1
|
Gul S, Gallo R, Bertolino L, Patauner F, Buono S, De Rosa R, Esposito C, Galdieri N, Karruli A, Iossa D, Piscitelli E, Andini R, Corcione A, Durante-Mangoni E. Pharmacokinetic parameters of CAZ-AVI in the normal lung and in models of pneumonia: lessons for treatment optimization in critical care. J Chemother 2024; 36:465-473. [PMID: 38288996 DOI: 10.1080/1120009x.2024.2308977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 09/20/2024]
Abstract
The spread of multidrug-resistant Gram-negative bacterial infections is a significant issue for worldwide public health. Gram-negative organisms regularly develop resistance to antibiotics, especially to β-lactam antimicrobials, which can drastically restrict the number of therapies. A third-generation cephalosporin and the non-β-lactam β-lactamase inhibitor avibactam, which exhibits broad-spectrum β-lactamase inhibition in vitro, are combined to form ceftazidime-avibactam (CAZ-AVI). In this narrative review, we summarize data on pharmacokinetic (PK) parameters for CAZ-AVI in both animal and human models of pneumonia, as well as in healthy individuals. We assessed current literature performing an extensive search of the literature, using as search words 'CAZ-AVI', 'pharmacokinetics', 'pneumonia', 'lung', and 'epithelial lining fluid'. Overall, lung exposure studies of CAZ-AVI revealed that the epithelial lining fluid penetration ranges between 30% and 35% of plasma concentration. Despite the fair lung penetration of CAZ-AVI, this antimicrobial agent has a pivotal role in managing patients with multi-drug resistant Gram-negative pneumonia, however further studies are needed to better assess its PK profile.
Collapse
Affiliation(s)
- Sabiha Gul
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Raffaella Gallo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Lorenzo Bertolino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Fabian Patauner
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Salvatore Buono
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Rosanna De Rosa
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Clelia Esposito
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Nicola Galdieri
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Arta Karruli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Domenico Iossa
- Unit of Infectious & Transplant Medicine, A.O.R.N. Ospedali dei Colli - Ospedale Monaldi, Napoli, Italy
| | - Eugenio Piscitelli
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Roberto Andini
- Unit of Infectious & Transplant Medicine, A.O.R.N. Ospedali dei Colli - Ospedale Monaldi, Napoli, Italy
| | - Antonio Corcione
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
- Unit of Infectious & Transplant Medicine, A.O.R.N. Ospedali dei Colli - Ospedale Monaldi, Napoli, Italy
| |
Collapse
|
2
|
Koenig C, Kuti JL. Evolving resistance landscape in gram-negative pathogens: An update on β-lactam and β-lactam-inhibitor treatment combinations for carbapenem-resistant organisms. Pharmacotherapy 2024; 44:658-674. [PMID: 38949413 DOI: 10.1002/phar.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024]
Abstract
Antibiotic resistance has become a global threat as it is continuously growing due to the evolution of β-lactamases diminishing the activity of classic β-lactam (BL) antibiotics. Recent antibiotic discovery and development efforts have led to the availability of β-lactamase inhibitors (BLIs) with activity against extended-spectrum β-lactamases as well as Klebsiella pneumoniae carbapenemase (KPC)-producing carbapenem-resistant organisms (CRO). Nevertheless, there is still a lack of drugs that target metallo-β-lactamases (MBL), which hydrolyze carbapenems efficiently, and oxacillinases (OXA) often present in carbapenem-resistant Acinetobacter baumannii. This review aims to provide a snapshot of microbiology, pharmacology, and clinical data for currently available BL/BLI treatment options as well as agents in late stage development for CRO harboring various β-lactamases including MBL and OXA-enzymes.
Collapse
Affiliation(s)
- Christina Koenig
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
3
|
Wei X, Gao J, Xu C, Pan X, Jin Y, Bai F, Cheng Z, Lamont IL, Pletzer D, Wu W. Murepavadin induces envelope stress response and enhances the killing efficacies of β-lactam antibiotics by impairing the outer membrane integrity of Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0125723. [PMID: 37668398 PMCID: PMC10581190 DOI: 10.1128/spectrum.01257-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 09/06/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can cause a variety of acute and chronic infections. The bacterium is highly resistant to numerous antibiotics. Murepavadin is a peptidomimetic antibiotic that blocks the function of P. aeruginosa lipopolysaccharide (LPS) transport protein D (LptD), thus inhibiting the insertion of LPS into the outer membrane. In this study, we demonstrated that sublethal concentrations of murepavadin enhance the bacterial outer membrane permeability. Proteomic analyses revealed the alteration of protein composition in bacterial inner and outer membranes following murepavadin treatment. The antisigma factor MucA was upregulated by murepavadin. In addition, the expression of the sigma E factor gene algU and the alginate synthesis gene algD was induced by murepavadin. Deletion of the algU gene reduces bacterial survival following murepavadin treatment, indicating a role of the envelope stress response in bacterial tolerance. We further demonstrated that murepavadin enhances the bactericidal activities of β-lactam antibiotics by promoting drug influx across the outer membrane. In a mouse model of acute pneumonia, the murepavadin-ceftazidime/avibactam combination showed synergistic therapeutic effect against P. aeruginosa infection. In addition, the combination of murepavadin with ceftazidime/avibactam slowed down the resistance development. In conclusion, our results reveal the response mechanism of P. aeruginosa to murepavadin and provide a promising antibiotic combination for the treatment of P. aeruginosa infections.IMPORTANCEThe ever increasing resistance of bacteria to antibiotics poses a serious threat to global public health. Novel antibiotics and treatment strategies are urgently needed. Murepavadin is a novel antibiotic that blocks the assembly of lipopolysaccharide (LPS) into the Pseudomonas aeruginosa outer membrane by inhibiting LPS transport protein D (LptD). Here, we demonstrated that murepavadin impairs bacterial outer membrane integrity, which induces the envelope stress response. We further found that the impaired outer membrane integrity increases the influx of β-lactam antibiotics, resulting in enhanced bactericidal effects. In addition, the combination of murepavadin and a β-lactam/β-lactamase inhibitor mixture (ceftazidime/avibactam) slowed down the resistance development of P. aeruginosa. Overall, this study demonstrates the bacterial response to murepavadin and provides a new combination strategy for effective treatment.
Collapse
Affiliation(s)
- Xiaoya Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Nichols WW, Lahiri SD, Bradford PA, Stone GG. The primary pharmacology of ceftazidime/avibactam: resistance in vitro. J Antimicrob Chemother 2023; 78:569-585. [PMID: 36702744 DOI: 10.1093/jac/dkac449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This article reviews resistance to ceftazidime/avibactam as an aspect of its primary pharmacology, linked thematically with recent reviews of the basic in vitro and in vivo translational biology of the combination (J Antimicrob Chemother 2022; 77: 2321-40 and 2341-52). In Enterobacterales or Pseudomonas aeruginosa, single-step exposures to 8× MIC of ceftazidime/avibactam yielded frequencies of resistance from <∼0.5 × 10-9 to 2-8 × 10-9, depending on the host strain and the β-lactamase harboured. β-Lactamase structural gene mutations mostly affected the avibactam binding site through changes in the Ω-loop: e.g. Asp179Tyr (D179Y) in KPC-2. Other mutations included ones proposed to reduce the permeability to ceftazidime and/or avibactam through changes in outer membrane structure, up-regulated efflux, or both. The existence, or otherwise, of cross-resistance between ceftazidime/avibactam and other antibacterial agents was also reviewed as a key element of the preclinical primary pharmacology of the new agent. Cross-resistance between ceftazidime/avibactam and other β-lactam-based antibacterial agents was caused by MBLs. Mechanism-based cross-resistance was not observed between ceftazidime/avibactam and fluoroquinolones, aminoglycosides or colistin. A low level of general co-resistance to ceftazidime/avibactam was observed in MDR Enterobacterales and P. aeruginosa. For example, among 2821 MDR Klebsiella spp., 3.4% were resistant to ceftazidime/avibactam, in contrast to 0.07% of 8177 non-MDR isolates. Much of this was caused by possession of MBLs. Among 1151 MDR, XDR and pandrug-resistant isolates of P. aeruginosa from the USA, 11.1% were resistant to ceftazidime/avibactam, in contrast to 3.0% of 7452 unselected isolates. In this case, the decreased proportion susceptible was not due to MBLs.
Collapse
Affiliation(s)
| | - Sushmita D Lahiri
- Infectious Diseases and Vaccines, Johnson & Johnson, Cambridge, MA, USA
| | | | | |
Collapse
|
5
|
Shen Y, Kuti JL. Optimizing antibiotic dosing regimens for nosocomial pneumonia: a window of opportunity for pharmacokinetic and pharmacodynamic modeling. Expert Opin Drug Metab Toxicol 2023; 19:13-25. [PMID: 36786064 DOI: 10.1080/17425255.2023.2178896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Determining antibiotic exposure in the lung and the threshold(s) needed for effective antibacterial killing is paramount during development of new antibiotics for the treatment of nosocomial pneumonia, as these exposures directly affect clinical outcomes and resistance development. The use of pharmacokinetic and pharmacodynamic modeling is recommended by regulatory agencies to evaluate antibiotic pulmonary exposure and optimize dosage regimen selection. This process has been implemented in newer antibiotic development. AREAS COVERED This review will discuss the basis for conducting pharmacokinetic and pharmacodynamic studies to support dosage regimen selection and optimization for the treatment of nosocomial pneumonia. Pharmacokinetic/pharmacodynamic data that supported recent hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia indications for ceftolozane/tazobactam, ceftazidime/avibactam, imipenem/cilastatin/relebactam, and cefiderocol will be reviewed. EXPERT OPINION Optimal drug development requires the integration of preclinical pharmacodynamic studies, healthy volunteers and ideally patient bronchoalveolar lavage pharmacokinetic studies, Monte-Carlo simulation, and clinical trials. Currently, plasma exposure has been successfully used as a surrogate for lung exposure threshold. Future studies are needed to identify the value of lung pharmacodynamic thresholds in nosocomial pneumonia antibiotic dosage optimization.
Collapse
Affiliation(s)
- Yuwei Shen
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT USA
| |
Collapse
|
6
|
Nichols WW, Bradford PA, Stone GG. The primary pharmacology of ceftazidime/avibactam: in vivo translational biology and pharmacokinetics/pharmacodynamics (PK/PD). J Antimicrob Chemother 2022; 77:2341-2352. [PMID: 35660869 DOI: 10.1093/jac/dkac172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This review describes the translational in vivo and non-clinical pharmacokinetics/pharmacodynamics (PK/PD) research that supported clinical trialling and subsequently licensing approval of ceftazidime/avibactam, a new β-lactam/β-lactamase inhibitor combination aimed at the treatment of infections by Enterobacterales and Pseudomonas aeruginosa. The review thematically follows on from the co-published article, Nichols et al. (J Antimicrob Chemother 2022; dkac171). Avibactam protected ceftazidime in animal models of infection with ceftazidime-resistant, β-lactamase-producing bacteria. For example, a single subcutaneous dose of ceftazidime at 1024 mg/kg yielded little effect on the growth of ceftazidime-resistant, blaKPC-2-carrying Klebsiella pneumoniae in the thighs of neutropenic mice (final counts of 4 × 108 to 8 × 108 cfu/thigh). In contrast, co-administration of avibactam in a 4:1 ratio (ceftazidime:avibactam) was bactericidal in the same model (final counts of 2 × 104 to 3 × 104 cfu/thigh). In a rat abdominal abscess model, therapy with ceftazidime or ceftazidime/avibactam (4:1 w/w) against blaKPC-2-positive K. pneumoniae resulted in 9.3 versus 3.3 log cfu/abscess, respectively, after 52 h. With respect to PK/PD, in Monte Carlo simulations, attainment of unbound drug exposure targets (ceftazidime fT>8 mg/L and avibactam fT>1 mg/L, each for 50% of the dosing interval) for the labelled dose of ceftazidime/avibactam (2 and 0.5 g, respectively, q8h by 2 h IV infusion), including dose adjustments for patients with impaired renal function, ranged between 94.8% and 99.6% of patients, depending on the infection modelled.
Collapse
|
7
|
Berry AV, Kuti JL. Pharmacodynamic Thresholds for Beta-Lactam Antibiotics: A Story of Mouse Versus Man. Front Pharmacol 2022; 13:833189. [PMID: 35370708 PMCID: PMC8971958 DOI: 10.3389/fphar.2022.833189] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/24/2022] [Indexed: 01/20/2023] Open
Abstract
Beta-lactams remain a critical member of our antibiotic armamentarium and are among the most commonly prescribed antibiotic classes in the inpatient setting. For these agents, the percentage of time that the free concentration remains above the minimum inhibitory concentration (%fT > MIC) of the pathogen has been shown to be the best predictor of antibacterial killing effects. However, debate remains about the quantity of fT > MIC exposure needed for successful clinical response. While pre-clinical animal based studies, such as the neutropenic thigh infection model, have been widely used to support dosing regimen selection for clinical development and susceptibility breakpoint evaluation, pharmacodynamic based studies in human patients are used validate exposures needed in the clinic and for guidance during therapeutic drug monitoring (TDM). For the majority of studied beta-lactams, pre-clinical animal studies routinely demonstrated the fT > MIC should exceed approximately 40–70% fT > MIC to achieve 1 log reductions in colony forming units. In contrast, clinical studies tend to suggest higher exposures may be needed, but tremendous variability exists study to study. Herein, we will review and critique pre-clinical versus human-based pharmacodynamic studies aimed at determining beta-lactam exposure thresholds, so as to determine which targets may be best suited for optimal dosage selection, TDM, and for susceptibility breakpoint determination. Based on our review of murine and clinical literature on beta-lactam pharmacodynamic thresholds, murine based targets specific to each antibiotic are most useful during dosage regimen development and susceptibility breakpoint assessment, while a range of exposures between 50 and 100% fT > MIC are reasonable to define the beta-lactam TDM therapeutic window for most infections.
Collapse
|
8
|
Daikos GL, da Cunha CA, Rossolini GM, Stone GG, Baillon-Plot N, Tawadrous M, Irani P. Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10091126. [PMID: 34572708 PMCID: PMC8467554 DOI: 10.3390/antibiotics10091126] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes a range of serious infections that are often challenging to treat, as this pathogen can express multiple resistance mechanisms, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) phenotypes. Ceftazidime–avibactam is a combination antimicrobial agent comprising ceftazidime, a third-generation semisynthetic cephalosporin, and avibactam, a novel non-β-lactam β-lactamase inhibitor. This review explores the potential role of ceftazidime–avibactam for the treatment of P. aeruginosa infections. Ceftazidime–avibactam has good in vitro activity against P. aeruginosa relative to comparator β-lactam agents and fluoroquinolones, comparable to amikacin and ceftolozane–tazobactam. In Phase 3 clinical trials, ceftazidime–avibactam has generally demonstrated similar clinical and microbiological outcomes to comparators in patients with complicated intra-abdominal infections, complicated urinary tract infections or hospital-acquired/ventilator-associated pneumonia caused by P. aeruginosa. Although real-world data are limited, favourable outcomes with ceftazidime–avibactam treatment have been reported in some patients with MDR and XDR P. aeruginosa infections. Thus, ceftazidime–avibactam may have a potentially important role in the management of serious and complicated P. aeruginosa infections, including those caused by MDR and XDR strains.
Collapse
Affiliation(s)
- George L. Daikos
- Department of Medicine, National and Kapodistrian University of Athens, 115-27 Athens, Greece
- Correspondence: ; Tel.: +30-210-804-9218
| | | | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy;
- Clinical Microbiology and Virology Unit, Careggi University Hospital, I-50134 Florence, Italy
| | | | | | | | | |
Collapse
|
9
|
Asempa TE, DeRosa NA, Cassino C, Lehoux D, Schuch R, Nicolau DP. Efficacy assessment of lysin CF-296 in addition to daptomycin or vancomycin against Staphylococcus aureus in the murine thigh infection model. J Antimicrob Chemother 2021; 76:2622-2628. [PMID: 34223628 DOI: 10.1093/jac/dkab206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES CF-296 is a lysin in pre-clinical development for the treatment of MSSA and MRSA infections, used in addition to standard-of-care (SOC) antibiotics. We evaluated the efficacy of CF-296 alone and in addition to daptomycin or vancomycin against Staphylococcus aureus in the neutropenic mouse thigh infection model. METHODS Eight isolates (one MSSA and seven MRSA) were studied. Mice were administered five CF-296 monotherapy doses ranging from 0.5 to 50 mg/kg intravenously. To assess adjunctive therapy, mice received sub-therapeutic daptomycin alone, sub-therapeutic vancomycin alone, or the five CF-296 doses in addition to either daptomycin or vancomycin. RESULTS Relative to starting inoculum (5.80 ± 0.31 log10 cfu/thigh), bacterial density in vehicle controls increased by +2.49 ± 0.98 across all eight strains. Relative to 24 h controls, a dose-response in bacterial killing (range -0.22 ± 0.87 to -2.01 ± 1.71 log10 cfu/thigh) was observed with increasing CF-296 monotherapy against the eight isolates. Daptomycin and vancomycin resulted in -1.36 ± 0.77 and -1.37 ± 1.01 log10 cfu/thigh bacteria reduction, respectively, relative to 24 h controls. Escalating CF-296 exposures (0.5-50 mg/kg) in addition to daptomycin resulted in an enhanced dose-response, ranging from bacterial killing of -0.69 to -2.13 log10 cfu/thigh, relative to daptomycin alone. Similarly, in addition to vancomycin, escalating CF-296 exposures resulted in bacterial reduction ranging from -1.37 to -2.29 log10 cfu/thigh, relative to vancomycin alone. CONCLUSIONS Relative to SOC antibiotics (daptomycin or vancomycin), addition of CF-296 resulted in robust and enhanced antibacterial dose-response, achieving ≥1 log10 cfu/thigh decrease across most doses, highlighting a potential role for CF-296 adjunctive therapy against MSSA and MRSA isolates.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Nicole A DeRosa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | | | | | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
10
|
Kristoffersson AN, Bissantz C, Okujava R, Haldimann A, Walter I, Shi T, Zampaloni C, Nielsen EI. A novel mechanism-based pharmacokinetic-pharmacodynamic (PKPD) model describing ceftazidime/avibactam efficacy against β-lactamase-producing Gram-negative bacteria. J Antimicrob Chemother 2021; 75:400-408. [PMID: 31670804 DOI: 10.1093/jac/dkz440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Diazabicyclooctanes (DBOs) are an increasingly important group of non β-lactam β-lactamase inhibitors, employed clinically in combinations such as ceftazidime/avibactam. The dose finding of such combinations is complicated using the traditional pharmacokinetic/pharmacodynamic (PK/PD) index approach, especially if the β-lactamase inhibitor has an antibiotic effect of its own. OBJECTIVES To develop a novel mechanism-based pharmacokinetic-pharmacodynamic (PKPD) model for ceftazidime/avibactam against Gram-negative pathogens, with the potential for combination dosage simulation. METHODS Four β-lactamase-producing Enterobacteriaceae, covering Ambler classes A, B and D, were exposed to ceftazidime and avibactam, alone and in combination, in static time-kill experiments. A PKPD model was developed and evaluated using internal and external evaluation, and combined with a population PK model and applied in dosage simulations. RESULTS The developed PKPD model included the effects of ceftazidime alone, avibactam alone and an 'enhancer' effect of avibactam on ceftazidime in addition to the β-lactamase inhibitory effect of avibactam. The model could describe an extensive external Pseudomonas aeruginosa data set with minor modifications to the enhancer effect, and the utility of the model for clinical dosage simulation was demonstrated by investigating the influence of the addition of avibactam. CONCLUSIONS A novel mechanism-based PKPD model for the DBO/β-lactam combination ceftazidime/avibactam was developed that enables future comparison of the effect of avibactam with other DBO/β-lactam inhibitors in simulations, and may be an aid in translating PKPD results from in vitro to animals and humans.
Collapse
Affiliation(s)
| | - Caterina Bissantz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rusudan Okujava
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Haldimann
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Isabelle Walter
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tianlai Shi
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Claudia Zampaloni
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Elisabet I Nielsen
- Department of Pharmaceutical Biosciences, Uppsala Universitet, Uppsala, Sweden
| |
Collapse
|
11
|
Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacterales in Animal Infection Models: a Current State of Affairs. Antimicrob Agents Chemother 2021; 65:AAC.02271-20. [PMID: 33782001 DOI: 10.1128/aac.02271-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) result in resistance to nearly all β-lactam antimicrobial agents, as determined by currently employed susceptibility testing methods. However, recently reported data demonstrate that variable and supraphysiologic zinc concentrations in conventional susceptibility testing media compared with physiologic (bioactive) zinc concentrations may be mediating discordant in vitro-in vivo MBL resistance. While treatment outcomes in patients appear suggestive of this discordance, these limited data are confounded by comorbidities and combination therapy. To that end, the goal of this review is to evaluate the extent of β-lactam activity against MBL-harboring Enterobacterales in published animal infection model studies and provide contemporary considerations to facilitate the optimization of current antimicrobials and development of novel therapeutics.
Collapse
|
12
|
Kidd JM, Abdelraouf K, Nicolau DP. Efficacy of human-simulated bronchopulmonary exposures of cefepime, zidebactam and the combination (WCK 5222) against MDR Pseudomonas aeruginosa in a neutropenic murine pneumonia model. J Antimicrob Chemother 2021; 75:149-155. [PMID: 31641765 DOI: 10.1093/jac/dkz414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES WCK 5222 combines cefepime with zidebactam, a β-lactam enhancer that binds PBP2 and inhibits class A and C β-lactamases. The efficacy of human-simulated bronchopulmonary exposures of WCK 5222 against MDR Pseudomonas aeruginosa was investigated in a neutropenic murine pneumonia model. METHODS Nineteen MDR isolates of P. aeruginosa (cefepime MICs ≥64 mg/L) were studied. MICs of zidebactam and WCK 5222 ranged from 4 to 512 mg/L and from 4 to 32 mg/L, respectively. Dosing regimens of cefepime and zidebactam alone and in combination that achieved epithelial lining fluid (ELF) exposures in mice approximating human ELF exposures after doses of 2 g of cefepime/1 g of zidebactam every 8 h (1 h infusion) were utilized; controls were vehicle-dosed. Lungs were intranasally inoculated with 107-108 cfu/mL bacterial suspensions. Mice were dosed subcutaneously 2 h after inoculation for 24 h, then lungs were harvested. RESULTS In vitro MIC was predictive of in vivo response to WCK 5222 treatment. Mean±SD changes in bacterial density at 24 h compared with 0 h controls (6.72±0.50 log10 cfu/lungs) for 13 isolates with WCK 5222 MICs ≤16 mg/L were 1.17±1.00, -0.99±1.45 and -2.21±0.79 log10 cfu/lungs for cefepime, zidebactam and WCK 5222, respectively. Against these isolates, zidebactam yielded >1 log10 cfu/lungs reductions in 8/13, while activity was enhanced with WCK 5222, producing >2 log10 cfu/lungs reductions in 10/13 and >1 log10 cfu/lungs reductions in 12/13. Among isolates with WCK 5222 MICs of 32 mg/L, five out of six showed a bacteriostatic response. CONCLUSIONS Human-simulated bronchopulmonary exposure of WCK 5222 is effective against MDR P. aeruginosa at MIC ≤16 mg/L in a murine pneumonia model. These data support the clinical development of WCK 5222 for pseudomonal lung infections.
Collapse
Affiliation(s)
- James M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| |
Collapse
|
13
|
Berkhout J, Melchers MJ, van Mil AC, Lagarde CM, Nichols WW, Mouton JW. Evaluation of the post-antibiotic effect in vivo for the combination of a β-lactam antibiotic and a β-lactamase inhibitor: ceftazidime-avibactam in neutropenic mouse thigh and lung infections. J Chemother 2021; 33:400-408. [PMID: 33682636 DOI: 10.1080/1120009x.2021.1892365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The post-antibiotic effect (PAE) of ceftazidime-avibactam in vivo was evaluated using models of thigh- and lung-infection with Pseudomonas aeruginosa in neutropenic mice. In thigh-infected mice, the PAE was negative (-2.18 to -0.11 h) for three of four strains: caused by a 'burst' of rapid bacterial growth after the drug concentrations had fallen below their pre-specified target values. With lung infection, PAE was positive, and longer for target drug concentrations in ELF (>2 h) than plasma (1.69-1.88 h). The time to the start of regrowth was quantified as a new parameter, PAER, which was positive (0.35-1.00 h) in both thigh- and lung-infected mice. In the context that measurements of the PAE of β-lactam/β-lactamase inhibitor combinations in vivo have not previously been reported, it is noted that the negative values were consistent with previous measurements of the PAE of ceftazidime-avibactam in vitro and of ceftazidime alone in vivo.
Collapse
Affiliation(s)
- Johanna Berkhout
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Maria J Melchers
- Department of Medical Microbiology, Radboud University, Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Anita C van Mil
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Claudia M Lagarde
- Department of Medical Microbiology, Radboud University, Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Human-Simulated Antimicrobial Regimens in Animal Models: Transparency and Validation Are Imperative. Antimicrob Agents Chemother 2020; 64:AAC.00594-20. [PMID: 32423959 DOI: 10.1128/aac.00594-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
Animal infection models are invaluable in optimizing antimicrobial dosage in humans. Utilization of human-simulated regimens (HSRs) in animal models helps to evaluate antimicrobial efficacy at clinically achievable drug concentrations. To that end, pharmacokinetic studies in infected animals and confirmation of the HSR pharmacokinetic profile are essential in evaluating observed versus expected drug concentrations. We present and compare two murine meropenem-vaborbactam HSR profiles, their potential impact on bacterial killing, and clinical translatability.
Collapse
|
15
|
Lupia T, Corcione S, Mornese Pinna S, De Rosa FG. New cephalosporins for the treatment of pneumonia in internal medicine wards. J Thorac Dis 2020; 12:3747-3763. [PMID: 32802454 PMCID: PMC7399401 DOI: 10.21037/jtd-20-417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
The burden of hospital admission for pneumonia in internal medicine wards may not be underestimated; otherwise, cases of pneumonia are a frequent indication for antimicrobial prescriptions. Community- and hospital-acquired pneumonia are characterized by high healthcare costs, morbidity and non-negligible rates of fatality. The overcoming prevalence of resistant gram-negative and positive bacteria (e.g., methicillin-resistant Staphylococcus aureus, penicillin and ceftriaxone-resistant Streptococcus pneumoniae, extended-spectrum β-lactamases and carbapenemases producing Enterobacteriaceae) has made the most of the first-line agents ineffective for treating lower respiratory tract infections. A broad-spectrum of activity, favourable pulmonary penetration, harmlessness and avoiding in some cases a combination therapy, characterise new cephalosporins such as ceftolozane/tazobactam, ceftobiprole, ceftazidime/avibactam and ceftaroline. We aimed to summarise the role and place in therapy of new cephalosporins in community- and hospital-acquired pneumonia within the setting of internal medicine wards. The "universal pneumonia antibiotic strategy" is no longer acceptable for treating lung infections. Antimicrobial therapy should be individualized considering local antimicrobial resistance and epidemiology, the stage of the illness and potential host factors predisposing to a high risk for specific pathogens.
Collapse
Affiliation(s)
- Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
- School of Medicine, Tufts University, Boston, MA, USA
| | - Simone Mornese Pinna
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | | |
Collapse
|
16
|
Sy SKB, Zhuang L, Xia H, Beaudoin ME, Schuck VJ, Nichols WW, Derendorf H. A mathematical model-based analysis of the time-kill kinetics of ceftazidime/avibactam against Pseudomonas aeruginosa. J Antimicrob Chemother 2019; 73:1295-1304. [PMID: 29415212 DOI: 10.1093/jac/dkx537] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/19/2017] [Indexed: 01/28/2023] Open
Abstract
Objectives To characterize quantitatively the effect of avibactam in potentiating ceftazidime against MDR Pseudomonas aeruginosa by developing a mathematical model to describe the bacterial response to constant concentration time-kill information and validating it using both constant and time-varying concentration-effect data from in vitro and in vivo infection systems. Methods The time course of the bacterial population dynamics in the presence of static concentrations of ceftazidime and avibactam was modelled using a two-state pharmacokinetic/pharmacodynamic (PK/PD) model, consisting of active and resting states, to account for bactericidal activities, bacteria-mediated ceftazidime degradation and inhibition of degradation by avibactam. Ceftazidime's effect on the bacterial population was described as an enhancement of the death rate of the active population, with the effect of avibactam being to increase ceftazidime potency. Model validation was performed by comparing simulated time courses of bacterial responses with those from in vitro and in vivo experimental exposures of ceftazidime and avibactam that represented those predicted in an average patient dosed with 2 g/0.5 g ceftazidime/avibactam administered every 8 h as 2 h infusions. Results The two-state model successfully described the bacterial population dynamics, ceftazidime degradation and its inhibition by avibactam. For external validation, the model correctly predicted the bacterial response of P. aeruginosa isolates evaluated in in vitro hollow-fibre and in vivo neutropenic mouse thigh and lung infection models. Conclusions The PK/PD model and modelled strains successfully replicated the spread in activity when compared with a large selection of P. aeruginosa strains reported in the literature.
Collapse
Affiliation(s)
- Sherwin K B Sy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Luning Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Huiming Xia
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Abstract
Pneumonia, including community-acquired bacterial pneumonia, hospital-acquired bacterial pneumonia, and ventilator-acquired bacterial pneumonia, carries unacceptably high morbidity and mortality. Despite advances in antimicrobial therapy, emergence of multidrug resistance and high rates of treatment failure have made optimization of antibiotic efficacy a priority. This review focuses on pharmacokinetic and pharmacodynamic approaches to antibacterial optimization within the lung environment and in the setting of critical illness. Strategies for including these approaches in drug development programs as well as clinical practice are described and reviewed.
Collapse
Affiliation(s)
- Ana Motos
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA; Division of Animal Experimentation, Department of Pulmonary and Critical Care, Hospital Clinic, 170 Villarroel Street, Barcelona 08036, Spain
| | - James M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA; Division of Infectious Diseases, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA.
| |
Collapse
|
18
|
Spoletini G, Etherington C, Shaw N, Clifton IJ, Denton M, Whitaker P, Peckham DG. Use of ceftazidime/avibactam for the treatment of MDR Pseudomonas aeruginosa and Burkholderia cepacia complex infections in cystic fibrosis: a case series. J Antimicrob Chemother 2019; 74:1425-1429. [DOI: 10.1093/jac/dky558] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- G Spoletini
- The Leeds Regional Adult Cystic Fibrosis Centre, St James’s University Hospital, Leeds Teaching Hospital NHS Trust, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - C Etherington
- The Leeds Regional Adult Cystic Fibrosis Centre, St James’s University Hospital, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | - N Shaw
- The Leeds Regional Adult Cystic Fibrosis Centre, St James’s University Hospital, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | - I J Clifton
- The Leeds Regional Adult Cystic Fibrosis Centre, St James’s University Hospital, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | - M Denton
- The Leeds Regional Adult Cystic Fibrosis Centre, St James’s University Hospital, Leeds Teaching Hospital NHS Trust, Leeds, UK
- Department of Microbiology, Leeds General Infirmary, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | - P Whitaker
- The Leeds Regional Adult Cystic Fibrosis Centre, St James’s University Hospital, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | - D G Peckham
- The Leeds Regional Adult Cystic Fibrosis Centre, St James’s University Hospital, Leeds Teaching Hospital NHS Trust, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Algwizani A, Alzunitan M, Alharbi A, Alsaedy A, Aljohani S, Alalwan B, Gramish J, Alothman A. Experience with ceftazidime–avibactam treatment in a tertiary care center in Saudi Arabia. J Infect Public Health 2018; 11:793-795. [DOI: 10.1016/j.jiph.2018.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023] Open
|
20
|
Assessment of the In Vivo Efficacy of WCK 5222 (Cefepime-Zidebactam) against Carbapenem-Resistant Acinetobacter baumannii in the Neutropenic Murine Lung Infection Model. Antimicrob Agents Chemother 2018; 62:AAC.00948-18. [PMID: 30181365 DOI: 10.1128/aac.00948-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/25/2018] [Indexed: 12/29/2022] Open
Abstract
We evaluated the in vivo efficacy of human-simulated WCK 5222 (cefepime-zidebactam) against cefepime-resistant Acinetobacter baumannii strains (n = 13) in the neutropenic murine lung infection model. Twelve isolates were meropenem resistant. In control animals and those that received cefepime or zidebactam alone, the mean bacterial growth at 24 h was >2 log10 CFU/lung compared with 0-h controls (6.32 ± 0.33 log10 CFU/lung). WCK 5222 produced a decline in the bacterial burden for all isolates (mean reduction, -3.34 ± 0.85 log10 CFU/lung) and demonstrated remarkable potency.
Collapse
|
21
|
Clinical Pharmacokinetics and Pharmacodynamics of Ceftazidime–Avibactam Combination: A Model-Informed Strategy for its Clinical Development. Clin Pharmacokinet 2018; 58:545-564. [DOI: 10.1007/s40262-018-0705-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Mantero M, Rogliani P, Cazzola M, Blasi F, Di Pasquale M. Emerging antibacterial and antiviral drugs for treating respiratory tract infections. Expert Opin Emerg Drugs 2018; 23:185-199. [DOI: 10.1080/14728214.2018.1504020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Marco Mantero
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Rogliani
- Respiratory Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Respiratory Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Di Pasquale
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Sy S, Derendorf H. Experimental design and modelling approach to evaluate efficacy of β-lactam/β-lactamase inhibitor combinations. Clin Microbiol Infect 2018; 24:707-715. [DOI: 10.1016/j.cmi.2017.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
|
24
|
Ilyas A, Hashim Z, Channa IS, Zarina S. Alendronate and FTI-277 combination as a possible therapeutic approach for hepatocellular carcinoma: An in vitro study. Hepatobiliary Pancreat Dis Int 2018; 17:241-250. [PMID: 29627155 DOI: 10.1016/j.hbpd.2018.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND An important product of mevalonate pathway is downstream synthesis of isoprenoid units that has long been implicated in development and progression of tumor. It has been speculated that inhibition of protein prenylation might be therapeutically beneficial. The objective of current study was to evaluate antitumor potential of a novel therapeutic combination of mevalonate pathway inhibitors, FTI-277 and alendronate. We also examined differentially expressed proteins in response to treatment using proteomics approach. METHODS Huh-7 cells were incubated with different concentrations of FTI-277 alone and in combination with alendronate. Differential protein and gene expression was examined through two dimensional gel electrophoresis and real-time quantitative polymerase chain reaction (qPCR), respectively. Proteins were identified using tandem mass spectrometry analysis. RESULTS Treatment of hepatocellular carcinoma (HCC) cell line with FTI-277 alone showed cell death in a time and dose dependent manner while in combination with alendronate, a synergistic apoptotic effect at 24 h was observed. Proteomic studies on the 20 µmol/L FTI-277 and 5 µmol/L alendronate +20 µmol/L FTI-277 treated cells revealed altered expression of different proteins including peroxiredoxin 2 (Prx2), glutathione S transferase 1 (GSTP1), Rho GTPase activating protein (RhoGAP), triosephosphate isomerase (TPI), and heat shock protein 60 (HSP60). Down-regulated expression of Prx2 and GSTP1 in treated cells was also confirmed by real-time qPCR analysis. CONCLUSIONS Combined treatment of FTI-277 and alendronate on Huh-7 HCC cells showed cell death suggesting their anticancer potential. Such treatment approaches are likely to offer new therapeutic strategies.
Collapse
MESH Headings
- Alendronate/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Inhibitory Concentration 50
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Methionine/analogs & derivatives
- Methionine/pharmacology
- Proteomics/methods
- Signal Transduction/drug effects
- Tandem Mass Spectrometry
- Time Factors
Collapse
Affiliation(s)
- Amber Ilyas
- National Center for Proteomics, University of Karachi, Karachi 75270, Pakistan
| | - Zehra Hashim
- National Center for Proteomics, University of Karachi, Karachi 75270, Pakistan
| | - Iffat Saeed Channa
- National Center for Proteomics, University of Karachi, Karachi 75270, Pakistan
| | - Shamshad Zarina
- National Center for Proteomics, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
25
|
Pneumonia and Renal Replacement Therapy Are Risk Factors for Ceftazidime-Avibactam Treatment Failures and Resistance among Patients with Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob Agents Chemother 2018; 62:AAC.02497-17. [PMID: 29507064 DOI: 10.1128/aac.02497-17] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/23/2018] [Indexed: 01/31/2023] Open
Abstract
Ceftazidime-avibactam was used to treat 77 patients with carbapenem-resistant Enterobacteriaceae (CRE) infections at our center. Thirty- and 90-day survival rates were 81% and 69%, respectively; these rates were higher than those predicted by SAPS II and SOFA scores at the onset of infection. Clinical success was achieved for 55% of patients but differed by the site of infection. Success rates were lowest for pneumonia (36%) and higher for bacteremia (75%) and urinary tract infections (88%). By multivariate analysis, pneumonia (P = 0.045) and receipt of renal replacement therapy (RRT) (P = 0.046) were associated with clinical failure. Microbiologic failures occurred in 32% of patients and occurred more commonly among patients infected with KPC-3-producing CRE than among those infected with KPC-2-producing CRE (P = 0.002). Pneumonia was an independent predictor of microbiologic failure (P = 0.007). Ceftazidime-avibactam resistance emerged in 10% of patients, including 14% of those infected with Klebsiella pneumoniae and 32% of those with microbiologic failure. RRT was an independent predictor of the development of resistance (P = 0.009). Resistance was identified exclusively among K. pneumoniae bacteria harboring variant KPC-3 enzymes. Upon phylogenetic analysis of whole-genome sequences, resistant isolates from 87.5% (7/8) of patients clustered within a previously defined sequence type 258 (ST258) clade II sublineage; resistant isolates from one patient clustered independently from other ST258 clade II isolates. In conclusion, our report offers new insights into the utility and limitations of ceftazidime-avibactam across CRE infection types. Immediate priorities are to identify ceftazidime-avibactam dosing and therapeutic regimens that improve on the poor outcomes among patients with pneumonia and those receiving RRT.
Collapse
|
26
|
Shirley M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018; 78:675-692. [DOI: 10.1007/s40265-018-0902-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Kidd JM, Kuti JL, Nicolau DP. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria. Expert Opin Pharmacother 2018; 19:397-408. [DOI: 10.1080/14656566.2018.1438408] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- James M. Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Joseph L. Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
28
|
Falcone M, Viale P, Tiseo G, Pai M. Pharmacokinetic drug evaluation of avibactam + ceftazidime for the treatment of hospital-acquired pneumonia. Expert Opin Drug Metab Toxicol 2018; 14:331-340. [PMID: 29373935 DOI: 10.1080/17425255.2018.1434142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Ceftazidime-avibactam (CAZ-AVI) is a combination of a third-generation cephalosporin and a non-β-lactam, β-lactamase inhibitor, recently approved for urinary tract infections and complicated abdominal infections. Moreover, it represents a treatment option for patients with hospital acquired pneumonia (HAP), especially when caused by multidrug-resistant (MDR) bacteria. Areas covered: The review focuses on the pharmacokinetics (PK) of CAZ-AVI in HAP and on preclinical and clinical studies evaluating PK/pharmacodynamics (PD) in this field. Expert opinion: In vitro and in vivo data about PK/PD of CAZ-AVI confirm that penetration of CAZ-AVI in the epithelial lining fluid (ELF) represents approximately 30% of the plasma concentrations. Clinical studies documented that CAZ-AVI 2000 mg/500 mg every 8 h is the optimal dose regimen to achieve the PK/PD target attainment in patients with HAP. Thus, CAZ-AVI could represent an option both to treat HAP caused by Gram-negative bacilli (GNB) displaying resistance to most of the antibiotics and to reduce the use of carbapenems, limiting the onset of resistance profiles among GNB. Additional information about specific patients populations, such as critically-ill subjects or pediatric patients, are needed for a more individualized use of CAZ-AVI.
Collapse
Affiliation(s)
- Marco Falcone
- a Department of Public Health and Infectious Diseases , "Sapienza" University of Rome , Rome , Italy
| | - Pierluigi Viale
- b Infectious Diseases Unit, Department of Medical and Surgical Sciences , Hospital S. Orsola-Malpighi, University of Bologna , Bologna , Italy
| | - Giusy Tiseo
- c Department of Internal Medicine and Medical Specialties , "Sapienza" University of Rome , Rome , Italy
| | - Manjunath Pai
- d Albany College of Pharmacy and Health Sciences , University of Michigan , Albany , NY , USA
| |
Collapse
|
29
|
Tuon FF, Rocha JL, Formigoni-Pinto MR. Pharmacological aspects and spectrum of action of ceftazidime-avibactam: a systematic review. Infection 2017; 46:165-181. [PMID: 29110143 DOI: 10.1007/s15010-017-1096-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Ceftazidime-avibactam is an antimicrobial association active against several Enterobacteriaceae species, including those resistant to carbapenem. Considering the importance of this drug in the current panorama of multidrug-resistant bacteria, we performed a systematic review about ceftazidime-avibactam with emphasis on clinical and pharmacological published data. METHODS A systematic search of the medical literature was performed. The databases searched included MEDLINE, EMBASE and Web of Science (until September 2017). The search terms used were 'avibactam', 'NXL104' and 'AVE1330A'. Bibliographies from those studies were also reviewed. Ceftazidime was not included as a search term, once relevant studies about avibactam in association with other drugs could be excluded. Only articles in English were selected. No statistical analysis or quality validation was included in this review. RESULTS A total of 151 manuscripts were included. Ceftazidime-avibactam has limited action against anaerobic bacteria. Avibactam is a potent inhibitor of class A, class C, and some class D enzymes, which includes KPC-2. The best pharmacodynamic profile of ceftazidime-avibactam is ƒT > MIC, validated in an animal model of soft tissue infection. Three clinical trials showed the efficacy of ceftazidime-avibactam in patients with intra-abdominal and urinary infections. Ceftazidime-avibactam has been evaluated versus meropenem/doripenem in hospitalized adults with nosocomial pneumonia, neutropenic patients and pediatric patients. CONCLUSION Ceftazidime-avibactam has a favorable pharmacokinetic profile for severe infections and highly active against carbapenemases of KPC-2 type.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Department of Medicine, School of Health and Biosciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil. .,Hospital de Clínicas-Serviço de Infectologia, 3º. andar, Rua General Carneiro, 180-Alto da Glória, Curitiba, PR, 80060-900, Brazil.
| | - Jaime L Rocha
- Department of Medicine, School of Health and Biosciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | | |
Collapse
|
30
|
Sy SKB, Zhuang L, Beaudoin ME, Kircher P, Tabosa MAM, Cavalcanti NCT, Grunwitz C, Pieper S, Schuck VJ, Nichols WW, Derendorf H. Potentiation of ceftazidime by avibactam against β-lactam-resistant Pseudomonas aeruginosa in an in vitro infection model. J Antimicrob Chemother 2017; 72:1109-1117. [PMID: 28077672 DOI: 10.1093/jac/dkw535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022] Open
Abstract
Objectives This study evaluated the in vitro pharmacodynamics of combinations of ceftazidime and the non-β-lactam β-lactamase inhibitor, avibactam, against ceftazidime-, piperacillin/tazobactam- and meropenem-multiresistant Pseudomonas aeruginosa by a quantitative time-kill method. Methods MICs of ceftazidime plus 0-16 mg/L avibactam were determined against eight isolates of P. aeruginosa . Single-compartment, 24 h time-kill kinetics were investigated for three isolates at 0-16 mg/L avibactam with ceftazidime at 0.25-4-fold the MIC as measured at the respective avibactam concentration. Ceftazidime and avibactam concentrations were measured by LC-MS/MS during the time-kill kinetic studies to evaluate drug degradation. Results Avibactam alone displayed no antimicrobial activity. MICs of ceftazidime decreased by 8-16-fold in the presence of avibactam at 4 mg/L. The changes in log 10 cfu/mL at both the 10 h and 24 h timepoints (versus 0 h) revealed bacterial killing at ≥1-fold MIC. Significantly higher concentrations of ceftazidime alone, as compared with those of ceftazidime in combination, were required to produce any given kill. Without avibactam, ceftazidime degradation was significant (defined as degradation t 1/2 < 24 h), with as little as 19% ± 18% of the original concentration remaining at 8 h for the most resistant strain. In combination with avibactam, ceftazidime degradation at ≥ 1-fold MIC was negligible. Conclusion The addition of avibactam protected ceftazidime from degradation in a dose-dependent manner and restored its cidal and static activity at concentrations in combination well below the MIC of ceftazidime alone.
Collapse
Affiliation(s)
- Sherwin K B Sy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Luning Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Philipp Kircher
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Maria A M Tabosa
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Noely C T Cavalcanti
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christian Grunwitz
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Sebastian Pieper
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | | | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
31
|
Pharmacokinetic-Pharmacodynamic Target Attainment Analyses To Determine Optimal Dosing of Ceftazidime-Avibactam for the Treatment of Acute Pulmonary Exacerbations in Patients with Cystic Fibrosis. Antimicrob Agents Chemother 2017; 61:AAC.00988-17. [PMID: 28784670 DOI: 10.1128/aac.00988-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 11/20/2022] Open
Abstract
Acute pulmonary exacerbations (APE) involving Pseudomonas aeruginosa are associated with increased morbidity and mortality in cystic fibrosis (CF) patients. Drug resistance is a significant challenge to treatment. Ceftazidime-avibactam (CZA) demonstrates excellent in vitro activity against isolates recovered from CF patients, including drug-resistant strains. Altered pharmacokinetics (PK) of several beta-lactam antibiotics have been reported in CF patients. Therefore, this study sought to characterize the PK of CZA and perform target attainment analyses to determine the optimal treatment regimen. The PK of CZA in 12 adult CF patients administered 3 intravenous doses of 2.5 g every 8 h infused over 2 h were determined. Population modeling utilized the maximum likelihood expectation method. Monte Carlo simulations determined the probability of target attainment (PTA). An exposure target consisting of the cumulative percentage of a 24-h period that the free drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (fT>MIC) was evaluated for ceftazidime (CAZ), and an exposure target consisting of the cumulative percentage of a 24-h period that the free drug concentration exceeds a 1-mg/liter threshold concentration (fT>1 mg/liter) was evaluated for avibactam (AVI). Published CAZ and CZA MIC distributions were incorporated to evaluate cumulative response probabilities. CAZ and AVI were best described by one-compartment models. The values of total body clearance (CL; CAZ CL, 7.53 ± 1.28 liters/h; AVI CL, 12.30 ± 1.96 liters/h) and volume of distribution (V; CAZ V, 18.80 ± 6.54 liters; AVI V, 25.30 ± 4.43 liters) were broadly similar to published values for healthy adults. CZA achieved a PTA (fT>MIC, 50%) of >0.9 for MICs of ≤16 mg/liter. The overall likelihood of a treatment response was 0.82 for CZA, whereas it was 0.42 for CAZ. These data demonstrate improved pharmacodynamics of CZA in comparison with those of CAZ and provide guidance on the optimal dosing of CZA for future studies. (This study has been registered at ClinicalTrials.gov under registration no. NCT02504827.).
Collapse
|
32
|
Xipell M, Bodro M, Marco F, Losno RA, Cardozo C, Soriano A. Clinical experience with ceftazidime/avibactam in patients with severe infections, including meningitis and lung abscesses, caused by extensively drug-resistant Pseudomonas aeruginosa. Int J Antimicrob Agents 2017; 49:266-268. [DOI: 10.1016/j.ijantimicag.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 11/26/2022]
|
33
|
Gardiner BJ, Golan Y. Ceftazidime-avibactam (CTZ-AVI) as a treatment for hospitalized adult patients with complicated intra-abdominal infections. Expert Rev Anti Infect Ther 2016; 14:451-63. [PMID: 27042762 DOI: 10.1586/14787210.2016.1173542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Avibactam, a novel β-lactamase inhibitor, has recently been co-formulated with ceftazidime and approved for use in patients with complicated intra-abdominal and urinary tract infections, where no better treatment alternative exists. The basis for its FDA approval has been the extensive clinical experience with ceftazidime and the demonstration in vitro and in animal models that the addition of avibactam reverses resistance to ceftazidime in extended-spectrum β-lactamase and some carbapenemase-producing Enterobacteriaceae. Early clinical data are promising, with efficacy demonstrated in patients with complicated intra-abdominal and urinary tract infections. This review will summarize the in vitro, animal and clinical data available on this agent to date.
Collapse
Affiliation(s)
- Bradley J Gardiner
- a Division of Geographic Medicine and Infectious Diseases , Tufts Medical Center and Tufts University School of Medicine , Boston , MA , USA
| | - Yoav Golan
- a Division of Geographic Medicine and Infectious Diseases , Tufts Medical Center and Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The progressive increase of respiratory tract infections caused by multidrug-resistant organisms (MDROs) has been associated with delays in the prescription of an adequate antibiotic treatment and increased mortality, representing a major concern in both community and hospital settings. When infections because of methicillin-resistant Staphylococcus aureus (MRSA) are suspected, vancomycin still represents the first choice, although its efficacy has been recently questioned in favor of new drugs, reported to provide better clinical outcomes. Moreover, few therapeutic options are currently available for the treatment of severe infections caused by Multidrug-resistant (MDR) Gram-negative pathogens, which are frequently resistant to all the available β-lactams, including carbapenems. We have reviewed the therapeutic options for the treatment of respiratory tract infections that have recently become available with promising implications for clinical practice, including ceftaroline, ceftrobiprole, tedizolid, telavancin, delafloxacin, eravacycline, and new β-lactams/β-lactamase inhibitors. RECENT FINDINGS A number of new antimicrobials with activity against MDROs have been recently approved for the treatment of respiratory tract infections, and other agents are under investigation. Recent developments, with a specific focus on the possible advantages of new drugs for the management of respiratory tract infections caused by MDROs in everyday clinical practice are discussed. SUMMARY Newly approved and investigational drugs for the treatment of respiratory tract infections are expected to offer many advantages for the management of patients with suspected or confirmed infections caused by MDROs. Most promising features among new compounds include the broad spectrum of activity against both MRSA and MDR Gram-negative bacteria, a limited risk of antimicrobial resistance, the availability of oral formulations, and a promising safety profile.
Collapse
|
35
|
In Vitro Susceptibility of Global Surveillance Isolates of Pseudomonas aeruginosa to Ceftazidime-Avibactam (INFORM 2012 to 2014). Antimicrob Agents Chemother 2016; 60:4743-9. [PMID: 27216074 DOI: 10.1128/aac.00220-16] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
Broth microdilution antimicrobial susceptibility testing was performed for ceftazidime-avibactam and comparator agents against 7,062 clinical isolates of Pseudomonas aeruginosa collected from 2012 to 2014 in four geographic regions (Europe, Asia/South Pacific, Latin America, Middle East/Africa) as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance program. The majority of isolates were susceptible to ceftazidime-avibactam, with the proportions susceptible differing marginally across the four regions (MIC90, 8 to 16 μg/ml; 88.7 to 93.2% susceptible), in contrast to lower susceptibilities to the following comparator β-lactam agents: ceftazidime (MIC90, 32 to 64 μg/ml; 71.5 to 80.8% susceptible), meropenem (MIC90, >8 μg/ml; 64.9 to 77.4% susceptible), and piperacillin-tazobactam (MIC90, >128 μg/ml; 62.3 to 71.3% susceptible). Compared to the overall population, susceptibility to ceftazidime-avibactam of isolates that were nonsusceptible to ceftazidime (n = 1,627) was reduced to between 56.8% (Middle East/Africa; MIC90, 64 μg/ml) and 68.9% (Asia/South Pacific; MIC90, 128 μg/ml), but these percentages were higher than susceptibilities to other β-lactam agents (0 to 44% susceptible, depending on region and agent; meropenem MIC90, >8 μg/ml; 26.5 to 43.9% susceptible). For this subset of isolates, susceptibilities to amikacin (MIC90, >32 μg/ml; 53.2 to 80.0% susceptible) and colistin (MIC90, 1 μg/ml; 98.5 to 99.5% susceptible) were comparable to or higher than that of ceftazidime-avibactam. A similar observation was made with isolates that were nonsusceptible to meropenem (n = 1,926), with susceptibility to ceftazidime-avibactam between 67.8% (Middle East/Africa; MIC90, 64 μg/ml) and 74.2% (Europe; MIC90, 32 μg/ml) but again with reduced susceptibility to comparators except for amikacin (MIC90, >32 μg/ml; 56.8 to 78.7% susceptible) and colistin (MIC90, 1 μg/ml; 98.9 to 99.3% susceptible). Of the 8% of isolates not susceptible to ceftazidime-avibactam, the nonsusceptibility of half could be explained by their possession of genes encoding metallo-β-lactamases. The data reported here are consistent with results from other country-specific and regional surveillance studies and show that ceftazidime-avibactam demonstrates in vitro activity against globally collected clinical isolates of P. aeruginosa, including isolates that are resistant to ceftazidime and meropenem.
Collapse
|
36
|
Merdjan H, Rangaraju M, Tarral A. Safety and pharmacokinetics of single and multiple ascending doses of avibactam alone and in combination with ceftazidime in healthy male volunteers: results of two randomized, placebo-controlled studies. Clin Drug Investig 2016; 35:307-17. [PMID: 25813217 DOI: 10.1007/s40261-015-0283-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Avibactam is a novel non-β-lactam β-lactamase inhibitor effective against Ambler class A, C and some class D β-lactamases that is currently in clinical development in combination with ceftazidime for the treatment of serious Gram-negative infections. It restores the in vitro activity of a range of β-lactams, including ceftazidime, against extended-spectrum β-lactamase-producing pathogens. Two phase I studies assessed the safety and pharmacokinetics of avibactam in healthy subjects when administered alone or with ceftazidime. METHODS The first study (NXL104-1001) was a placebo-controlled, single-ascending dose study assessing avibactam 50, 100, 250, 500, 1000, 1500 or 2000 mg given as a 30-min intravenous infusion. After a 7-day washout, subjects in the 250 and 500 mg dosing groups received a second avibactam dose with concomitant ceftazidime 1000 or 2000 mg, respectively. The second study (NXL104-1002) was performed in two parts. Part 1 assessed multiple-ascending doses of avibactam. Subjects were randomized to receive avibactam 500, 750 or 1000 mg every 8 h (q8 h) over 5 days, or ceftazidime-avibactam 2000-500 mg q8 h over 10 days. Part 2 assessed bioavailability of avibactam after a single oral dose (500 mg) relative to a single 30-min intravenous infusion (500 mg). RESULTS No serious or severe adverse events were reported in either study. Avibactam exposure generally increased proportionally to dose and there was no trend for accumulation after multiple doses. Almost all avibactam was excreted largely unchanged in the urine within the first 6 h. Concomitant ceftazidime did not affect avibactam's safety and pharmacokinetic profile. Avibactam exposure after oral dosing was very low at 6.2 % of that observed after intravenous infusion. CONCLUSION Avibactam was generally well tolerated across all dosing regimens, when given alone or with ceftazidime. Avibactam exposure was dose related in both studies, and avibactam pharmacokinetics were linear and not affected by ceftazidime.
Collapse
Affiliation(s)
- Henri Merdjan
- Pharsight Consulting Services Europe, Regus Business Centre, 37-39 Avenue Ledru Rollin, CS11237, 75570, Paris Cedex 12, France,
| | | | | |
Collapse
|
37
|
Ramírez-Estrada S, Borgatta B, Rello J. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect Drug Resist 2016; 9:7-18. [PMID: 26855594 PMCID: PMC4725638 DOI: 10.2147/idr.s50669] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.
Collapse
Affiliation(s)
| | - Bárbara Borgatta
- Critical Care Department, Vall d’Hebron University Hospital, Barcelona, Spain
- CRIPS, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jordi Rello
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedad Respiratoria – CIBERES, Madrid, Spain
| |
Collapse
|
38
|
Berkhout J, Melchers MJ, van Mil AC, Seyedmousavi S, Lagarde CM, Schuck VJ, Nichols WW, Mouton JW. Pharmacodynamics of Ceftazidime and Avibactam in Neutropenic Mice with Thigh or Lung Infection. Antimicrob Agents Chemother 2016; 60:368-75. [PMID: 26525790 PMCID: PMC4704241 DOI: 10.1128/aac.01269-15] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/22/2015] [Indexed: 11/20/2022] Open
Abstract
Avibactam is a new non-β-lactam β-lactamase inhibitor that shows promising restoration of ceftazidime activity against microorganisms producing Ambler class A extended-spectrum β-lactamases (ESBLs) and carbapenemases such as KPCs, class C β-lactamases (AmpC), and some class D enzymes. To determine optimal dosing combinations of ceftazidime-avibactam for treating infections with ceftazidime-resistant Pseudomonas aeruginosa, pharmacodynamic responses were explored in murine neutropenic thigh and lung infection models. Exposure-response relationships for ceftazidime monotherapy were determined first. Subsequently, the efficacy of adding avibactam every 2 h (q2h) or q8h to a fixed q2h dose of ceftazidime was determined in lung infection for two strains. Dosing avibactam q2h was significantly more efficacious, reducing the avibactam daily dose for static effect by factors of 2.7 and 10.1, whereas the mean percentage of the dosing interval that free drug concentrations remain above the threshold concentration of 1 mg/liter (%fT>C(T) 1 mg/liter) yielding bacteriostasis was similar for both regimens, with mean values of 21.6 (q2h) and 18.5 (q8h). Dose fractionation studies of avibactam in both the thigh and lung models indicated that the effect of avibactam correlated well with %fT>C(T) 1 mg/liter. This parameter of avibactam was further explored for four P. aeruginosa strains in the lung model and six in the thigh model. Parameter estimates of %fT>C(T) 1 mg/liter for avibactam ranged from 0 to 21.4% in the lung model and from 14.1 to 62.5% in the thigh model to achieve stasis. In conclusion, addition of avibactam enhanced the effect of ceftazidime, which was more pronounced at frequent dosing and well related with %fT>C(T) 1 mg/liter. The thigh model appeared more stringent, with higher values, ranging up to 62.5% fT>C(T) 1 mg/liter, required for a static effect.
Collapse
Affiliation(s)
- Johanna Berkhout
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Maria J Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anita C van Mil
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Claudia M Lagarde
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Virna J Schuck
- AstraZeneca Pharmaceuticals, Waltham, Massachusetts, USA
| | | | - Johan W Mouton
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Sy SKB, Zhuang L, Derendorf H. Pharmacokinetics and pharmacodynamics in antibiotic dose optimization. Expert Opin Drug Metab Toxicol 2015; 12:93-114. [DOI: 10.1517/17425255.2016.1123250] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Sader HS, Castanheira M, Farrell DJ, Flamm RK, Jones RN. Ceftazidime-avibactam activity when tested against ceftazidime-nonsusceptible Citrobacter spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa from Unites States medical centers (2011–2014). Diagn Microbiol Infect Dis 2015; 83:389-94. [DOI: 10.1016/j.diagmicrobio.2015.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
|
41
|
Bush K. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents 2015; 46:483-93. [DOI: 10.1016/j.ijantimicag.2015.08.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
|
42
|
Mawal Y, Critchley IA, Riccobene TA, Talley AK. Ceftazidime-avibactam for the treatment of complicated urinary tract infections and complicated intra-abdominal infections. Expert Rev Clin Pharmacol 2015; 8:691-707. [PMID: 26420166 DOI: 10.1586/17512433.2015.1090874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Treatment of complicated urinary tract infections and complicated intra-abdominal infections is increasingly difficult due to the rising prevalence of multidrug-resistant Gram-negative bacteria. Ceftazidime-avibactam is a combination of the established third-generation cephalosporin ceftazidime with avibactam, a novel non-β-lactam β-lactamase inhibitor, which restores the activity of ceftazidime against many β-lactamase-producing Gram-negative bacteria, including extended-spectrum β-lactamases and Klebsiella pneumoniae carbapenemases. Clinical and nonclinical studies supporting the safety and efficacy of ceftazidime-avibactam include microbiological surveillance studies of clinically relevant pathogens, in vivo animal models of infection, pharmacokinetic/pharmacodynamic target attainment analyses, Phase I clinical pharmacology studies, and Phase II/III studies in the treatment of complicated intra-abdominal infections and complicated urinary tract infections, including patients with ceftazidime-nonsusceptible Gram-negative infections.
Collapse
Affiliation(s)
- Yogesh Mawal
- a 1 Forest Laboratories, Inc., a subsidiary of Allergan plc (formerly Actavis plc) , New Jersey, USA
| | | | | | | |
Collapse
|
43
|
Nicolau DP. Focus on ceftazidime-avibactam for optimizing outcomes in complicated intra-abdominal and urinary tract infections. Expert Opin Investig Drugs 2015; 24:1261-73. [PMID: 26145447 DOI: 10.1517/13543784.2015.1062873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Complicated intra-abdominal infections and urinary tract infections are frequently associated with Gram-negative bacteria and treatment can be hampered by the involvement of resistant organisms. A common resistance mechanism is β-lactamase production which confers resistance to β-lactam antibiotics. AREAS COVERED This article summarizes β-lactamases found among Gram-negative bacteria as well as providing an overview of complicated intra-abdominal infections and urinary tract infections and the impact inappropriate antibiotic therapy and antibiotic resistance has in their treatment. The author reviews the activity of ceftazidime-avibactam , including animal model data and microbiological data from Phase II clinical trials. This article also highlights Phase III clinical trials of ceftazidime-avibactam that are ongoing or completed and briefly discusses other β-lactamase inhibitor combinations currently in development. EXPERT OPINION The increasing problem and complexity of β-lactamase resistance has been met by resurgence in the development of β-lactamase inhibitor combinations. These show promise in the treatment of resistant infections. One β-lactamase inhibitor in advanced development with a broad spectrum of activity is avibactam, covering class A, class C and some class D enzymes. Importantly, the activity of avibactam also includes carbapenemases such as the KPC and OXA-48. The combination of avibactam with the cephalosporin ceftazidime is attractive, given the spectrum of antimicrobial activity and the low toxicity of the cephalosporin class.
Collapse
Affiliation(s)
- David P Nicolau
- Center for Anti-Infective Research and Development Hartford Hospital , 80 Seymour Street, Hartford, CT 06102-5037 , USA +1 860 972 3941 ; +1 860 545 3992 ;
| |
Collapse
|
44
|
Nicolau DP, Siew L, Armstrong J, Li J, Edeki T, Learoyd M, Das S. Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens. J Antimicrob Chemother 2015; 70:2862-9. [PMID: 26133566 DOI: 10.1093/jac/dkv170] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/29/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The aim of this Phase 1, open-label study (NCT01395420) was to measure and compare concentrations of ceftazidime and avibactam in bronchial epithelial lining fluid (ELF) and plasma, following administration of two different dosing regimens in healthy subjects. PATIENTS AND METHODS Healthy volunteers received 2000 mg of ceftazidime + 500 mg of avibactam (n = 22) or 3000 mg of ceftazidime + 1000 mg of avibactam (n = 21), administered intravenously every 8 h for 3 days (total of nine doses). Bronchoscopy with bronchoalveolar lavage was performed once per subject, 2, 4, 6 or 8 h after the last infusion. Pharmacokinetic parameters were estimated from individual plasma concentrations and the composite ELF concentration-time profile. Safety was assessed. RESULTS Forty-three subjects received treatment (2000 mg of ceftazidime + 500 mg of avibactam, n = 22; 3000 mg of ceftazidime + 1000 mg of avibactam, n = 21). Plasma and ELF concentrations increased dose-proportionally for both drugs, with 1.5- and 2-fold increases in AUCτ, for respective components. Ceftazidime Cmax and AUCτ in ELF were ∼ 23%-26% and 31%-32% of plasma exposure. Avibactam Cmax and AUCτ in ELF were ∼ 28%-35% and 32%-35% of plasma exposure. ELF and plasma elimination were similar for both drugs. No serious adverse events were observed. CONCLUSIONS Both ceftazidime and avibactam penetrated dose-proportionally into ELF, with ELF exposure to both drugs ∼ 30% of plasma exposure.
Collapse
Affiliation(s)
- David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | | | | | - James Li
- AstraZeneca, Wilmington, DE, USA
| | | | | | | |
Collapse
|
45
|
Pharmacokinetics and penetration of ceftazidime and avibactam into epithelial lining fluid in thigh- and lung-infected mice. Antimicrob Agents Chemother 2015; 59:2299-304. [PMID: 25645843 DOI: 10.1128/aac.04627-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftazidime and the β-lactamase inhibitor avibactam constitute a new, potentially highly active combination in the battle against extended-spectrum-β-lactamase (ESBL)-producing bacteria. To determine possible clinical use, it is important to know the pharmacokinetic profiles of the compounds related to each other in plasma and the different compartments of infection in experimentally infected animals and in humans. We used a neutropenic murine thigh infection model and lung infection model to study pharmacokinetics in plasma and epithelial lining fluid (ELF). Mice were infected with ca. 10(6) CFU of Pseudomonas aeruginosa intramuscularly into the thigh or intranasally to cause pneumonia and were given 8 different (single) subcutaneous doses of ceftazidime and avibactam in various combined concentrations, ranging from 1 to 128 mg/kg of body weight in 2-fold increases. Concomitant samples of serum and bronchoalveolar lavage fluid were taken at up to 12 time points until 6 h after administration. Pharmacokinetics of both compounds were linear and dose proportional in plasma and ELF and were independent of the infection type, with estimated half-lives (standard deviations [SD]) in plasma of ceftazidime of 0.28 (0.02) h and of avibactam of 0.24 (0.04) h and volumes of distribution of 0.80 (0.14) and 1.18 (0.34) liters/kg. The ELF-plasma (area under the concentration-time curve [AUC]) ratios (standard errors [SE]) were 0.24 (0.03) for total ceftazidime and 0.27 (0.03) for unbound ceftazidime; for avibactam, the ratios were 0.20 (0.02) and 0.22 (0.02), respectively. No pharmacokinetic interaction between ceftazidime and avibactam was observed. Ceftazidime and avibactam showed linear plasma pharmacokinetics that were independent of the dose combinations used or the infection site in mice. Assuming pharmacokinetic similarity in humans, this indicates that similar dose ratios of ceftazidime and avibactam could be used for different types and sites of infection.
Collapse
|
46
|
Lahiri SD, Walkup GK, Whiteaker JD, Palmer T, McCormack K, Tanudra MA, Nash TJ, Thresher J, Johnstone MR, Hajec L, Livchak S, McLaughlin RE, Alm RA. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC. J Antimicrob Chemother 2015; 70:1650-8. [PMID: 25645206 DOI: 10.1093/jac/dkv004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/28/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is an important nosocomial pathogen that can cause a wide range of infections resulting in significant morbidity and mortality. Avibactam, a novel non-β-lactam β-lactamase inhibitor, is being developed in combination with ceftazidime and has the potential to be a valuable addition to the treatment options for the infectious diseases practitioner. We compared the frequency of resistance development to ceftazidime/avibactam in three P. aeruginosa strains that carried derepressed ampC alleles. METHODS The strains were incubated in the presence of increasing concentrations of ceftazidime with a fixed concentration (4 mg/L) of avibactam to calculate the frequency of spontaneous resistance. The mutants were characterized by WGS to identify the underlying mechanism of resistance. A representative mutant protein was characterized biochemically. RESULTS The resistance frequency was very low in all strains. The resistant variants isolated exhibited ceftazidime/avibactam MIC values that ranged from 64 to 256 mg/L. All of the mutants exhibited changes in the chromosomal ampC gene, the majority of which were deletions of various sizes in the Ω-loop region of AmpC. The mutant enzyme that carried the smallest Ω-loop deletion, which formed a part of the avibactam-binding pocket, was characterized biochemically and found to be less effectively inhibited by avibactam as well as exhibiting increased hydrolysis of ceftazidime. CONCLUSIONS The development of high-level resistance to ceftazidime/avibactam appears to occur at low frequency, but structural modifications in AmpC can occur that impact the ability of avibactam to inhibit the enzyme and thereby protect ceftazidime from hydrolysis.
Collapse
Affiliation(s)
- Sushmita D Lahiri
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Grant K Walkup
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - James D Whiteaker
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Tiffany Palmer
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Kathy McCormack
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - M Angela Tanudra
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Tory J Nash
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Jason Thresher
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Michele R Johnstone
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Laurie Hajec
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Stephania Livchak
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Robert E McLaughlin
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Richard A Alm
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| |
Collapse
|
47
|
Winkler ML, Papp-Wallace KM, Hujer AM, Domitrovic TN, Hujer KM, Hurless KN, Tuohy M, Hall G, Bonomo RA. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 59:1020-9. [PMID: 25451057 PMCID: PMC4335889 DOI: 10.1128/aac.04238-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/22/2014] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa is a notoriously difficult-to-treat pathogen that is a common cause of severe nosocomial infections. Investigating a collection of β-lactam-resistant P. aeruginosa clinical isolates from a decade ago, we uncovered resistance to ceftazidime-avibactam, a novel β-lactam/β-lactamase inhibitor combination. The isolates were systematically analyzed through a variety of genetic, biochemical, genomic, and microbiological methods to understand how resistance manifests to a unique drug combination that is not yet clinically released. We discovered that avibactam was able to inactivate different AmpC β-lactamase enzymes and that blaPDC regulatory elements and penicillin-binding protein differences did not contribute in a major way to resistance. By using carefully selected combinations of antimicrobial agents, we deduced that the greatest barrier to ceftazidime-avibactam is membrane permeability and drug efflux. To overcome the constellation of resistance determinants, we show that a combination of antimicrobial agents (ceftazidime/avibactam/fosfomycin) targeting multiple cell wall synthetic pathways can restore susceptibility. In P. aeruginosa, efflux, as a general mechanism of resistance, may pose the greatest challenge to future antibiotic development. Our unexpected findings create concern that even the development of antimicrobial agents targeted for the treatment of multidrug-resistant bacteria may encounter clinically important resistance. Antibiotic therapy in the future must consider these factors.
Collapse
Affiliation(s)
- Marisa L Winkler
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Krisztina M Papp-Wallace
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrea M Hujer
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - T Nicholas Domitrovic
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Kristine M Hujer
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kelly N Hurless
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Marion Tuohy
- Department of Clinical Pathology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Geraldine Hall
- Department of Clinical Pathology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Robert A Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
48
|
Keepers TR, Gomez M, Celeri C, Nichols WW, Krause KM. Bactericidal activity, absence of serum effect, and time-kill kinetics of ceftazidime-avibactam against β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58:5297-305. [PMID: 24957838 PMCID: PMC4135815 DOI: 10.1128/aac.02894-14] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/17/2014] [Indexed: 01/31/2023] Open
Abstract
Avibactam, a non-β-lactam β-lactamase inhibitor with activity against extended-spectrum β-lactamases (ESBLs), KPC, AmpC, and some OXA enzymes, extends the antibacterial activity of ceftazidime against most ceftazidime-resistant organisms producing these enzymes. In this study, the bactericidal activity of ceftazidime-avibactam against 18 Pseudomonas aeruginosa isolates and 15 Enterobacteriaceae isolates, including wild-type isolates and ESBL, KPC, and/or AmpC producers, was evaluated. Ceftazidime-avibactam MICs (0.016 to 32 μg/ml) were lower than those for ceftazidime alone (0.06 to ≥256 μg/ml) against all isolates except for 2 P. aeruginosa isolates (1 blaVIM-positive isolate and 1 blaOXA-23-positive isolate). The minimum bactericidal concentration/MIC ratios of ceftazidime-avibactam were ≤4 for all isolates, indicating bactericidal activity. Human serum and human serum albumin had a minimal effect on ceftazidime-avibactam MICs. Ceftazidime-avibactam time-kill kinetics were evaluated at low MIC multiples and showed time-dependent reductions in the number of CFU/ml from 0 to 6 h for all strains tested. A ≥3-log10 decrease in the number of CFU/ml was observed at 6 h for all Enterobacteriaceae, and a 2-log10 reduction in the number of CFU/ml was observed at 6 h for 3 of the 6 P. aeruginosa isolates. Regrowth was noted at 24 h for some of the isolates tested in time-kill assays. These data demonstrate the potent bactericidal activity of ceftazidime-avibactam and support the continued clinical development of ceftazidime-avibactam as a new treatment option for infections caused by Enterobacteriaceae and P. aeruginosa, including isolates resistant to ceftazidime by mechanisms dependent on avibactam-sensitive β-lactamases.
Collapse
|
49
|
Reclaiming the efficacy of β-lactam-β-lactamase inhibitor combinations: avibactam restores the susceptibility of CMY-2-producing Escherichia coli to ceftazidime. Antimicrob Agents Chemother 2014; 58:4290-7. [PMID: 24820081 DOI: 10.1128/aac.02625-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CMY-2 is a plasmid-encoded Ambler class C cephalosporinase that is widely disseminated in Enterobacteriaceae and is responsible for expanded-spectrum cephalosporin resistance. As a result of resistance to both ceftazidime and β-lactamase inhibitors in strains carrying blaCMY, novel β-lactam-β-lactamase inhibitor combinations are sought to combat this significant threat to β-lactam therapy. Avibactam is a bridged diazabicyclo [3.2.1]octanone non-β-lactam β-lactamase inhibitor in clinical development that reversibly inactivates serine β-lactamases. To define the spectrum of activity of ceftazidime-avibactam, we tested the susceptibilities of Escherichia coli clinical isolates that carry bla(CMY-2) or bla(CMY-69) and investigated the inactivation kinetics of CMY-2. Our analysis showed that CMY-2-containing clinical isolates of E. coli were highly susceptible to ceftazidime-avibactam (MIC(90), ≤ 0.5 mg/liter); in comparison, ceftazidime had a MIC90 of >128 mg/liter. More importantly, avibactam was an extremely potent inhibitor of CMY-2 β-lactamase, as demonstrated by a second-order onset of acylation rate constant (k2/K) of (4.9 ± 0.5) × 10(4) M(-1) s(-1) and the off-rate constant (k(off)) of (3.7 ± 0.4) × 10(-4) s(-1). Analysis of the reaction of avibactam with CMY-2 using mass spectrometry to capture reaction intermediates revealed that the CMY-2-avibactam acyl-enzyme complex was stable for as long as 24 h. Molecular modeling studies raise the hypothesis that a series of successive hydrogen-bonding interactions occur as avibactam proceeds through the reaction coordinate with CMY-2 (e.g., T316, G317, S318, T319, S343, N346, and R349). Our findings support the microbiological and biochemical efficacy of ceftazidime-avibactam against E. coli containing plasmid-borne CMY-2 and CMY-69.
Collapse
|