles found in the natural products reported in the literature that are known to have antitubercular activities. The structurally targeted natural products discussed in this review could provide a revealing insight into novel chemical aspects with novel biological functions for TB drug discovery efforts.
Collapse
Affiliation(s)
| | | | | | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.I.B.); (N.M.); (C.E.B.III)
| |
Collapse
|
5
|
Rollo RF, Mori G, Hill TA, Hillemann D, Niemann S, Homolka S, Fairlie DP, Blumenthal A. Wollamide Cyclic Hexapeptides Synergize with Established and New Tuberculosis Antibiotics in Targeting Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0046523. [PMID: 37289062 PMCID: PMC10433873 DOI: 10.1128/spectrum.00465-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Shorter and more effective treatment regimens as well as new drugs are urgent priorities for reducing the immense global burden of tuberculosis (TB). As treatment of TB currently requires multiple antibiotics with diverse mechanisms of action, any new drug lead requires assessment of potential interactions with existing TB antibiotics. We previously described the discovery of wollamides, a new class of Streptomyces-derived cyclic hexapeptides with antimycobacterial activity. To further assess the value of the wollamide pharmacophore as an antimycobacterial lead, we determined wollamide interactions with first- and second-line TB antibiotics by determining fractional inhibitory combination index and zero interaction potency scores. In vitro two-way and multiway interaction analyses revealed that wollamide B1 synergizes with ethambutol, pretomanid, delamanid, and para-aminosalicylic acid in inhibiting the replication and promoting the killing of phylogenetically diverse clinical and reference strains of the Mycobacterium tuberculosis complex (MTBC). Wollamide B1 antimycobacterial activity was not compromised in multi- and extensively drug-resistant MTBC strains. Moreover, growth-inhibitory antimycobacterial activity of the combination of bedaquiline/pretomanid/linezolid was further enhanced by wollamide B1, and wollamide B1 did not compromise the antimycobacterial activity of the isoniazid/rifampicin/ethambutol combination. Collectively, these findings add new dimensions to the desirable characteristics of the wollamide pharmacophore as an antimycobacterial lead compound. IMPORTANCE Tuberculosis (TB) is an infectious disease that affects millions of people globally, with 1.6 million deaths annually. TB treatment requires combinations of multiple different antibiotics for many months, and toxic side effects can occur. Therefore, shorter, safer, more effective TB therapies are required, and these should ideally also be effective against drug-resistant strains of the bacteria that cause TB. This study shows that wollamide B1, a chemically optimized member of a new class of antibacterial compounds, inhibits the growth of drug-sensitive as well as multidrug-resistant Mycobacterium tuberculosis isolated from TB patients. In combination with TB antibiotics, wollamide B1 synergistically enhances the activity of several antibiotics, including complex drug combinations that are currently used for TB treatment. These new insights expand the catalogue of the desirable characteristics of wollamide B1 as an antimycobacterial lead compound that might inspire the development of improved TB treatments.
Collapse
Affiliation(s)
- Rachel F. Rollo
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Giorgia Mori
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy A. Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Doris Hillemann
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Antje Blumenthal
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Kobayashi M, Fujita K, Matsuda K, Wakimoto T. Streamlined Chemoenzymatic Synthesis of Cyclic Peptides by Non-ribosomal Peptide Cyclases. J Am Chem Soc 2023; 145:3270-3275. [PMID: 36638272 DOI: 10.1021/jacs.2c11082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Macrocyclization improves the pharmaceutical properties of peptides; however, regio- and chemoselective intramolecular cyclizations remain challenging. Here we developed a streamlined chemoenzymatic approach to synthesize cyclic peptides by exploiting non-ribosomal peptide (NRP) cyclases. Linear peptides linked to the resin through a C-terminal diol ester functionality are synthesized on a solid support, to circumvent the installation of leaving groups to the peptidic substrates in the liquid phase which often triggers undesirable epimerization. Cleavage of the resin-bound peptides yielded the diol esters with sufficient purity to be readily cyclized in a head-to-tail manner by SurE, a representative penicillin-binding protein-type thioesterase (PBP-type TE). Explorations of homologous wild-type enzymes as well as rational protein engineering have broadened the scope of the enzymatic macrolactamization. This method will potentially accelerate the exploitation of NRP cyclases as biocatalysts.
Collapse
Affiliation(s)
- Masakazu Kobayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan
| | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo060-0812, Japan
| |
Collapse
|
7
|
Roubert C, Fontaine E, Upton AM. “Upcycling” known molecules and targets for drug-resistant TB. Front Cell Infect Microbiol 2022; 12:1029044. [PMID: 36275029 PMCID: PMC9582839 DOI: 10.3389/fcimb.2022.1029044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Despite reinvigorated efforts in Tuberculosis (TB) drug discovery over the past 20 years, relatively few new drugs and candidates have emerged with clear utility against drug resistant TB. Over the same period, significant technological advances and learnings around target value have taken place. This has offered opportunities to re-assess the potential for optimization of previously discovered chemical matter against Mycobacterium tuberculosis (M.tb) and for reconsideration of clinically validated targets encumbered by drug resistance. A re-assessment of discarded compounds and programs from the “golden age of antibiotics” has yielded new scaffolds and targets against TB and uncovered classes, for example beta-lactams, with previously unappreciated utility for TB. Leveraging validated classes and targets has also met with success: booster technologies and efforts to thwart efflux have improved the potential of ethionamide and spectinomycin classes. Multiple programs to rescue high value targets while avoiding cross-resistance are making progress. These attempts to make the most of known classes, drugs and targets complement efforts to discover new chemical matter against novel targets, enhancing the chances of success of discovering effective novel regimens against drug-resistant TB.
Collapse
|
8
|
Booth TJ, Bozhüyük KAJ, Liston JD, Batey SFD, Lacey E, Wilkinson B. Bifurcation drives the evolution of assembly-line biosynthesis. Nat Commun 2022; 13:3498. [PMID: 35715397 PMCID: PMC9205934 DOI: 10.1038/s41467-022-30950-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Reprogramming biosynthetic assembly-lines is a topic of intense interest. This is unsurprising as the scaffolds of most antibiotics in current clinical use are produced by such pathways. The modular nature of assembly-lines provides a direct relationship between the sequence of enzymatic domains and the chemical structure of the product, but rational reprogramming efforts have been met with limited success. To gain greater insight into the design process, we wanted to examine how Nature creates assembly-lines and searched for biosynthetic pathways that might represent evolutionary transitions. By examining the biosynthesis of the anti-tubercular wollamides, we uncover how whole gene duplication and neofunctionalization can result in pathway bifurcation. We show that, in the case of the wollamide biosynthesis, neofunctionalization is initiated by intragenomic recombination. This pathway bifurcation leads to redundancy, providing the genetic robustness required to enable large structural changes during the evolution of antibiotic structures. Should the new product be non-functional, gene loss can restore the original genotype. However, if the new product confers an advantage, depreciation and eventual loss of the original gene creates a new linear pathway. This provides the blind watchmaker equivalent to the design, build, test cycle of synthetic biology.
Collapse
Affiliation(s)
- Thomas J Booth
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Kenan A J Bozhüyük
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
| | - Jonathon D Liston
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Sibyl F D Batey
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, 2164, Australia
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
9
|
Screening of diverse marine invertebrate extracts identified Lissoclinotoxin F, Discodermin B, and other anti-Mycobacterium tuberculosis active compounds. J Antibiot (Tokyo) 2022; 75:213-225. [DOI: 10.1038/s41429-022-00507-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
|
10
|
Salim AA, Khalil ZG, Elbanna AH, Wu T, Capon RJ. Methods in Microbial Biodiscovery. Mar Drugs 2021; 19:503. [PMID: 34564165 PMCID: PMC8464790 DOI: 10.3390/md19090503] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/07/2023] Open
Abstract
This review presents an account of the microbial biodiscovery methodology developed and applied in our laboratory at The University of Queensland, Institute for Molecular Bioscience, with examples drawn from our experiences studying natural products produced by Australian marine-derived (and terrestrial) fungi and bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.S.); (Z.G.K.); (A.H.E.); (T.W.)
| |
Collapse
|
11
|
Xu R, Song Y, Li J, Ju J, Li Q. Chemical Synthesis and Structure-Activity Relationship Study Yield Desotamide a Analogues with Improved Antibacterial Activity. Mar Drugs 2021; 19:md19060303. [PMID: 34073984 PMCID: PMC8225045 DOI: 10.3390/md19060303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
Desotamides A, a cyclohexapeptide produced by the deep-sea-derived Streptomyces scopuliridis SCSIO ZJ46, displays notable antibacterial activities against strains of Streptococcus pnuemoniae, Staphylococcus aureus, and methicillin-resistant Staphylococcus epidermidis (MRSE). In this study, to further explore its antibacterial potential and reveal the antibacterial structure-activity relationship of desotamides, 13 cyclopeptides including 10 new synthetic desotamide A analogues and wollamides B/B1/B2 were synthesized and evaluated for their antibacterial activities against a panel of Gram-positive and -negative pathogens. The bioactivity data reveal that residues at position II and VI greatly impact antibacterial activity. The most potent antibacterial analogues are desotamide A4 (13) and A6 (15) where l-allo-Ile at position II was substituted with l-Ile and Gly at position VI was simultaneously replaced by d-Lys or d-Arg; desotamides A4 (13) and A6 (15) showed a 2–4-fold increase of antibacterial activities against a series of Gram-positive pathogens including the prevalent clinical drug-resistant pathogen methicillin-resistant Staphylococcus aureus (MRSA) with MIC values of 8–32 μg/mL compared to the original desotamide A. The enhanced antibacterial activity, broad antibacterial spectrum of desotamides A4 and A6 highlighted their potential as new antibiotic leads for further development.
Collapse
Affiliation(s)
- Run Xu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563000, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
- Correspondence: ; Tel./Fax: +86-20-3406-6449
| |
Collapse
|
12
|
The Desotamide Family of Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9080452. [PMID: 32727132 PMCID: PMC7459860 DOI: 10.3390/antibiotics9080452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial natural products underpin the majority of antimicrobial compounds in clinical use and the discovery of new effective antibacterial treatments is urgently required to combat growing antimicrobial resistance. Non-ribosomal peptides are a major class of natural products to which many notable antibiotics belong. Recently, a new family of non-ribosomal peptide antibiotics were discovered-the desotamide family. The desotamide family consists of desotamide, wollamide, surugamide, ulleungmycin and noursamycin/curacomycin, which are cyclic peptides ranging in size between six and ten amino acids in length. Their biosynthesis has attracted significant attention because their highly functionalised scaffolds are cyclised by a recently identified standalone cyclase. Here, we provide a concise review of the desotamide family of antibiotics with an emphasis on their biosynthesis.
Collapse
|
13
|
Yang SJ, Chen YY, Hsu CH, Hsu CW, Chang CY, Chang JR, Dou HY. Activation of M1 Macrophages in Response to Recombinant TB Vaccines With Enhanced Antimycobacterial Activity. Front Immunol 2020; 11:1298. [PMID: 32655570 PMCID: PMC7325470 DOI: 10.3389/fimmu.2020.01298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/22/2020] [Indexed: 01/14/2023] Open
Abstract
Pulmonary tuberculosis (TB) is a difficult-to-eliminate disease. Although the Bacille Calmette–Guérin (BCG) vaccine against Mycobacterium tuberculosis (MTB) has been available for decades, its efficacy is variable and has lessened over time. Furthermore, the BCG vaccine no longer protects against newly emerged Beijing strains which are responsible for many current infections in adults. Development of a novel vaccine is urgently needed. In this study, we first tested the efficacy of our recombinant BCG vaccines rBCG1 and rBCG2, compared to parental BCG, against MTB strain H37Ra in mice. Both the bacterial load and the level of lymphocyte infiltration decreased dramatically in the three groups treated with vaccine, especially rBCG1 and rBCG2. Furthermore, the Th1 and Th17 responses increased and macrophage numbers rose in the vaccination groups. Th1-mediated production of cytokines TNF-α, IFN-γ, and MCP-1 as well as M1-polarized cells all increased in lung tissue of the rBCG1 and rBCG2 groups. Clodronate-induced depletion of macrophages reduced the level of protection. Based on these results, we conclude that rBCG vaccines induce a significant increase in the number of M1 macrophages, which augments their potential as TB vaccine candidates.
Collapse
Affiliation(s)
- Shiu-Ju Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chia-Yi, Taiwan
| | - Chih-Hao Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Yu Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Jia-Ru Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
14
|
Solid-Phase Synthesis of Wollamide Cyclohexapeptide Analogs. Methods Mol Biol 2019. [PMID: 31879925 DOI: 10.1007/978-1-0716-0227-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes a potentially serious infectious disease called tuberculosis (TB). Cyclohexapeptide wollamides A and B were recently isolated from Streptomyces nov. sp. (MST-115088) and subsequently reported to show excellent in vitro antituberculosis activity with minimum inhibitory concentration (MIC) of 1.56 μg/mL against Mtb (H37Rv) and favorable selectivity profile. This chapter describes the detailed synthesis of antitubercular wollamide analogs using solid-phase synthesis of linear hexapeptide precursors, followed by solution-phase HBTU-mediated macrocyclization and global side chain deprotection.
Collapse
|