1
|
Salamzade R, Tran PQ, Martin C, Manson AL, Gilmore MS, Earl AM, Anantharaman K, Kalan LR. zol & fai: large-scale targeted detection and evolutionary investigation of gene clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.07.544063. [PMID: 37333121 PMCID: PMC10274777 DOI: 10.1101/2023.06.07.544063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Many universally and conditionally important genes are genomically aggregated within clusters. Here, we introduce fai and zol, which together enable large-scale comparative analysis of different types of gene clusters and mobile-genetic elements (MGEs), such as biosynthetic gene clusters (BGCs) or viruses. Fundamentally, they overcome a current bottleneck to reliably perform comprehensive orthology inference at large scale across broad taxonomic contexts and thousands of genomes. First, fai allows the identification of orthologous instances of a query gene cluster of interest amongst a database of target genomes. Subsequently, zol enables reliable, context-specific inference of ortholog groups for individual protein-encoding genes across gene cluster instances. In addition, zol performs functional annotation and computes a variety of evolutionary statistics for each inferred ortholog group. Importantly, in comparison to tools for visual exploration of homologous relationships between gene clusters, zol can scale to thousands of gene cluster instances and produce detailed reports that are easy to digest. To showcase fai and zol, we apply them for: (i) longitudinal tracking of a virus in metagenomes, (ii) discovering novel population-level genetic insights of two common BGCs in the fungal species Aspergillus flavus, and (iii) uncovering large-scale evolutionary trends of a virulence-associated gene cluster across thousands of genomes from a diverse bacterial genus.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia Q. Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Freshwater and Marine Science Doctoral Program, University of Wisconsin-Madison, WI, USA
| | - Cody Martin
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Abigail L. Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael S. Gilmore
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School and Mass Eye and Ear, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School and Mass Eye and Ear, Boston, Massachusetts, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Zhu X, Tang Q, Zhou X, Momeni MR. Antibiotic resistance and nanotechnology: A narrative review. Microb Pathog 2024; 193:106741. [PMID: 38871198 DOI: 10.1016/j.micpath.2024.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The rise of antibiotic resistance poses a significant threat to public health worldwide, leading researchers to explore novel solutions to combat this growing problem. Nanotechnology, which involves manipulating materials at the nanoscale, has emerged as a promising avenue for developing novel strategies to combat antibiotic resistance. This cutting-edge technology has gained momentum in the medical field by offering a new approach to combating infectious diseases. Nanomaterial-based therapies hold significant potential in treating difficult bacterial infections by circumventing established drug resistance mechanisms. Moreover, their small size and unique physical properties enable them to effectively target biofilms, which are commonly linked to resistance development. By leveraging these advantages, nanomaterials present a viable solution to enhance the effectiveness of existing antibiotics or even create entirely new antibacterial mechanisms. This review article explores the current landscape of antibiotic resistance and underscores the pivotal role that nanotechnology plays in augmenting the efficacy of traditional antibiotics. Furthermore, it addresses the challenges and opportunities within the realm of nanotechnology for combating antibiotic resistance, while also outlining future research directions in this critical area. Overall, this comprehensive review articulates the potential of nanotechnology in addressing the urgent public health concern of antibiotic resistance, highlighting its transformative capabilities in healthcare.
Collapse
Affiliation(s)
- Xunxian Zhu
- Huaqiao University Hospital, Quanzhou, Fujian, 362021, China.
| | - Qiuhua Tang
- Quanzhou First Hospital, Quanzhou, Fujian, 362000, China
| | - Xiaohang Zhou
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, 157012, China
| | | |
Collapse
|
3
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
4
|
Xiao Y, Xiang W, Ma X, Gao D, Bayram H, Lorimer GH, Ghiladi RA, Xie Z, Wang J. HemN2 Regulates the Virulence of Pseudomonas donghuensis HYS through 7-Hydroxytropolone Synthesis and Oxidative Stress. BIOLOGY 2024; 13:373. [PMID: 38927253 PMCID: PMC11200716 DOI: 10.3390/biology13060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Compared to pathogens Pseudomonas aeruginosa and P. putida, P. donghuensis HYS has stronger virulence towards Caenorhabditis elegans. However, the underlying mechanisms haven't been fully understood. The heme synthesis system is essential for Pseudomonas virulence, and former studies of HemN have focused on the synthesis of heme, while the relationship between HemN and Pseudomonas virulence were barely pursued. In this study, we hypothesized that hemN2 deficiency affected 7-hydroxytropolone (7-HT) biosynthesis and redox levels, thereby reducing bacterial virulence. There are four hemN genes in P. donghuensis HYS, and we reported for the first time that deletion of hemN2 significantly reduced the virulence of HYS towards C. elegans, whereas the reduction in virulence by the other three genes was not significant. Interestingly, hemN2 deletion significantly reduced colonization of P. donghuensis HYS in the gut of C. elegans. Further studies showed that HemN2 was regulated by GacS and participated in the virulence of P. donghuensis HYS towards C. elegans by mediating the synthesis of the virulence factor 7-HT. In addition, HemN2 and GacS regulated the virulence of P. donghuensis HYS by affecting antioxidant capacity and nitrative stress. In short, the findings that HemN2 was regulated by the Gac system and that it was involved in bacterial virulence via regulating 7-HT synthesis and redox levels were reported for the first time. These insights may enlighten further understanding of HemN-based virulence in the genus Pseudomonas.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Donghao Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, 34010 Istanbul, Turkey;
| | - George H. Lorimer
- Department of Chemistry, University of Maryland, College Park, MD 20742, USA;
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
5
|
Bonacorsi A, Trespidi G, Scoffone VC, Irudal S, Barbieri G, Riabova O, Monakhova N, Makarov V, Buroni S. Characterization of the dispirotripiperazine derivative PDSTP as antibiotic adjuvant and antivirulence compound against Pseudomonas aeruginosa. Front Microbiol 2024; 15:1357708. [PMID: 38435690 PMCID: PMC10904629 DOI: 10.3389/fmicb.2024.1357708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Pseudomonas aeruginosa is a major human pathogen, able to establish difficult-to-treat infections in immunocompromised and people with cystic fibrosis (CF). The high rate of antibiotic treatment failure is due to its notorious drug resistance, often mediated by the formation of persistent biofilms. Alternative strategies, capable of overcoming P. aeruginosa resistance, include antivirulence compounds which impair bacterial pathogenesis without exerting a strong selective pressure, and the use of antimicrobial adjuvants that can resensitize drug-resistant bacteria to specific antibiotics. In this work, the dispirotripiperazine derivative PDSTP, already studied as antiviral, was characterized for its activity against P. aeruginosa adhesion to epithelial cells, its antibiotic adjuvant ability and its biofilm inhibitory potential. PDSTP was effective in impairing the adhesion of P. aeruginosa to various immortalized cell lines. Moreover, the combination of clinically relevant antibiotics with the compound led to a remarkable enhancement of the antibiotic efficacy towards multidrug-resistant CF clinical strains. PDSTP-ceftazidime combination maintained its efficacy in vivo in a Galleria mellonella infection model. Finally, the compound showed a promising biofilm inhibitory activity at low concentrations when tested both in vitro and using an ex vivo pig lung model. Altogether, these results validate PDSTP as a promising compound, combining the ability to decrease P. aeruginosa virulence by impairing its adhesion and biofilm formation, with the capability to increase antibiotic efficacy against antibiotic resistant strains.
Collapse
Affiliation(s)
- Andrea Bonacorsi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Viola C. Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Samuele Irudal
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Olga Riabova
- Research Center of Biotechnology RAS, Moscow, Russia
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Esfahani MB, Khodavandi A, Alizadeh F, Bahador N. Antibacterial and Anti-Biofilm Activities of Microbial Synthesized Silver and Magnetic Iron Oxide Nanoparticles Against Pseudomonas aeruginosa. IEEE Trans Nanobioscience 2023; 22:956-966. [PMID: 37071524 DOI: 10.1109/tnb.2023.3268138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Pseudomonas aeruginosa is a human bacterial pathogen causing devastating diseases and equipped with various virulence factors like biofilm formation. Common antibiotic treatment has limited efficacy for the P. aeruginosa present in biofilms because of the increased resistance. In this study, we focused our attention on the antibacterial and anti-biofilm activities of various microbial synthesized silver (nano-Ag) and magnetic iron oxide (nano-Fe3O4) nanoparticles against clinical isolates of P. aeruginosa that displayed ceftazidime resistance. The nano-Ag and nano-Fe3O4 represented great antibacterial properties. Nano-Ag and nano-Fe3O4 exhibited a reduction in the biofilm formation by P. aeruginosa reference strain as determined by crystal violet and XTT assays and light microscopy method. Among all, nano-Ag-2 and 7 owing to inherent attributes and mechanisms of resistance in the bacterial biofilm, exhibited anti-biofilm efficacy against ceftazidime resistance clinical isolate of P. aeruginosa. Moreover, nano-Ag and nano-Fe3O4 changed the relative expression of biofilm-associated genes, PELA and PSLA in a concentration dependent manner by P. aeruginosa reference strain. As revealed by qRT-PCR, the expression levels of biofilm-associated genes were downregulated in P. aeruginosa biofilms treated with nano-Ag, while selected biofilm-associated genes were low expressed under treated with nano-Fe3O4. Results of the study demonstrate the potential of microbial synthesized nano-Ag-2 and 7 to act as anti-biofilm agents against ceftazidime resistance clinical isolate of P. aeruginosa. Molecular targeting of biofilm-associated genes by nano-Ag and nano-Fe3O4 may be candidate for new therapeutics against P. aeruginosa diseases.
Collapse
|
7
|
Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug delivery strategies for antibiofilm therapy. Nat Rev Microbiol 2023; 21:555-572. [PMID: 37258686 DOI: 10.1038/s41579-023-00905-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Although new antibiofilm agents have been developed to prevent and eliminate pathogenic biofilms, their widespread clinical use is hindered by poor biocompatibility and bioavailability, unspecific interactions and insufficient local concentrations. The development of innovative drug delivery strategies can facilitate penetration of antimicrobials through biofilms, promote drug dispersal and synergistic bactericidal effects, and provide novel paradigms for clinical application. In this Review, we discuss the potential benefits of such emerging techniques for improving the clinical efficacy of antibiofilm agents, as well as highlighting the existing limitations and future prospects for these therapies in the clinic.
Collapse
Affiliation(s)
- Victor Choi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Centre for Urological Biology, Division of Medicine, University College London, London, UK
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity, Microbiology and Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Mechanical Engineering, National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), University of Southampton, Southampton, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Cheng L, Wei M, Hu Q, Li B, Li B, Wang W, Abudi ZN, Hu Z. Aerobic granular sludge formation and stability in enhanced biological phosphorus removal system under antibiotics pressure: Performance, granulation mechanism, and microbial successions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131472. [PMID: 37099906 DOI: 10.1016/j.jhazmat.2023.131472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Wastewater containing antibiotics can pose a significant threat to biological wastewater treatment processes. This study investigated the establishment and stable operation of enhanced biological phosphorus removal (EBPR) by aerobic granular sludge (AGS) under mixed stress conditions induced by tetracycline (TC), sulfamethoxazole (SMX), ofloxacin (OFL), and roxithromycin (ROX). The results show that the AGS system was efficient in removing TP (98.0%), COD (96.1%), and NH4+-N (99.6%). The average removal efficiencies of the four antibiotics were 79.17% (TC), 70.86% (SMX), 25.73% (OFL), and 88.93% (ROX), respectively. The microorganisms in the AGS system secreted more polysaccharides, which contributed to the reactor's tolerance to antibiotics and facilitated granulation by enhancing the production of protein, particularly loosely bound protein. Illumina MiSeq sequencing revealed that putative phosphate accumulating organisms (PAOs)-related genera (Pseudomonas and Flavobacterium) were enormously beneficial to the mature AGS for TP removal. Based on the analysis of extracellular polymeric substances, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and microbial community, a three-stage granulation mechanism was proposed including adaption to the stress environment, formation of early aggregates and maturation of PAOs enriched microbial granules. Overall, the study demonstrated the stability of EBPR-AGS under mixed antibiotics pressure, providing insight into the granulation mechanism and the potential use of AGS for wastewater treatment containing antibiotics.
Collapse
Affiliation(s)
- Long Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingyu Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qixing Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingtang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenjia Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zaidun Naji Abudi
- Environmental Engineering Department, College of Engineering, Mustansiriyah University, Baghdad 999048, Iraq
| | - Zhiquan Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Luo Y, Wen Z, Xiong Y, Chen X, Shen Z, Li P, Peng Y, Deng Q, Yu Z, Zheng J, Han S. The potential target of bithionol against Staphylococcus aureus: design, synthesis and application of biotinylated probes Bio-A2. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00618-x. [PMID: 37185582 DOI: 10.1038/s41429-023-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
This study aims to explore the potential targets of bithionol in Staphylococcus aureus.The four bithionol biotinylated probes Bio-A2-1, Bio-A2-2, Bio-A2-3, and Bio-A2-4 were synthesized, the minimal inhibitory concentrations (MICs) of these probes against S. aureus were determined. The bithionol binding proteins in S. aureus were identified through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe. The biotinylated bithionol probes Bio-A2-1 and Bio-A2-3 displayed antibacterial activities against S. aureus. The Bio-A2-1 showed lower MICs than Bio-A2-3, and both with the MIC50/MIC90 at 12.5/12.5 μM against S. aureus clinical isolates. The inhibition rates of bithionol biotinylated probes Bio-A2-1 and Bio-A2-3 on the biofilm formation of S. aureus were comparable to that of bithionol, and were stronger than that of Bio-A2-2 and Bio-A2-4. The biofilm formation of 10 out of 12S. aureus clinical isolates could be inhibited by Bio-A2-1 (at 1/4×, or 1/2× MICs). There are three proteins identified in S. aureus through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe Bio-A2-1: Protein translocase subunit SecA 1 (secA1), Alanine--tRNA ligase (alaS) and DNA gyrase subunit A (gyrA), and in which the SecA1 protein the highest coverage and the most unique peptides. The LYS112, GLN143, ASP213, GLY496 and ASP498 of SecA1 protein act as hydrogen acceptors to form 6 hydrogen bonds with bithionol biotinylated probe Bio-A2-1 by molecular docking analysis. In conclusion, the bithionol biotinylated probe Bio-A2-1 has antibacterial and anti-biofilm activities against S. aureus, and SecA1 was probably one of the potential targets of bithionol in S. aureus.
Collapse
Affiliation(s)
- Yue Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yanpeng Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xuecheng Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zonglin Shen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yalan Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China.
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
10
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
11
|
Kaur N, Dey P. Bacterial Exopolysaccharides as Emerging Bioactive Macromolecules: From Fundamentals to Applications. Res Microbiol 2022; 174:104024. [PMID: 36587857 DOI: 10.1016/j.resmic.2022.104024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Microbial exopolysaccharides (EPS) are extracellular carbohydrate polymers forming capsules or slimy coating around the cells. EPS can be secreted by various bacterial genera that can help bacterial cells in attachment, environmental adaptation, stress tolerance and are an integral part of microbial biofilms. Several gut commensals (e.g., Lactobacillus, Bifidobacterium) produce EPS that possess diverse bioactivities. Bacterial EPS also has extensive commercial applications in the pharmaceutical and food industries. Owing to the structural and functional diversity, genetic and metabolic engineering strategies are currently employed to increase EPS production. Therefore, the current review provides a comprehensive overview of the fundamentals of bacterial exopolysaccharides, including their classification, source, biosynthetic pathways, and functions in the microbial community. The review also provides an overview of the diverse bioactivities of microbial EPS, including immunomodulatory, anti-diabetic, anti-obesity, and anti-cancer properties. Since several gut microbes are EPS producers and gut microbiota helps maintain a functional gut barrier, emphasis has been given to the intestinal-level bioactivities of the gut microbial EPS. Collectively, the review provides a comprehensive overview of microbial bioactive exopolysaccharides.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
12
|
Protoporphyrin IX derived from dual-species anaerobic biofilms of Fusobacterium necrophorum and Porphyromonas levii attenuates bovine neutrophil function. Biofilm 2022; 4:100095. [DOI: 10.1016/j.bioflm.2022.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
|
13
|
Shakour N, Taheri E, Rajabian F, Tarighi S, Soheili V, Hadizadeh F. Evaluating the Antivirulence Effects of New Thiazolidinedione Compounds Against Pseudomonas aeruginosa PAO1. Microb Drug Resist 2022; 28:1003-1018. [PMID: 36219761 DOI: 10.1089/mdr.2022.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes several serious health problems and numerous forms of virulence. During the treatment of P. aeruginosa infections, the development of multidrug-resistant isolates creates significant clinical problems. Using antivirulence compounds to disrupt pathogenicity rather than killing the bacterium may be an interesting strategy to overcome this problem, because less harsh conditions will exist for the development of resistance. To reduce pathogenicity and biofilm formation, newly synthesized analogs of imidazolyl (8n) and previously synthesized analogs (8a-8m) with a similar backbone [the 5-(imidazolyl-methyl) thiazolidinediones] were tested against pyoverdine and pyocyanin production, protease activity, and biofilm formation. Compared to the positive control group, the best compounds reduced the production of pyoverdine (8n) by 89.57% and pyocyanin (8i) by 22.68%, and protease activity (8n) by 2.80% for PAO1 strain, at a concentration of 10 μM. Moreover, the biofilm formation assay showed a reduction of 87.94% (8i) for PAO1, as well as 30.53% (8d) and 44.65% (8m) for 1074 and 1707 strains, respectively. The compounds used in this study did not show any toxicity in the human dermal fibroblasts and 4T1 cells (viability higher than 90%). The in silico study of these compounds revealed that their antivirulence activity could be due to their interaction with the PqsR, PqsE, and LasR receptors.
Collapse
Affiliation(s)
- Neda Shakour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Taheri
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Tarighi
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Postbiotics of Lactobacillus casei target virulence and biofilm formation of Pseudomonas aeruginosa by modulating quorum sensing. Arch Microbiol 2022; 204:157. [PMID: 35106661 DOI: 10.1007/s00203-022-02770-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
Abstract
Among various anti-virulence aspects, the efficacy of the bioactive constituents of probiotics, referred to as postbiotics, to affect quorum sensing (QS)-modulated signaling of pathogens, is considered as a safe natural approach. The present study investigated the potential QS-inhibitory activity of lyophilized postbiotics from Lactobacillus casei sub sp. casei PTCC 1608 on virulence phenotypes and biofilm of two strains and three clinical isolates of Pseudomonas aeruginosa. The effect of L. casei postbiotics (LCP) at sub-minimum inhibitory concentration on the expression of QS genes including lasR/I, rhlR/I, pqsA, pqsR and virulence genes including pelF (pellicle/biofilm glycosyltransferase PelF), lasB (elastase LasB) and toxA (exotoxin A) was evaluated. The viability of mouse fibroblastic NIH/3T3 cell line treated with sub-MICS of LCP was also investigated. Postbiotics were characterized using mass spectrometry-based analyses. The QS-attenuation effect of pure lactic acid as the major constituent of LCP was determined on P. aeruginosa strains. Neutralized postbiotics and crude bacteriocin did not exhibit any antibacterial activity. It was found that sub-MICS of LCP could more drastically attenuate the tested virulence phenotypes and biofilm formation than lactic acid. Biofilm inhibition was confirmed using scanning electron microscopy. The rhlI, rhlR, and pelF genes were down-regulated after treatment with LCP. No cytotoxicity effect was observed on NIH/3T3 cell line. The findings demonstrated that postbiotics of L. casei could reduce the virulence and biofilm development of P. aeruginosa and suggested a novel safe natural source for the expansion of anti-virulence treatments.
Collapse
|
15
|
Khaledi M, Afkhami H, Matouri RN, Dezfuli AAZ, Bakhti S. Effective Strategies to Deal With Infection in Burn Patient. J Burn Care Res 2021; 43:931-935. [PMID: 34935044 DOI: 10.1093/jbcr/irab226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Treatment of bacterial infection is difficult. Treatment protocol of burned patient is hard. Furthermore, treatment in burned patients is accompanied with problems such as complexity in diagnosis of infection's agent, multiple infections, being painful, and involving with different organelles. There are different infections of Gram-positive and Gram-negative bacteria in burned patients. From important bacteria can be noted to Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus that have high range of morbidity and mortality. Treatment of those bacterial infections is extremely important. Hence, many studies about methods of treatment of bacterial infections have published. Herein, we have suggested practical methods for example ant virulence therapies, nanotechnology, vaccine, and photodynamic therapy in treatment of bacterial infections. Those methods have been done in many researches and had good effect.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Hamed Afkhami
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Raed Nezhad Matouri
- Department of Medical Library and Information Sciences, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shahriar Bakhti
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
16
|
Xiao Y, Wang P, Zhu X, Xie Z. Pseudomonas donghuensis HYS gtrA/ B/ II Gene Cluster Contributes to Its Pathogenicity toward Caenorhabditis elegans. Int J Mol Sci 2021; 22:ijms221910741. [PMID: 34639082 PMCID: PMC8509367 DOI: 10.3390/ijms221910741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas donghuensis HYS is more virulent than P. aeruginosa toward Caenorhabditis elegans but the mechanism underlying virulence is unclear. This study is the first to report that the specific gene cluster gtrA/B/II in P. donghuensis HYS is involved in the virulence of this strain toward C. elegans, and there are no reports of GtrA, GtrB and GtrII in any Pseudomonas species. The pathogenicity of P. donghuensis HYS was evaluated using C. elegans as a host. Based on the prediction of virulence factors and comparative genomic analysis of P. donghuensis HYS, we identified 42 specific virulence genes in P. donghuensis HYS. Slow-killing assays of these genes showed that the gtrAB mutation had the greatest effect on the virulence of P. donghuensis HYS, and GtrA, GtrB and GtrII all positively affected P. donghuensis HYS virulence. Two critical GtrII residues (Glu47 and Lys480) were identified in P. donghuensis HYS. Transmission electron microscopy (TEM) showed that GtrA, GtrB and GtrII were involved in the glucosylation of lipopolysaccharide (LPS) O-antigen in P. donghuensis HYS. Furthermore, colony-forming unit (CFU) assays showed that GtrA, GtrB and GtrII significantly enhanced P. donghuensis HYS colonization in the gut of C. elegans, and glucosylation of LPS O-antigen and colonization in the host intestine contributed to the pathogenicity of P. donghuensis HYS. In addition, experiments using the worm mutants ZD101, KU4 and KU25 revealed a correlation between P. donghuensis HYS virulence and the TIR-1/SEK-1/PMK-1 pathways of the innate immune p38 MAPK pathway in C. elegans. In conclusion, these results reveal that the specific virulence gene cluster gtrA/B/II contributes to the unique pathogenicity of HYS compared with other pathogenic Pseudomonas, and that this process also involves C. elegans innate immunity. These findings significantly increase the available information about GtrA/GtrB/GtrII-based virulence mechanisms in the genus Pseudomonas.
Collapse
|
17
|
Singh S, Datta S, Narayanan KB, Rajnish KN. Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. J Genet Eng Biotechnol 2021; 19:140. [PMID: 34557983 PMCID: PMC8460681 DOI: 10.1186/s43141-021-00242-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/04/2021] [Indexed: 12/18/2022]
Abstract
Background Bacterial biofilms are aggregation or collection of different bacterial cells which are covered by self-produced extracellular matrix and are attached to a substratum. Generally, under stress or in unfavorable conditions, free planktonic bacteria transform themselves into bacterial biofilms and become sessile. Main body Various mechanisms involving interaction between antimicrobial and biofilm matrix components, reduced growth rates, and genes conferring antibiotic resistance have been described to contribute to enhanced resistance. Quorum sensing and multi-drug resistance efflux pumps are known to regulate the internal environment within the biofilm as well as biofilm formation; they also protect cells from antibiotic attack or immune attacks. This review summarizes data supporting the importance of exopolysaccharides during biofilm formation and its role in antibiotic resistance. Conclusions Involvement of quorum sensing and efflux pumps in antibiotic resistance in association with exopolysaccharides. Also, strategies to overcome or attack biofilms are provided.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280, Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - K Narayanan Rajnish
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
18
|
Zhang W, Yuan Y, Li S, Deng B, Zhang J, Li Z. Comparative transcription analysis of resistant mutants against four different antibiotics in Pseudomonas aeruginosa. Microb Pathog 2021; 160:105166. [PMID: 34480983 DOI: 10.1016/j.micpath.2021.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
The emergence of antibiotic resistance has severely impaired the treatment of infections caused by Pseudomonas aeruginosa. There are few studies related to comparing the antibiotics resistance mechanisms of P. aeruginosa against different antibiotics. In this study, RNA sequencing was used to investigate the differences of transcriptome between wild strain and four antibiotics resistant strains of P. aeruginosa PAO1 (polymyxin B, ciprofloxacin, doxycycline, and ceftriaxone). Compared to the wild strain, 1907, 495, 2402, and 116 differentially expressed genes (DEGs) were identified in polymyxin B, ciprofloxacin, doxycycline, and ceftriaxone resistant PAO1, respectively. After analysis of genes related to antimicrobial resistance, we found genes implicated in biofilm formation (pelB, pelC, pelD, pelE, pelF, pelG, algA, algF, and alg44) were significantly upregulated in polymyxin B-resistant PAO1, efflux pump genes (mexA, mexB, oprM) and biofilm formation genes (pslJ, pslK and pslN) were upregulated in ciprofloxacin-resistant PAO1; other efflux pump genes (mexC, mexD, oprJ) were upregulated in doxycycline-resistant PAO1; ampC were upregulated in ceftriaxone-resistant PAO1. As a consequence of antibiotic resistance, genes related to virulence factors such as type Ⅱ secretion system (lasA, lasB and piv) were significantly upregulated in polymyxin B-resistant PAO1, and type Ⅲ secretion system (exoS, exoT, exoY, exsA, exsB, exsC, exsD, pcrV, popB, popD, pscC, pscE, pscG, and pscJ) were upregulated in doxycycline-resistant PAO1. While, ampC were upregulated in ceftriaxone-resistant PAO1. In addition, variants were obtained in wild type and four antibiotics resistant PAO1. Our findings provide a comparative transcriptome analysis of antibiotic resistant mutants selected by different antibiotics, and might assist in identifying potential therapeutic strategies for P. aeruginosa infection.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yaping Yuan
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Shasha Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Deng
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiaming Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhongjie Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
19
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
20
|
Andersen JB, Hultqvist LD, Jansen CU, Jakobsen TH, Nilsson M, Rybtke M, Uhd J, Fritz BG, Seifert R, Berthelsen J, Nielsen TE, Qvortrup K, Givskov M, Tolker-Nielsen T. Identification of small molecules that interfere with c-di-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 2021; 7:59. [PMID: 34244523 PMCID: PMC8271024 DOI: 10.1038/s41522-021-00225-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Microbial biofilms are involved in a number of infections that cannot be cured, as microbes in biofilms resist host immune defenses and antibiotic therapies. With no strict biofilm-antibiotic in the current pipelines, there is an unmet need for drug candidates that enable the current antibiotics to eradicate bacteria in biofilms. We used high-throughput screening to identify chemical compounds that reduce the intracellular c-di-GMP content in Pseudomonas aeruginosa. This led to the identification of a small molecule that efficiently depletes P. aeruginosa for c-di-GMP, inhibits biofilm formation, and disperses established biofilm. A combination of our lead compound with standard of care antibiotics showed improved eradication of an implant-associated infection established in mice. Genetic analyses provided evidence that the anti-biofilm compound stimulates the activity of the c-di-GMP phosphodiesterase BifA in P. aeruginosa. Our work constitutes a proof of concept for c-di-GMP phosphodiesterase-activating drugs administered in combination with antibiotics as a viable treatment strategy for otherwise recalcitrant infections.
Collapse
Affiliation(s)
- Jens Bo Andersen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Dahl Hultqvist
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tim Holm Jakobsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Nilsson
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Blaine Gabriel Fritz
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School Carl-Neuberg-Straße 1, Hannover, Germany
| | - Jens Berthelsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Eiland Nielsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Michael Givskov
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Abstract
Antimicrobial resistance is a serious medical threat, particularly given the decreasing rate of discovery of new treatments. Although attempts to find new treatments continue, it has become clear that merely discovering new antimicrobials, even if they are new classes, will be insufficient. It is essential that new strategies be aggressively pursued. Toward that end, the search for treatments that can mitigate bacterial virulence and tilt the balance of host-pathogen interactions in favor of the host has become increasingly popular. In this review, we will discuss recent progress in this field, with a special focus on synthetic small molecule antivirulents that have been identified from high-throughput screens and on treatments that are effective against the opportunistic human pathogen Pseudomonas aeruginosa.
Collapse
|
22
|
Mahajan S, Ramya TNC. Cellulophaga algicola alginate lyase inhibits biofilm formation of a clinical Pseudomonas aeruginosa strain MCC 2081. IUBMB Life 2020; 73:444-462. [PMID: 33350564 DOI: 10.1002/iub.2442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Alginate lyases are potential agents for disrupting alginate-rich Pseudomonas biofilms in the infected lungs of cystic fibrosis patients but there is as yet no clinically approved alginate lyase that can be used as a therapeutic. We report here the endolytic alginate lyase activity of a recombinant Cellulophaga algicola alginate lyase domain (CaAly) encoded by a gene that also codes for an N-terminal carbohydrate-binding module, CBM6, and a central F-type lectin domain (CaFLD). CaAly degraded both polyM and polyG alginates with optimal temperature and pH of 37°C and pH 7, respectively, with greater preference for polyG. Recombinant CaFLD bound to fucosylated glycans with a preference for H-type 2 glycan motif, and did not have any apparent effect on the enzyme activity of the co-associated alginate lyase domain in the recombinant protein construct, CaFLD_Aly. We assessed the potential of CaAly and other alginate lyases previously reported in published literature to inhibit biofilm formation by a clinical strain, Pseudomonas aeruginosa MCC 2081. Of all the alginate lyases tested, CaAly displayed most inhibition of in vitro biofilm formation on plastic surfaces. We also assessed its inhibitory ability against P. aeruginosa 2081 biofilms formed over a monolayer of A549 lung epithelial cells. Our study indicated that CaAly is efficacious in inhibition of biofilm formation even on A549 lung epithelial cell line monolayers.
Collapse
Affiliation(s)
- Sonal Mahajan
- Protein Science and Engineering Department, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
23
|
Nelson MT, Pope CE, Marsh RL, Wolter DJ, Weiss EJ, Hager KR, Vo AT, Brittnacher MJ, Radey MC, Hayden HS, Eng A, Miller SI, Borenstein E, Hoffman LR. Human and Extracellular DNA Depletion for Metagenomic Analysis of Complex Clinical Infection Samples Yields Optimized Viable Microbiome Profiles. Cell Rep 2020; 26:2227-2240.e5. [PMID: 30784601 PMCID: PMC6435281 DOI: 10.1016/j.celrep.2019.01.091] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 01/25/2019] [Indexed: 01/27/2023] Open
Abstract
Metagenomic sequencing is a promising approach for identifying and characterizing organisms and their functional characteristics in complex, polymicrobial infections, such as airway infections in people with cystic fibrosis. These analyses are often hampered, however, by overwhelming quantities of human DNA, yielding only a small proportion of microbial reads for analysis. In addition, many abundant microbes in respiratory samples can produce large quantities of extracellular bacterial DNA originating either from biofilms or dead cells. We describe a method for simultaneously depleting DNA from intact human cells and extracellular DNA (human and bacterial) in sputum, using selective lysis of eukaryotic cells and endonuclease digestion. We show that this method increases microbial sequencing depth and, consequently, both the number of taxa detected and coverage of individual genes such as those involved in antibiotic resistance. This finding underscores the substantial impact of DNA from sources other than live bacteria in micro-biological analyses of complex, chronic infection specimens. Nelson et al. describe a method for reducing both human cellular DNA and extracellular DNA (human and bacterial) in a complex respiratory sample using hypotonic lysis and endonuclease digestion. This method increases effective microbial sequencing depth and minimizes bias introduced into subsequent phylogenetic analysis by bacterial extracellular DNA.
Collapse
Affiliation(s)
- Maria T Nelson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Christopher E Pope
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Robyn L Marsh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Casuarina, NT 0811, Australia
| | - Daniel J Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Eli J Weiss
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Kyle R Hager
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Anh T Vo
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Mitchell J Brittnacher
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Hillary S Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Alexander Eng
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Samuel I Miller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Computer Science and Engineering, University of Washington School of Medicine, Seattle, WA 98105, USA; Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.
| |
Collapse
|
24
|
Cascioferro S, Parrino B, Carbone D, Schillaci D, Giovannetti E, Cirrincione G, Diana P. Thiazoles, Their Benzofused Systems, and Thiazolidinone Derivatives: Versatile and Promising Tools to Combat Antibiotic Resistance. J Med Chem 2020; 63:7923-7956. [PMID: 32208685 PMCID: PMC7997583 DOI: 10.1021/acs.jmedchem.9b01245] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Thiazoles,
their benzofused systems, and thiazolidinone derivatives
are widely recognized as nuclei of great value for obtaining molecules
with various biological activities, including analgesic, anti-inflammatory,
anti-HIV, antidiabetic, antitumor, and antimicrobial. In particular,
in the past decade, many compounds bearing these heterocycles have
been studied for their promising antibacterial properties due to their
action on different microbial targets. Here we assess the recent development
of this class of compounds to address mechanisms underlying antibiotic
resistance at both bacterial-cell and community levels (biofilms).
We also explore the SAR and the prospective clinical application of
thiazole and its benzofused derivatives, which act as inhibitors of
mechanisms underlying antibiotic resistance in the treatment of severe
drug-resistant infections. In addition, we examined all bacterial
targets involved in their antimicrobial activity reporting, when described,
their spontaneous frequencies of resistance.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, DeBoelelaan 1117, 1081HV, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, via Giovannini 13, 56017 San Giuliano Terme, Pisa, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
25
|
Shaw E, Wuest WM. Virulence attenuating combination therapy: a potential multi-target synergy approach to treat Pseudomonas aeruginosa infections in cystic fibrosis patients. RSC Med Chem 2020; 11:358-369. [PMID: 33479641 PMCID: PMC7580779 DOI: 10.1039/c9md00566h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
The World Health Organization considers the discovery of new treatments for P. aeruginosa a top priority. Virulence attenuating combination therapy (VACT) is a pragmatic strategy to improve bacterial clearance, repurpose outmoded antibiotics, improve drug efficacy at lower doses, and reduce the evolution of resistance. In vitro and in vivo studies have shown that adding a quorum sensing inhibitor or an extracellular polymeric substance repressor to classical antibiotics synergistically improves antipseudomonal activity. This review highlights why VACT could specifically benefit cystic fibrosis patients harboring chronic P. aeruginosa infections, outlines the current landscape of synergistic combinations between virulence-targeting small-molecules and anti-pseudomonal drugs, and suggests future directions for VACT research.
Collapse
Affiliation(s)
- Elana Shaw
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA .
| | - William M Wuest
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA .
- Emory Antibiotic Resistance Center , Emory University School of Medicine , 201 Dowman Drive , Atlanta , Georgia 30322 , USA
| |
Collapse
|
26
|
Rezzoagli C, Granato ET, Kümmerli R. Harnessing bacterial interactions to manage infections: a review on the opportunistic pathogen Pseudomonas aeruginosa as a case example. J Med Microbiol 2020; 69:147-161. [PMID: 31961787 PMCID: PMC7116537 DOI: 10.1099/jmm.0.001134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During infections, bacterial pathogens can engage in a variety of interactions with each other, ranging from the cooperative sharing of resources to deadly warfare. This is especially relevant in opportunistic infections, where different strains and species often co-infect the same patient and interact in the host. Here, we review the relevance of these social interactions during opportunistic infections using the human pathogen Pseudomonas aeruginosa as a case example. In particular, we discuss different types of pathogen-pathogen interactions, involving both cooperation and competition, and elaborate on how they impact virulence in multi-strain and multi-species infections. We then review evolutionary dynamics within pathogen populations during chronic infections. We particuarly discuss how local adaptation through niche separation, evolutionary successions and antagonistic co-evolution between pathogens can alter virulence and the damage inflicted on the host. Finally, we outline how studying bacterial social dynamics could be used to manage infections. We show that a deeper appreciation of bacterial evolution and ecology in the clinical context is important for understanding microbial infections and can inspire novel treatment strategies.
Collapse
Affiliation(s)
- Chiara Rezzoagli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elisa T. Granato
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Vasquez-Rifo A, Veksler-Lublinsky I, Cheng Z, Ausubel FM, Ambros V. The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans. Genome Biol 2019; 20:270. [PMID: 31823826 PMCID: PMC6902481 DOI: 10.1186/s13059-019-1890-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multicellular animals and bacteria frequently engage in predator-prey and host-pathogen interactions, such as the well-studied relationship between Pseudomonas aeruginosa and the nematode Caenorhabditis elegans. This study investigates the genomic and genetic basis of bacterial-driven variability in P. aeruginosa virulence towards C. elegans to provide evolutionary insights into host-pathogen relationships. RESULTS Natural isolates of P. aeruginosa that exhibit diverse genomes display a broad range of virulence towards C. elegans. Using gene association and genetic analysis, we identify accessory genome elements that correlate with virulence, including both known and novel virulence determinants. Among the novel genes, we find a viral-like mobile element, the teg block, that impairs virulence and whose acquisition is restricted by CRISPR-Cas systems. Further genetic and genomic evidence suggests that spacer-targeted elements preferentially associate with lower virulence while the presence of CRISPR-Cas associates with higher virulence. CONCLUSIONS Our analysis demonstrates substantial strain variation in P. aeruginosa virulence, mediated by specific accessory genome elements that promote increased or decreased virulence. We exemplify that viral-like accessory genome elements that decrease virulence can be restricted by bacterial CRISPR-Cas immune defense systems, and suggest a positive, albeit indirect, role for host CRISPR-Cas systems in virulence maintenance.
Collapse
Affiliation(s)
- Alejandro Vasquez-Rifo
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Zhenyu Cheng
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
28
|
Tharmalingam N, Khader R, Fuchs BB, Mylonakis E. The Anti-virulence Efficacy of 4-(1,3-Dimethyl-2,3-Dihydro-1H-Benzimidazol-2-yl)Phenol Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:1557. [PMID: 31379761 PMCID: PMC6653400 DOI: 10.3389/fmicb.2019.01557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial drug discovery against drug-resistant bacteria is an urgent need. Beyond agents with direct antibacterial activity, anti-virulent molecules may also be viable compounds to defend against bacterial pathogenesis. Using a high throughput screen (HTS) that utilized Caenorhabditis elegans infected with methicillin-resistant Staphylococcus aureus (MRSA) strain of MW2, we identified 4-(1,3-dimethyl-2,3-dihydro-1H-benzimidazol-2-yl)phenol (BIP). Interestingly, BIP had no in vitro inhibition activity against MW2, at least up to 64 μg/ml. The lack of direct antimicrobial activity suggests that BIP could inhibit bacterial virulence factors. To explore the possible anti-virulence effect of the identified molecule, we first performed real-time PCR to examine changes in virulence expression. BIP was highly active against MRSA virulence factors at sub-lethal concentrations and down-regulated virulence regulator genes, such as agrA and codY. However, the benzimidazole derivatives omeprazole and pantoprazole did not down-regulate virulence genes significantly, compared to BIP. Moreover, the BIP-pretreated MW2 cells were more vulnerable to macrophage-mediated killing, as confirmed by intracellular killing and live/dead staining assays, and less efficient in establishing a lethal infection in the invertebrate host Galleria mellonella (p = 0.0131). We tested the cytotoxicity of BIP against human red blood cells (RBCs), and it did not cause hemolysis at the highest concentration tested (64 μg/ml). Taken together, our findings outline the potential anti-virulence activity of BIP that was identified through a C. elegans-based, whole animal based, screen.
Collapse
Affiliation(s)
| | | | | | - Eleftherios Mylonakis
- Department of Medicine, Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
29
|
Massai F, Saleeb M, Doruk T, Elofsson M, Forsberg Å. Development, Optimization, and Validation of a High Throughput Screening Assay for Identification of Tat and Type II Secretion Inhibitors of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2019; 9:250. [PMID: 31355152 PMCID: PMC6635566 DOI: 10.3389/fcimb.2019.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Antibiotics are becoming less effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrobial therapies based on the inhibition of specific virulence-related traits, as opposed to growth inhibitors, constitute an innovative and appealing approach to tackle the threat of P. aeruginosa infections. The twin-arginine translocation (Tat) pathway plays an important role in the pathogenesis of P. aeruginosa, and constitutes a promising target for the development of anti-pseudomonal drugs. In this study we developed and optimized a whole-cell, one-well assay, based on native phospholipase C activity, to identify compounds active against the Tat system. Statistical robustness, sensitivity and consequently suitability for high-throughput screening (HTS) were confirmed by a dry run/pre-screening test scoring a Z′ of 0.82 and a signal-to-noise ratio of 49. Using this assay, we evaluated ca. 40,000 molecules and identified 59 initial hits as possible Tat inhibitors. Since phospholipase C is exported into the periplasm by Tat, and subsequently translocated across the outer membrane by the type II secretion system (T2SS), our assay could also identify T2SS inhibitors. To validate our hits and discriminate between compounds that inhibited either Tat or T2SS, two separate counter assays were developed and optimized. Finally, three Tat inhibitors and one T2SS inhibitor were confirmed by means of dose-response analysis and additional counter and confirming assays. Although none of the identified inhibitors was suitable as a lead compound for drug development, this study validates our assay as a simple, efficient, and HTS compatible method for the identification of Tat and T2SS inhibitors.
Collapse
Affiliation(s)
- Francesco Massai
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Michael Saleeb
- Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Tugrul Doruk
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Åke Forsberg
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Xie G, Zeng M, You J, Xie Z. Pseudomonas donghuensis HYS virulence towards Caenorhabditis elegans is regulated by the Cbr/Crc system. Sci Rep 2019; 9:8772. [PMID: 31217473 PMCID: PMC6584532 DOI: 10.1038/s41598-019-45145-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas donghuensis HYS is the type strain of a recently identified species, P. donghuensis, which has pathogenic potential with an unclear virulence mechanism. In this study, we used Caenorhabditis elegans as a host to explore the virulence mechanism of P. donghuensis HYS. Based on a correlation between P. donghuensis HYS virulence and its repellence property, we identified 68 potential virulence-related genes, among them the Cbr/Crc system, which regulates the virulence of prokaryotic microorganisms. Slow-killing assays indicated that cbrA, cbrB, or specific sRNA-encoding genes all affected P. donghuensis virulence positively, whereas crc affected it negatively. Transcriptome analyses demonstrated that the Cbr/Crc system played an important role in the pathogenesis of P. donghuensis. In addition, experiments using the worm mutant KU25 pmk-1(km25) showed a correlation between P. donghuensis HYS virulence and the PMK-1/p38 MAPK pathway in C. elegans. In conclusion, our data show that Crc plays a novel role in the Cbr/Crc system, and the P. donghuensis virulence phenotype therefore differs from that of P. aeruginosa. This process also involves C. elegans innate immunity. These findings significantly increase the available information about Cbr/Crc-based virulence mechanisms in the genus Pseudomonas.
Collapse
Affiliation(s)
- Guanfang Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Man Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Jia You
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China.
| |
Collapse
|
31
|
Liu L, Li JH, Zi SF, Liu FR, Deng C, Ao X, Zhang P. AgNP combined with quorum sensing inhibitor increased the antibiofilm effect on Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019; 103:6195-6204. [PMID: 31129741 DOI: 10.1007/s00253-019-09905-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Pseudomonas aeruginosa biofilm lifestyle exhibits multidrug resistance in chronic bacterial infections. Alternative antimicrobial compounds or combination drug therapies must be urgently developed. In this work, the antibiofilm effect of Ag nanoparticle (AgNP) combined with the quorum sensing inhibitor (QSI) 4-nitropyridine N-oxide (4NPO) on P. aeruginosa biofilms was investigated. The biofilm biomass of P. aeruginosa was considerably reduced by 1.56-50 mg/L AgNP. However, 4NPO enhanced the ability of AgNP to inhibit P. aeruginosa biofilm formation (P < 0.05). The combination of AgNP with 4NPO could continuously inhibit biofilm development after 12 h, and 50 mg/L AgNP combined with 6.25 mg/L 4NPO thoroughly suppressed biofilm growth. The expression levels of QS genes and exopolysaccharide genes of biofilm treated with the combination of AgNP with 4NPO (AgNP-4NPO combination) were lower than those treated with AgNP alone (P < 0.05). Additional extracellular proteins and polysaccharides were determined in the samples treated with AgNP-4NPO combination. Based on proteomic analysis, this result was attributed to cell rupture caused by antimicrobial agents and intracellular materials released. The combination of the two antimicrobial agents could weaken the swimming ability of bacterial cells by damaging bacterial flagella and blocking rhlA gene expression. Thus, AgNP combined with QSI showed stronger antibiofilm ability than AgNP alone. These results may contribute to the development of antimicrobial agents.
Collapse
Affiliation(s)
- Lei Liu
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Jing-Hui Li
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China.
| | - Shuang-Feng Zi
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Fu-Rong Liu
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Chao Deng
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Xue Ao
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
32
|
Marine Bacteria, A Source for Alginolytic Enzyme to Disrupt Pseudomonas aeruginosa Biofilms. Mar Drugs 2019; 17:md17050307. [PMID: 31137680 PMCID: PMC6562671 DOI: 10.3390/md17050307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa biofilms are typically associated with the chronic lung infection of cystic fibrosis (CF) patients and represent a major challenge for treatment. This opportunistic bacterial pathogen secretes alginate, a polysaccharide that is one of the main components of its biofilm. Targeting this major biofilm component has emerged as a tempting therapeutic strategy for tackling biofilm-associated bacterial infections. The enormous potential in genetic diversity of the marine microbial community make it a valuable resource for mining activities responsible for a broad range of metabolic processes, including the alginolytic activity responsible for degrading alginate. A collection of 36 bacterial isolates were purified from marine water based on their alginolytic activity. These isolates were identified based on their 16S rRNA gene sequences. Pseudoalteromonas sp. 1400 showed the highest alginolytic activity and was further confirmed to produce the enzyme alginate lyase. The purified alginate lyase (AlyP1400) produced by Pseudoalteromonas sp. 1400 showed a band of 23 KDa on a protein electrophoresis gel and exhibited a bifunctional lyase activity for both poly-mannuronic acid and poly-glucuronic acid degradation. A tryptic digestion of this gel band analyzed by liquid chromatography-tandem mass spectrometry confirmed high similarity to the alginate lyases in polysaccharide lyase family 18. The purified alginate lyase showed a maximum relative activity at 30 °C at a slightly acidic condition. It decreased the sodium alginate viscosity by over 90% and reduced the P. aeruginosa (strain PA14) biofilms by 69% after 24 h of incubation. The combined activity of AlyP1400 with carbenicillin or ciprofloxacin reduced the P. aeruginosa biofilm thickness, biovolume and surface area in a flow cell system. The present data revealed that AlyP1400 combined with conventional antibiotics helped to disrupt the biofilms produced by P. aeruginosa and can be used as a promising combinational therapeutic strategy.
Collapse
|
33
|
Kirienko DR, Kang D, Kirienko NV. Novel Pyoverdine Inhibitors Mitigate Pseudomonas aeruginosa Pathogenesis. Front Microbiol 2019; 9:3317. [PMID: 30687293 PMCID: PMC6333909 DOI: 10.3389/fmicb.2018.03317] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a clinically important pathogen that causes a variety of infections, including urinary, respiratory, and other soft-tissue infections, particularly in hospitalized patients with immune defects, cystic fibrosis, or significant burns. Antimicrobial resistance is a substantial problem in P. aeruginosa treatment due to the inherent insensitivity of the pathogen to a wide variety of antimicrobial drugs and its rapid acquisition of additional resistance mechanisms. One strategy to circumvent this problem is the use of anti-virulent compounds to disrupt pathogenesis without directly compromising bacterial growth. One of the principle regulatory mechanisms for P. aeruginosa’s virulence is the iron-scavenging siderophore pyoverdine, as it governs in-host acquisition of iron, promotes expression of multiple virulence factors, and is directly toxic. Some combination of these activities renders pyoverdine indispensable for pathogenesis in mammalian models. Here we report identification of a panel of novel small molecules that disrupt pyoverdine function. These molecules directly act on pyoverdine, rather than affecting its biosynthesis. The compounds reduce the pathogenic effect of pyoverdine and improve the survival of Caenorhabditis elegans when challenged with P. aeruginosa by disrupting only this single virulence factor. Finally, these compounds can synergize with conventional antimicrobials, forming a more effective treatment. These compounds may help to identify, or be modified to become, viable drug leads in their own right. Finally, they also serve as useful tool compounds to probe pyoverdine activity.
Collapse
Affiliation(s)
- Daniel R Kirienko
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, United States
| | | |
Collapse
|
34
|
Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2018; 161:154-178. [PMID: 30347328 DOI: 10.1016/j.ejmech.2018.10.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. In this review we selected the most relevant literature of the last decade, focusing on the development of synthetic small molecules able to prevent bacterial biofilm formation or to eradicate pre-existing biofilms of clinically relevant Gram-positive and Gram-negative pathogens. In addition, we provide a comprehensive list of the possible targets to counteract biofilm formation and development, as well as a detailed discussion the advantages and disadvantages of the different current biofilm-targeting strategies.
Collapse
|
35
|
Granato ET, Ziegenhain C, Marvig RL, Kümmerli R. Low spatial structure and selection against secreted virulence factors attenuates pathogenicity in Pseudomonas aeruginosa. ISME JOURNAL 2018; 12:2907-2918. [PMID: 30065310 DOI: 10.1038/s41396-018-0231-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 02/01/2023]
Abstract
Bacterial opportunistic pathogens are feared for their difficult-to-treat nosocomial infections and for causing morbidity in immunocompromised patients. Here, we study how such a versatile opportunist, Pseudomonas aeruginosa, adapts to conditions inside and outside its model host Caenorhabditis elegans, and use phenotypic and genotypic screens to identify the mechanistic basis of virulence evolution. We found that virulence significantly dropped in unstructured environments both in the presence and absence of the host, but remained unchanged in spatially structured environments. Reduction of virulence was either driven by a substantial decline in the production of siderophores (in treatments without hosts) or toxins and proteases (in treatments with hosts). Whole-genome sequencing of evolved clones revealed positive selection and parallel evolution across replicates, and showed an accumulation of mutations in regulator genes controlling virulence factor expression. Our study identifies the spatial structure of the non-host environment as a key driver of virulence evolution in an opportunistic pathogen.
Collapse
Affiliation(s)
- Elisa T Granato
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland. .,Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - Christoph Ziegenhain
- Department Biology II, Ludwig-Maximilians-University, Munich, Germany.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Peterson ND, Pukkila-Worley R. Caenorhabditis elegans in high-throughput screens for anti-infective compounds. Curr Opin Immunol 2018; 54:59-65. [PMID: 29935375 DOI: 10.1016/j.coi.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
New classes of antimicrobials that are effective therapies for infections with multi-drug resistant pathogens are urgently needed. The nematode Caenorhabditis elegans has been incorporated into small molecule screening platforms to identify anti-infective compounds that provide protection of a host during infection. The use of a live animal in these screening systems offers several advantages, including the ability to identify molecules that boost innate immune responses in a manner advantageous to host survival and compounds that disrupt bacterial virulence mechanisms. In addition, new classes of antimicrobials that target the pathogen have been uncovered, as well as interesting chemical probes that can be used to dissect new mechanisms of host-pathogen interactions.
Collapse
Affiliation(s)
- Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
37
|
Pseudomonas aeruginosa type IV minor pilins and PilY1 regulate virulence by modulating FimS-AlgR activity. PLoS Pathog 2018; 14:e1007074. [PMID: 29775484 PMCID: PMC5979040 DOI: 10.1371/journal.ppat.1007074] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/31/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022] Open
Abstract
Type IV pili are expressed by a wide range of prokaryotes, including the opportunistic pathogen Pseudomonas aeruginosa. These flexible fibres mediate twitching motility, biofilm maturation, surface adhesion, and virulence. The pilus is composed mainly of major pilin subunits while the low abundance minor pilins FimU-PilVWXE and the putative adhesin PilY1 prime pilus assembly and are proposed to form the pilus tip. The minor pilins and PilY1 are encoded in an operon that is positively regulated by the FimS-AlgR two-component system. Independent of pilus assembly, PilY1 was proposed to be a mechanosensory component that—in conjunction with minor pilins—triggers up-regulation of acute virulence phenotypes upon surface attachment. Here, we investigated the link between the minor pilins/PilY1 and virulence. pilW, pilX, and pilY1 mutants had reduced virulence towards Caenorhabditis elegans relative to wild type or a major pilin mutant, implying a role in pathogenicity that is independent of pilus assembly. We hypothesized that loss of specific minor pilins relieves feedback inhibition on FimS-AlgR, increasing transcription of the AlgR regulon and delaying C. elegans killing. Reporter assays confirmed that FimS-AlgR were required for increased expression of the minor pilin operon upon loss of select minor pilins. Overexpression of AlgR or its hyperactivation via a phosphomimetic mutation reduced virulence, and the virulence defects of pilW, pilX, and pilY1 mutants required FimS-AlgR expression and activation. We propose that PilY1 and the minor pilins inhibit their own expression, and that loss of these proteins leads to FimS-mediated activation of AlgR that suppresses expression of acute-phase virulence factors and delays killing. This mechanism could contribute to adaptation of P. aeruginosa in chronic lung infections, as mutations in the minor pilin operon result in the loss of piliation and increased expression of AlgR-dependent virulence factors–such as alginate–that are characteristic of such infections. Pseudomonas aeruginosa causes dangerous infections, including chronic lung infections in cystic fibrosis patients. It uses many strategies to infect its hosts, including deployment of grappling hook-like fibres called type IV pili. Among the components involved in assembly and function of the pilus are five proteins called minor pilins that—along with a larger protein called PilY1—may help the pilus attach to surfaces. In a roundworm infection model, loss of PilY1 and specific minor pilins delayed killing, while loss of other pilus components did not. We traced this effect to increased activation of the FimS-AlgR regulatory system that inhibits the expression of virulence factors used early in infection, while positively regulating chronic infection traits such as alginate production, a phenotype called mucoidy. A disruption in the appropriate timing of FimS-AlgR-dependent virulence factor expression when select minor pilins or PilY1 are missing may explain why those pilus-deficient mutants have reduced virulence compared with others whose products are not under FimS-AlgR control. Increased FimS-AlgR activity upon loss of PilY1 and specific minor pilins could help to explain the frequent co-occurrence of the non-piliated and mucoid phenotypes that are hallmarks of chronic P. aeruginosa lung infections.
Collapse
|