1
|
Honorato L, Artunduaga Bonilla JJ, Ribeiro da Silva L, Kornetz J, Zamith-Miranda D, Valdez AF, Nosanchuk JD, Gonçalves Paterson Fox E, Nimrichter L. Alkaloids solenopsins from fire ants display in vitro and in vivo activity against the yeast Candida auris. Virulence 2024; 15:2413329. [PMID: 39370781 PMCID: PMC11469440 DOI: 10.1080/21505594.2024.2413329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 10/08/2024] Open
Abstract
The urgency surrounding Candida auris as a public health threat is highlighted by both the Center for Disease Control (CDC) and World Health Organization (WHO) that categorized this species as a priority fungal pathogen. Given the current limitations of antifungal therapy for C. auris, particularly due to its multiple resistance to the current antifungals, the identification of new drugs is of paramount importance. Some alkaloids abundant in the venom of the red invasive fire ant (Solenopsis invicta), known as solenopsins, have garnered attention as potent inhibitors of bacterial biofilms, and there are no studies demonstrating such effects against fungal pathogens. Thus, we herein investigated the antibiotic efficacy of solenopsin alkaloids against C. auris biofilms and planktonic cells. Both natural and synthetic solenopsins inhibited the growth of C. auris strains from different clades, including fluconazole and amphotericin B-resistant isolates. Such alkaloids also inhibited matrix deposition and altered cellular metabolic activity of C. auris in biofilm conditions. Mechanistically, the alkaloids compromised membrane integrity as measured by propidium iodide uptake in exposed planktonic cells. Additionally, combining the alkaloids with AMB yielded an additive antifungal effect, even against AMB-resistant strains. Finally, both extracted solenopsins and the synthetic analogues demonstrated protective effect in vivo against C. auris infection in the invertebrate model Galleria mellonella. These findings underscore the potent antifungal activities of solenopsins against C. auris and suggest their inclusion in future drug development. Furthermore, exploring derivatives of solenopsins could reveal novel compounds with therapeutic promise.
Collapse
Affiliation(s)
- Leandro Honorato
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Jhon Jhamilton Artunduaga Bonilla
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Larissa Ribeiro da Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Julio Kornetz
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alessandro F. Valdez
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Rhodes J, Jacobs J, Dennis EK, Manjari SR, Banavali NK, Marlow R, Rokebul MA, Chaturvedi S, Chaturvedi V. What makes Candida auris pan-drug resistant? Integrative insights from genomic, transcriptomic, and phenomic analysis of clinical strains resistant to all four major classes of antifungal drugs. Antimicrob Agents Chemother 2024; 68:e0091124. [PMID: 39297640 PMCID: PMC11459930 DOI: 10.1128/aac.00911-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
The global epidemic of drug-resistant Candida auris continues unabated. The initial report on pan-drug resistant (PDR) C. auris strains in a hospitalized patient in New York was unprecedented. PDR C. auris showed both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine. However, the factors that allow C. auris to acquire pan-drug resistance are not known. Therefore, we conducted a genomic, transcriptomic, and phenomic analysis to better understand PDR C. auris. Among 1,570 genetic variants in drug-resistant C. auris, 299 were unique to PDR strains. The whole-genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR C. auris revealed two genes to be significantly differentially expressed-a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 transcripts had no known homology. We observed no fitness defects among multi-drug resistant (MDR) and PDR C. auris strains grown in nutrient-deficient or -enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients and increased utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modeling of a 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in C. auris to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR C. auris in response to antifungal drug lethality without deleterious fitness costs.
Collapse
Affiliation(s)
- Johanna Rhodes
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
- MRC GIDA, Imperial College London, London, United Kingdom
| | - Jonathan Jacobs
- American Type Culture Collection, University Blvd, Manassas, Virginia, USA
| | - Emily K. Dennis
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Swati R. Manjari
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nilesh K. Banavali
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- School of Public Health, University of Albany, Albany, New York, USA
| | - Robert Marlow
- American Type Culture Collection, University Blvd, Manassas, Virginia, USA
| | | | - Sudha Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- School of Public Health, University of Albany, Albany, New York, USA
| | - Vishnu Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Westchester Medical Center/New York Medical College, Valhalla, New York, USA
| |
Collapse
|
3
|
García-Patiño MG, Marcial-Medina MC, Ruiz-Medina BE, Licona-Limón P. IL-17 in skin infections and homeostasis. Clin Immunol 2024; 267:110352. [PMID: 39218195 DOI: 10.1016/j.clim.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Interleukin (IL) 17 is a proinflammatory cytokine belonging to a structurally related group of cytokines known as the IL-17 family. It has been profoundly studied for its contribution to the pathology of autoimmune diseases. However, it also plays an important role in homeostasis and the defense against extracellular bacteria and fungi. IL-17 is important for epithelial barriers, including the skin, where some of its cellular targets reside. Most of the research work on IL-17 has focused on its effects in the skin within the context of autoimmune diseases or sterile inflammation, despite also having impact on other skin conditions. In recent years, studies on the role of IL-17 in the defense against skin pathogens and in the maintenance of skin homeostasis mediated by the microbiota have grown in importance. Here we review and discuss the cumulative evidence regarding the main contribution of IL-17 in the maintenance of skin integrity as well as its protective or pathogenic effects during some skin infections.
Collapse
Affiliation(s)
- M G García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M C Marcial-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - B E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - P Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
4
|
Suphavilai C, Ko KKK, Lim KM, Tan MG, Boonsimma P, Chu JJK, Goh SS, Rajandran P, Lee LC, Tan KY, Shaik Ismail BB, Aung MK, Yang Y, Sim JXY, Venkatachalam I, Cherng BPZ, Spruijtenburg B, Chan KS, Oon LLE, Tan AL, Tan YE, Wijaya L, Tan BH, Ling ML, Koh TH, Meis JF, Tsui CKM, Nagarajan N. Detection and characterisation of a sixth Candida auris clade in Singapore: a genomic and phenotypic study. THE LANCET. MICROBE 2024; 5:100878. [PMID: 39008997 DOI: 10.1016/s2666-5247(24)00101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND The emerging fungal pathogen Candida auris poses a serious threat to global public health due to its worldwide distribution, multidrug resistance, high transmissibility, propensity to cause outbreaks, and high mortality. We aimed to characterise three unusual C auris isolates detected in Singapore, and to determine whether they constitute a novel clade distinct from all previously known C auris clades (I-V). METHODS In this genotypic and phenotypic study, we characterised three C auris clinical isolates, which were cultured from epidemiologically unlinked inpatients at a large tertiary hospital in Singapore. The index isolate was detected in April, 2023. We performed whole-genome sequencing (WGS) and obtained hybrid assemblies of these C auris isolates. The complete genomes were compared with representative genomes of all known C auris clades. To provide a global context, 3651 international WGS data from the National Center for Biotechnology Information (NCBI) database were included in a high-resolution single nucleotide polymorphism (SNP) analysis. Antifungal susceptibility testing was done and antifungal resistance genes, mating-type locus, and chromosomal rearrangements were characterised from the WGS data of the three investigated isolates. We further implemented Bayesian logistic regression models to classify isolates into known clades and simulate the automatic detection of isolates belonging to novel clades as their WGS data became available. FINDINGS The three investigated isolates were separated by at least 37 000 SNPs (range 37 000-236 900) from all existing C auris clades. These isolates had opposite mating-type allele and different chromosomal rearrangements when compared with their closest clade IV relatives. The isolates were susceptible to all tested antifungals. Therefore, we propose that these isolates represent a new clade of C auris, clade VI. Furthermore, an independent WGS dataset from Bangladesh, accessed via the NCBI Sequence Read Archive, was found to belong to this new clade. As a proof-of-concept, our Bayesian logistic regression model was able to flag these outlier genomes as a potential new clade. INTERPRETATION The discovery of a new C auris clade in Singapore and Bangladesh in the Indomalayan zone, showing a close relationship to clade IV members most commonly found in South America, highlights the unknown genetic diversity and origin of C auris, particularly in under-resourced regions. Active surveillance in clinical settings, along with effective sequencing strategies and downstream analysis, will be essential in the identification of novel strains, tracking of transmission, and containment of adverse clinical effects of C auris infections. FUNDING Duke-NUS Academic Medical Center Nurturing Clinician Researcher Scheme, and the Genedant-GIS Innovation Program.
Collapse
Affiliation(s)
- Chayaporn Suphavilai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Karrie Kwan Ki Ko
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Kar Mun Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Mei Gie Tan
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Patipan Boonsimma
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Joash Jun Keat Chu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Sui Sin Goh
- Department of Microbiology, Singapore General Hospital, Singapore
| | | | - Lai Chee Lee
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Kwee Yuen Tan
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | | | - May Kyawt Aung
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Yong Yang
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Jean Xiang Ying Sim
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Indumathi Venkatachalam
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Benjamin Pei Zhi Cherng
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands; Center of Expertise in Mycology of Radboud University Medical Center, Nijmegen, Netherlands
| | - Kian Sing Chan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Lynette Lin Ean Oon
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Ai Ling Tan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Yen Ee Tan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Limin Wijaya
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Moi Lin Ling
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands; Center of Expertise in Mycology of Radboud University Medical Center, Nijmegen, Netherlands; Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Clement Kin Ming Tsui
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Zhai B, Liao C, Jaggavarapu S, Tang Y, Rolling T, Ning Y, Sun T, Bergin SA, Gjonbalaj M, Miranda E, Babady NE, Bader O, Taur Y, Butler G, Zhang L, Xavier JB, Weiss DS, Hohl TM. Antifungal heteroresistance causes prophylaxis failure and facilitates breakthrough Candida parapsilosis infections. Nat Med 2024:10.1038/s41591-024-03183-4. [PMID: 39095599 DOI: 10.1038/s41591-024-03183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Breakthrough fungal infections in patients on antimicrobial prophylaxis during allogeneic hematopoietic cell transplantation (allo-HCT) represent a major and often unexplained cause of morbidity and mortality. Candida parapsilosis is a common cause of invasive candidiasis and has been classified as a high-priority fungal pathogen by the World Health Organization. In high-risk allo-HCT recipients on micafungin prophylaxis, we show that heteroresistance (the presence of a phenotypically unstable, low-frequency subpopulation of resistant cells (~1 in 10,000)) underlies breakthrough bloodstream infections by C. parapsilosis. By analyzing 219 clinical isolates from North America, Europe and Asia, we demonstrate widespread micafungin heteroresistance in C. parapsilosis. Standard antimicrobial susceptibility tests, such as broth microdilution or gradient diffusion assays, which guide drug selection for invasive infections, fail to detect micafungin heteroresistance in C. parapsilosis. To facilitate rapid detection of micafungin heteroresistance in C. parapsilosis, we constructed a predictive machine learning framework that classifies isolates as heteroresistant or susceptible using a maximum of ten genomic features. These results connect heteroresistance to unexplained antifungal prophylaxis failure in allo-HCT recipients and demonstrate a proof-of-principle diagnostic approach with the potential to guide clinical decisions and improve patient care.
Collapse
Affiliation(s)
- Bing Zhai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Chen Liao
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Siddharth Jaggavarapu
- Emory Antibiotic Resistance Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuanyuan Tang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Thierry Rolling
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yating Ning
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Clinical Biobank, Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sean A Bergin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Mergim Gjonbalaj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edwin Miranda
- Clinical Microbiology Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N Esther Babady
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Microbiology Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oliver Bader
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Ying Taur
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Joao B Xavier
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S Weiss
- Emory Antibiotic Resistance Center, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.
- Emory Vaccine Center, Atlanta, GA, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Chalin A, Arvor A, Hervault AS, Plaisance M, Niol L, Simon S, Volland H. A lateral flow immunoassay for the rapid identification of Candida auris from isolates or directly from surveillance enrichment broths. Front Microbiol 2024; 15:1439273. [PMID: 39021636 PMCID: PMC11252032 DOI: 10.3389/fmicb.2024.1439273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Candida auris is a recently discovered yeast with a multi-drug resistant profile associated with high mortality rates. The rapid identification of Candida auris in hospital settings is crucial to allow appropriate therapeutic and rapid implementation of infection management measures. The aim of this study was to develop a lateral flow immunoassay (LFIA) for the rapid identification of Candida auris. Methods Highly specific monoclonal antibodies were obtained by immunizing mice with membrane proteins from Candida auris which were then used to develop a LFIA whose performance was assessed by testing 12 strains of Candida auris and 37 strains of other Candida species. Isolates were grown on either Sabouraud dextrose, CHROMagarTM Candida Plus or HardyCHROMTM Candida + auris agar plates. The strains were also cultured on salt sabouraud-dextrose with chloramphenicol or a commercially available Salt-Sabouraud Dulcitol Broth with chloramphenicol and gentamicin, and processed using a simple centrifugation protocol to recover a pellet. Finally, the colonies or yeast extract were transferred to the LFIA to determine the specificity and sensitivity of the assay. Results The LFIA reached 100% specificity and sensitivity from solid agar plates. For both enrichment broths, some Candida non-auris species were able to grow, but the LFIA remained 100% specific. The use of a dextrose-based sabouraud broth resulted in earlier identification with the LFIA, with most of the Candida auris strains detected at 24 h. Conclusion The developed LFIA prototype represents a powerful tool to fight the emerging threat of Candida auris. Clinical validation represents the next step.
Collapse
Affiliation(s)
- Arnaud Chalin
- NG Biotech – Research and Development Department, Guipry-Messac, France
| | - Antoine Arvor
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Médicaments et Technologies pour la Santé (MTS), Service de Pharmacologie et d'Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse (LERI), Gif-sur-Yvette, France
| | | | - Marc Plaisance
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Médicaments et Technologies pour la Santé (MTS), Service de Pharmacologie et d'Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse (LERI), Gif-sur-Yvette, France
| | - Léa Niol
- NG Biotech – Research and Development Department, Guipry-Messac, France
| | - Stéphanie Simon
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Médicaments et Technologies pour la Santé (MTS), Service de Pharmacologie et d'Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse (LERI), Gif-sur-Yvette, France
| | - Hervé Volland
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Médicaments et Technologies pour la Santé (MTS), Service de Pharmacologie et d'Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse (LERI), Gif-sur-Yvette, France
| |
Collapse
|
7
|
Rhodes J, Jacobs J, Dennis EK, Manjari SR, Banavali N, Marlow R, Rokebul MA, Chaturvedi S, Chaturvedi V. What makes Candida auris pan-drug resistant? Integrative insights from genomic, transcriptomic, and phenomic analysis of clinical strains resistant to all four major classes of antifungal drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599548. [PMID: 38948750 PMCID: PMC11212996 DOI: 10.1101/2024.06.18.599548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The global epidemic of drug-resistant Candida auris continues unabated. We do not know what caused the unprecedented appearance of pan-drug resistant (PDR) Candida auris strains in a hospitalized patient in New York; the initial report highlighted both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine antifungal drugs. However, the factors that allow C. auris to acquire multi-drug resistance and pan-drug resistance are not known. Therefore, we conducted a comprehensive genomic, transcriptomic, and phenomic analysis to better understand PDR C. auris . Among 1,570 genetic variants in drug-resistant C. auris , 299 were unique to PDR strains. The whole genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR C. auris revealed two genes to be significantly differentially expressed - a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 candidate transcripts had no known homology among expressed transcripts found in other organisms. We observed no fitness defects among multi-drug resistant (MDR) and PDR C. auris strains grown in nutrient-deficient or - enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients with an uptick in the utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modelling of 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in C. auris to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR C. auris in response to antifungal drug lethality without deleterious fitness costs.
Collapse
|
8
|
Kerai A, Doshi S, Laleker A, Majumdar A. Fungal Foe and Mechanical Hearts: A Retrospective Case Series on Candida auris Bloodstream Infection With Left Ventricular Assist Devices. Open Forum Infect Dis 2024; 11:ofae286. [PMID: 38868314 PMCID: PMC11167671 DOI: 10.1093/ofid/ofae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
No guidelines currently exist for the management of Candida auris bloodstream infection in patients with left ventricular assist devices (LVADs). We aim to share our management experience through this retrospective case series outlining 15 episodes of C auris candidemia identified in 7 patients over 18 months. The initial source of candidemia was central venous catheter in 5 patients, driveline exit site infection in 1 patient, and possible pump infection in 1 patient. All patients were initially treated with micafungin. Despite susceptibility to micafungin, 4 patients experienced recurrent C auris candidemia. All patients died within 1 year of their first episode of C auris candidemia. Source control is challenging in patients with LVADs, and strict infection prevention measures should be practiced. More studies are needed to evaluate the role of newer antifungal agents, use of combination antifungal regimens, and impact on morbidity in patients with LVADs.
Collapse
Affiliation(s)
- Ajay Kerai
- Department of Internal Medicine and Department of Infectious Disease, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Saumil Doshi
- Department of Internal Medicine and Department of Infectious Disease, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Ashley Laleker
- Department of Internal Medicine and Department of Infectious Disease, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Anjali Majumdar
- Division of Allergy and Infectious Disease, Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
9
|
Lass-Flörl C, Kanj SS, Govender NP, Thompson GR, Ostrosky-Zeichner L, Govrins MA. Invasive candidiasis. Nat Rev Dis Primers 2024; 10:20. [PMID: 38514673 DOI: 10.1038/s41572-024-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Invasive candidiasis is an important fungal disease caused by Candida albicans and, increasingly, non-albicans Candida pathogens. Invasive Candida infections originate most frequently from endogenous human reservoirs and are triggered by impaired host defences. Signs and symptoms of invasive candidiasis are non-specific; candidaemia is the most diagnosed manifestation, with disseminated candidiasis affecting single or multiple organs. Diagnosis poses many challenges, and conventional culture techniques are frequently supplemented by non-culture-based assays. The attributable mortality from candidaemia and disseminated infections is ~30%. Fluconazole resistance is a concern for Nakaseomyces glabratus, Candida parapsilosis, and Candida auris and less so in Candida tropicalis infection; acquired echinocandin resistance remains uncommon. The epidemiology of invasive candidiasis varies in different geographical areas and within various patient populations. Risk factors include intensive care unit stay, central venous catheter use, broad-spectrum antibiotics use, abdominal surgery and immune suppression. Early antifungal treatment and central venous catheter removal form the cornerstones to decrease mortality. The landscape of novel therapeutics is growing; however, the application of new drugs requires careful selection of eligible patients as the spectrum of activity is limited to a few fungal species. Unanswered questions and knowledge gaps define future research priorities and a personalized approach to diagnosis and treatment of invasive candidiasis is of paramount importance.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, ECMM Excellence Centres of Medical Mycology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Souha S Kanj
- Infectious Diseases Division, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nelesh P Govender
- Faculty of Health Sciences, University of the Witwatersrand and National Institute for Communicable Diseases, Johannesburg, South Africa
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George R Thompson
- UC Davis Health Medical Center, Division of Infectious Diseases, Sacramento, CA, USA
| | | | - Miriam Alisa Govrins
- Institute of Hygiene and Medical Microbiology, ECMM Excellence Centres of Medical Mycology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Omardien S, Teska P. Skin and hard surface disinfection against Candida auris - What we know today. Front Med (Lausanne) 2024; 11:1312929. [PMID: 38384416 PMCID: PMC10879571 DOI: 10.3389/fmed.2024.1312929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Candida auris has emerged as a global healthcare threat, displaying resistance to important healthcare antifungal therapies. Infection prevention and control protocols have become paramount in reducing transmission of C. auris in healthcare, of which cleaning and disinfection plays an important role. Candida albicans is used as a surrogate yeast for yeasticidal claims of disinfection products, but reports have been made that sensitivity to disinfectants by C. auris differs from its surrogate. In this review, we aimed to compile the information reported for products used for skin and hard surface disinfection against C. auris in its planktonic or biofilm form. A comparison was made with other Candida species, and information were gathered from laboratory studies and observations made in healthcare settings.
Collapse
Affiliation(s)
| | - Peter Teska
- Diversey Holdings Ltd., Fort Mill, SC, United States
| |
Collapse
|
11
|
Chadwick C, De Jesus M, Ginty F, Martinez JS. Pathobiology of Candida auris infection analyzed by multiplexed imaging and single cell analysis. PLoS One 2024; 19:e0293011. [PMID: 38232081 DOI: 10.1371/journal.pone.0293011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/03/2023] [Indexed: 01/19/2024] Open
Abstract
Fungal organisms contribute to significant human morbidity and mortality and Candida auris (C. auris) infections are of utmost concern due to multi-drug resistant strains and persistence in critical care and hospital settings. Pathogenesis and pathology of C. auris is still poorly understood and in this study, we demonstrate how the use of multiplex immunofluorescent imaging (MxIF) and single-cell analysis can contribute to a deeper understanding of fungal infections within organs. We used two different neutrophil depletion murine models (treated with either 1A8-an anti-Ly6G antibody, or RB6-8C5-an anti-Ly6G/Ly6C antibody; both 1A8 and RB6-8C5 antibodies have been shown to deplete neutrophils) and compared to wildtype, non-neutropenic mice. Following pathologist assessment, fixed samples underwent MxIF imaging using a C. albicans antibody (shown to be cross-reactive to C. auris) and immune cell biomarkers-CD3 (T cells), CD68 (macrophages), B220 (B cells), CD45 (monocytes), and Ly6G (neutrophils) to quantify organ specific immune niches. MxIF analysis highlighted the heterogenous distribution of C. auris infection within heart, kidney, and brain 7 days post-infection. Size and number of fungal abscesses was greatest in the heart and lowest in brain. Infected mice had an increased count of CD3+, CD68+, B220+, and CD45+ immune cells, concentrated around C. auris abscesses. CD68+ cells were predominant in wildtype (non-neutropenic mice) and CD3+/CD45+ cells were predominant in neutropenic mice, with B cells being the least abundant. These findings suggest a Th2 driven immune response in neutropenic C. auris infection mice models. This study demonstrates the value of MxIF to broaden understanding of C. auris pathobiology, and mechanistic understanding of fungal infections.
Collapse
Affiliation(s)
| | - Magdia De Jesus
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Fiona Ginty
- GE Research, Niskayuna, New York, United States of America
| | | |
Collapse
|
12
|
Oyardi O, Demir ES, Alkan B, Komec S, Genc GE, Aygun G, Teke L, Turan D, Erturan Z, Savage PB, Guzel CB. Phenotypic Investigation of Virulence Factors, Susceptibility to Ceragenins, and the Impact of Biofilm Formation on Drug Efficacy in Candida auris Isolates from Türkiye. J Fungi (Basel) 2023; 9:1026. [PMID: 37888282 PMCID: PMC10607835 DOI: 10.3390/jof9101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Candida auris has emerged as a significant fungal threat due to its rapid worldwide spread since its first appearance, along with its potential for antimicrobial resistance and virulence properties. This study was designed to examine virulence characteristics, the efficacy of ceragenins, and biofilm-derived drug resistance in seven C. auris strains isolated from Turkish intensive care patients. It was observed that none of the tested strains exhibited proteinase or hemolysis activity; however, they demonstrated weak phospholipase and esterase activity. In addition, all strains were identified as having moderate to strong biofilm formation characteristics. Upon determining the minimum inhibitory concentrations (MIC) of ceragenins, it was discovered that CSA-138 exhibited the highest effectiveness with a MIC range of 1-0.5 µg/mL, followed by CSA-131 with a MIC of 1 µg/mL. Also, antimicrobial agents destroyed mature biofilms at high concentrations (40-1280 µg/mL). The investigation revealed that the strains isolated from Türkiye displayed weak exoenzyme activities. Notably, the ceragenins exhibited effectiveness against these strains, suggesting their potential as a viable treatment option.
Collapse
Affiliation(s)
- Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Elif Sena Demir
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye; (E.S.D.); (B.A.); (C.B.G.)
| | - Busra Alkan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye; (E.S.D.); (B.A.); (C.B.G.)
| | - Selda Komec
- Laboratory of Medical Microbiology, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Türkiye;
| | - Gonca Erkose Genc
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye; (G.E.G.); (Z.E.)
| | - Gokhan Aygun
- Department of Medical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Türkiye;
| | - Leyla Teke
- Clinic of Microbiology, Gaziosmanpasa Training and Research Hospital, University of Health Sciences, Istanbul 34255, Türkiye;
| | - Deniz Turan
- Medical Microbiology Laboratory, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul 34668, Türkiye;
| | - Zayre Erturan
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye; (G.E.G.); (Z.E.)
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Cagla Bozkurt Guzel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye; (E.S.D.); (B.A.); (C.B.G.)
| |
Collapse
|
13
|
Morovati H, Badali H, Abastabar M, Pakshir K, Zomorodian K, Ahmadi B, Naeimi B, Khodavaisy S, Nami S, Eghtedarnejad E, Khodadadi H. Development of a high-resolution melt-based assay to rapidly detect the azole-resistant Candida auris isolates. Curr Med Mycol 2023; 9:23-32. [PMID: 38361960 PMCID: PMC10864743 DOI: 10.22034/cmm.2023.345114.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 02/17/2024] Open
Abstract
Background and Purpose Candida auris is a multidrug-resistant yeast that rapidly spreads, making it the leading Candidate for the next pandemic. One main leading cause of emerging resistant C. auris isolates is nonsynonymous mutations. This study aimed to detect the Y132F mutation, one of the most important azole resistance-associated mutations in the ERG-11 gene of C. auris, by developing a reliable high-resolution melt (HRM)-based method. Materials and Methods Five C. auris isolates from Iran, plus three control isolates from other Clades were used in the study. The antifungal susceptibility testing through micro broth dilution was performed to recheck their susceptibility to three azole antifungals, including fluconazole, itraconazole, and voriconazole. Moreover, the polymerase chain reaction (PCR) sequencing of the ERG-11 gene was performed. Following the bioinformatic analysis and HRM-specific primer design, an HRM-based assay was developed and evaluated to detect ERG-11 mutations. Results The minimum inhibitory concentrations of fluconazole among Iranian C. auris isolates ranged from 8 to 64 μg/mL. The PCR-sequencing of the ERG-11 gene and bioinformatic analyses revealed the mutation of Y132F, a substitution consequence of A to T on codon 395 in one fluconazole-resistant isolate (IFRC4050). The developed HRM assay successfully differentiated the targeted single nucleotide polymorphism between mutant and wild types (temperature [Tm]: 81.79 ℃ - cycle threshold [CT]: 20.06 for suspected isolate). For both mutant and non-mutant isolates, the mean Tm range was 81.79-82.39 °C and the mean CT value was 20.06-22.93. These results were completely in accordance with the findings of DNA sequencing. Conclusion The fast-track HRM-based method successfully detected one of the most common mechanisms of resistance in the ERG-11 gene of C. auris within 3 h. Finally, the development of more panels of HRM assays for the detection of all azole resistance mutations in C. auris ERG-11 is recommended to expand the scope of the field and facilitate the elaboration of rapid and accurate methods of antifungal resistance assessment.
Collapse
Affiliation(s)
- Hamid Morovati
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahram Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behrouz Naeimi
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Eghtedarnejad
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khodadadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Lohse MB, Laurie MT, Levan S, Ziv N, Ennis CL, Nobile CJ, DeRisi J, Johnson AD. Broad susceptibility of Candida auris strains to 8-hydroxyquinolines and mechanisms of resistance. mBio 2023; 14:e0137623. [PMID: 37493629 PMCID: PMC10470496 DOI: 10.1128/mbio.01376-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
The fungal pathogen Candida auris represents a severe threat to hospitalized patients. Its resistance to multiple classes of antifungal drugs and ability to spread and resist decontamination in healthcare settings make it especially dangerous. We screened 1,990 clinically approved and late-stage investigational compounds for the potential to be repurposed as antifungal drugs targeting C. auris and narrowed our focus to five Food and Drug Administration (FDA)-approved compounds with inhibitory concentrations under 10 µM for C. auris and significantly lower toxicity to three human cell lines. These compounds, some of which had been previously identified in independent screens, include three dihalogenated 8-hydroxyquinolines: broxyquinoline, chloroxine, and clioquinol. A subsequent structure-activity study of 32 quinoline derivatives found that 8-hydroxyquinolines, especially those dihalogenated at the C5 and C7 positions, were the most effective inhibitors of C. auris. To pursue these compounds further, we exposed C. auris to clioquinol in an extended experimental evolution study and found that C. auris developed only twofold to fivefold resistance to the compound. DNA sequencing of resistant strains and subsequent verification by directed mutation in naive strains revealed that resistance was due to mutations in the transcriptional regulator CAP1 (causing upregulation of the drug transporter MDR1) and in the drug transporter CDR1. These mutations had only modest effects on resistance to traditional antifungal agents, and the CDR1 mutation rendered C. auris more susceptible to posaconazole. This observation raises the possibility that a combination treatment involving an 8-hydroxyquinoline and posaconazole might prevent C. auris from developing resistance to this established antifungal agent. IMPORTANCE The rapidly emerging fungal pathogen Candida auris represents a growing threat to hospitalized patients, in part due to frequent resistance to multiple classes of antifungal drugs. We identify a class of compounds, the dihalogenated 8-hydroxyquinolines, with broad fungistatic ability against a diverse collection of 13 strains of C. auris. Although this compound has been identified in previous screens, we extended the analysis by showing that C. auris developed only modest twofold to fivefold increases in resistance to this class of compounds despite long-term exposure; a noticeable difference from the 30- to 500-fold increases in resistance reported for similar studies with commonly used antifungal drugs. We also identify the mutations underlying the resistance. These results suggest that the dihalogenated 8-hydroxyquinolines are working inside the fungal cell and should be developed further to combat C. auris and other fungal pathogens. Lohse and colleagues characterize a class of compounds that inhibit the fungal pathogen C. auris. Unlike many other antifungal drugs, C. auris does not readily develop resistance to this class of compounds.
Collapse
Affiliation(s)
- Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Matthew T. Laurie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Sophia Levan
- Department of Medicine, University of California, San Francisco, California, USA
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Craig L. Ennis
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| | - Joseph DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
15
|
Siopi M, Peroukidou I, Beredaki MI, Spruijtenburg B, de Groot T, Meis JF, Vrioni G, Tsakris A, Pournaras S, Meletiadis J. Overestimation of Amphotericin B Resistance in Candida auris with Sensititre YeastOne Antifungal Susceptibility Testing: a Need for Adjustment for Correct Interpretation. Microbiol Spectr 2023; 11:e0443122. [PMID: 37036351 PMCID: PMC10269614 DOI: 10.1128/spectrum.04431-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Significant variation in minimal inhibitory concentrations (MIC) has been reported for amphotericin B (AMB) and C. auris, depending on the antifungal susceptibility testing (AFST) method. Although the Sensititre YeastOne (SYO) is widely used in routine laboratory testing, data regarding its performance for the AFST of C. auris are scarce. We tested AMB against 65 C. auris clinical isolates with the SYO and the reference methodology by the Clinical and Laboratory Standards Institute (CLSI). The essential agreement (EA, ±1 dilution) between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention (CDC)'s tentative breakpoint of MIC ≥ 2 mg/L were determined. The SYO wild type upper limit value (WT-UL) was determined using the ECOFFinder. The modal (range) CLSI growth inhibitory MIC was lower than the SYO colorimetric MIC [1(0.25-1) versus 2(1-8) mg/L, respectively]). The CLSI-colorimetric SYO EA was 29% and the CA was 11% (89% major errors; MaE). MaE were reduced when the SYO WT-UL of 8 mg/L was used (0% MaE). Alternatively, the use of SYO growth inhibition endpoints of MIC-1 (75% growth inhibition) or MIC-2 (50% growth inhibition) resulted in 88% CA with 12% MaE and 97% CA with 3% MaE, respectively. In conclusion, SYO overestimated AMB resistance in C. auris isolates when colorimetric MICs, as per SYO instructions and the CDC breakpoint of 2 mg/L, were used. This can be improved either by using the method-specific WT-UL MIC of 8 mg/L for colorimetric MICs or by determining growth inhibition MIC endpoints, regardless of the color. IMPORTANCE Candida auris is an emerging and frequently multidrug-resistant fungal pathogen that accounts for life-threatening invasive infections and nosocomial outbreaks worldwide. Reliable AF is important for the choice of the optimal treatment. Commercial methods are frequently used without prior vigorous assessment. Resistance to AMB was over-reported with the commercial colorimetric method Sensititre YeastOne (SYO). SYO produced MICs that were 1 to 2 twofold dilutions higher than those of the reference CLSI method, resulting in 89% MaE. MaE were reduced using a SYO-specific colorimetric wild type upper limit MIC value of 8 mg/L (0%) or a 50% growth inhibition endpoint (3%).
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilektra Peroukidou
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Beredaki
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Ohashi Y, Matono T, Suzuki S, Yoshino S, Alshahni MM, Komori A, Makimura K. The first case of clade I Candida auris candidemia in a patient with COVID-19 in Japan. J Infect Chemother 2023; 29:713-717. [PMID: 37001753 DOI: 10.1016/j.jiac.2023.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023]
Abstract
Candida auris is a health hazard because of its antifungal resistance and the potential to cause healthcare-associated outbreaks. To our knowledge, no previous cases of candidemia caused by C. auris have been reported in Japan. Herein, we report the first known case of clade I C. auris candidemia in a Japanese man with coronavirus disease 2019 (COVID-19) infection who was medically evacuated from the Philippines. A 71-year-old Japanese man traveled to Cebu Island in the Philippines 5 months before admission to our hospital. He contracted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Philippines and was admitted to the intensive care unit (ICU) in a local hospital. During his medical evacuation, we implemented precautions given his history of COVID-19 and pneumonia caused by multi-drug-resistant Acinetobacter baumannii complex. His blood culture revealed that C. auris infection was treated with antifungal agents but he did not survive. No evidence of nosocomial transmission was found among other patients in the ICU. This case study determines that accurate detection of C. auris, appropriate antifungal agent selection, precautions, and patient isolation are crucial to prevent nosocomial outbreaks, especially in patients with a history of multidrug-resistant organism (MDRO) colonization or international hospitalization. Medical professionals should recognize the risk of MDROs in international medical evacuation settings, considering the recent resumption of cross-border travel after the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yusuke Ohashi
- Department of Infectious Diseases, Aso Iizuka Hospital, Japan
| | - Takashi Matono
- Department of Infectious Diseases, Aso Iizuka Hospital, Japan.
| | - Shotaro Suzuki
- Department of General Internal Medicine, Aso Iizuka Hospital, Japan
| | - Shumpei Yoshino
- Department of Intensive Care Medicine, Aso Iizuka Hospital, Japan
| | | | - Aya Komori
- Teikyo University Institute of Medical Mycology, Japan
| | | |
Collapse
|
17
|
Lamoth F. Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician. Infect Drug Resist 2023; 16:1087-1097. [PMID: 36855391 PMCID: PMC9968438 DOI: 10.2147/idr.s375625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Invasive candidiasis (IC), due to the yeast pathogen Candida, is still a major cause of in-hospital morbidity and mortality. The limited number of antifungal drug classes and the emergence of multi-resistant Candida species, such as Candida auris and some Candida glabrata isolates, is concerning. However, recent advances in antifungal drug development provide promising perspectives for the therapeutic approach of IC. Notably, three novel antifungal agents, currently in Phase II/III clinical trials, are expected to have an important place for the treatment of IC in the future. Rezafungin is a novel echinocandin with prolonged half-life. Ibrexafungerp and fosmanogepix are two first-in-class antifungal drugs with broad spectrum activity against Candida spp., including C. auris and echinocandin-resistant species. These novel antifungal agents also represent interesting alternative options because of their acceptable oral bioavailability (ibrexafungerp and fosmanogepix) or their large interdose interval (once weekly intravenous administration for rezafungin) for prolonged and/or outpatient treatment of complicated IC. This review discusses the potential place of these novel antifungal drugs for the treatment of IC considering their pharmacologic properties and their preclinical and clinical data.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Correspondence: Frederic Lamoth, Service of Infectious Diseases and Institute of Microbiology, CHUV | Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 48, Lausanne, 1011, Switzerland, Tel +41 21 314 10 10, Email
| |
Collapse
|
18
|
Lohse MB, Laurie MT, Levan S, Ziv N, Ennis CL, Nobile CJ, DeRisi J, Johnson AD. Broad sensitivity of Candida auris strains to quinolones and mechanisms of resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528905. [PMID: 36824717 PMCID: PMC9949084 DOI: 10.1101/2023.02.16.528905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The fungal pathogen Candida auris represents a severe threat to hospitalized patients. Its resistance to multiple classes of antifungal drugs and ability to spread and resist decontamination in health-care settings make it especially dangerous. We screened 1,990 clinically approved and late-stage investigational compounds for the potential to be repurposed as antifungal drugs targeting C. auris and narrowed our focus to five FDA-approved compounds with inhibitory concentrations under 10 µM for C. auris and significantly lower toxicity to three human cell lines. These compounds, some of which had been previously identified in independent screens, include three dihalogenated 8-hydroxyquinolines: broxyquinoline, chloroxine, and clioquinol. A subsequent structure-activity study of 32 quinoline derivatives found that 8-hydroxyquinolines, especially those dihalogenated at the C5 and C7 positions, were the most effective inhibitors of C. auris . To pursue these compounds further, we exposed C. auris to clioquinol in an extended experimental evolution study and found that C. auris developed only 2- to 5-fold resistance to the compound. DNA sequencing of resistant strains and subsequent verification by directed mutation in naive strains revealed that resistance was due to mutations in the transcriptional regulator CAP1 (causing upregulation of the drug transporter MDR1 ) and in the drug transporter CDR1 . These mutations had only modest effects on resistance to traditional antifungal agents, and the CDR1 mutation rendered C. auris more sensitive to posaconazole. This observation raises the possibility that a combination treatment involving an 8-hydroxyquinoline and posaconazole might prevent C. auris from developing resistance to this established antifungal agent. Abstract Importance The rapidly emerging fungal pathogen Candida auris represents a growing threat to hospitalized patients, in part due to frequent resistance to multiple classes of antifungal drugs. We identify a class of compounds, the dihalogenated hydroxyquinolines, with broad fungistatic ability against a diverse collection of 13 strains of C. auris . Although this compound has been identified in previous screens, we extended the analysis by showing that C. auris developed only modest 2- to 5-fold increases in resistance to this class of compounds despite long-term exposure; a noticeable difference from the 30- to 500- fold increases in resistance reported for similar studies with commonly used antifungal drugs. We also identify the mutations underlying the resistance. These results suggest that the dihalogenated hydroxyquinolines are working inside the fungal cell and should be developed further to combat C. auris and other fungal pathogens. Tweet Lohse and colleagues characterize a class of compounds that inhibit the fungal pathogen C. auris . Unlike many other antifungal drugs, C. auris does not readily develop resistance to this class of compounds.
Collapse
|
19
|
Ashkenazi-Hoffnung L, Rosenberg Danziger C. Navigating the New Reality: A Review of the Epidemiological, Clinical, and Microbiological Characteristics of Candida auris, with a Focus on Children. J Fungi (Basel) 2023; 9:176. [PMID: 36836291 PMCID: PMC9963988 DOI: 10.3390/jof9020176] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
During the past decade, Candida auris emerged across the world, causing nosocomial outbreaks in both pediatric and adult populations, particularly in intensive care settings. We reviewed the epidemiological trends and the clinical and microbiological characteristics of C. auris infection, focusing on the pediatric population. The review is based on 22 studies, which included about 250 pediatric patients with C. auris infection, across multiple countries; neonates and premature babies were the predominant pediatric patient group affected. The most common type of infection reported was bloodstream infection, which was associated with exceptionally high mortality rates. Antifungal treatment varied widely between the patients; this signifies a serious knowledge gap that should be addressed in future research. Advances in molecular diagnostic methods for rapid and accurate identification and for detection of resistance may prove especially valuable in future outbreak situations, as well as the development of investigational antifungals. However, the new reality of a highly resistant and difficult-to-treat pathogen calls for preparedness of all aspects of patient care. This spans from laboratory readiness, to raising awareness among epidemiologists and clinicians for global collaborative efforts to improve patient care and limit the spread of C. auris.
Collapse
Affiliation(s)
- Liat Ashkenazi-Hoffnung
- Department of Day Hospitalization and Pediatric Infectious Diseases Unit, Schneider Children’s Medical Center, Petach Tikva 4920235, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Chen Rosenberg Danziger
- Department of Day Hospitalization, Schneider Children’s Medical Center, Petach Tikva 4920235, Israel
| |
Collapse
|
20
|
Ahmad S, Asadzadeh M. Strategies to Prevent Transmission of Candida auris in Healthcare Settings. CURRENT FUNGAL INFECTION REPORTS 2023; 17:36-48. [PMID: 36718372 PMCID: PMC9878498 DOI: 10.1007/s12281-023-00451-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 01/27/2023]
Abstract
Purpose of Review Candida auris, a recently recognized yeast pathogen, has become a major public health threat due to the problems associated with its accurate identification, intrinsic and acquired resistance to antifungal drugs, and its potential to easily contaminate the environment causing clonal outbreaks in healthcare facilities. These outbreaks are associated with high mortality rates particularly among older patients with multiple comorbidities under intensive care settings. The purpose of this review is to highlight strategies that are being adapted to prevent transmission of C. auris in healthcare settings. Recent Findings Colonized patients shed C. auris into their environment which contaminates surrounding equipment. It resists elimination even by robust decontamination procedures and is easily transmitted to new patients during close contact resulting in outbreaks. Efforts are being made to rapidly identify C. auris-infected/C. auris-colonized patients, to determine its susceptibility to antifungals, and to perform effective cleaning and decontamination of the environment and isolation of colonized patients to prevent further transmission. Summary Rapid and accurate identification of hospitalized patients infected/colonized with C. auris, rapid detection of its susceptibility patterns, and appropriate use of infection control measures can help to contain the spread of this highly pathogenic yeast in healthcare settings and prevent/control outbreaks.
Collapse
Affiliation(s)
- Suhail Ahmad
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| | - Mohammad Asadzadeh
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| |
Collapse
|
21
|
Synergistic Interaction of Caspofungin Combined with Posaconazole against FKS Wild-Type and Mutant Candida auris Planktonic Cells and Biofilms. Antibiotics (Basel) 2022; 11:antibiotics11111601. [PMID: 36421245 PMCID: PMC9686983 DOI: 10.3390/antibiotics11111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Candida auris is a potential multidrug-resistant pathogen able to cause biofilm-associated outbreaks, where frequently indwelling devices are the source of infections. The number of effective therapies is limited; thus, new, even-combination-based strategies are needed. Therefore, the in vitro efficacy of caspofungin with posaconazole against FKS wild-type and mutant Candida auris isolates was determined. The interactions were assessed utilizing the fractional inhibitory concentration indices (FICIs), the Bliss model, and a LIVE/DEAD assay. Planktonic minimum inhibitory concentrations (pMICs) for the caspofungin-posaconazole combination showed a 4- to 256-fold and a 2- to 512-fold decrease compared to caspofungin and posaconazole alone, respectively. Sessile minimum inhibitory concentrations (sMICs) for caspofungin and posaconazole in combination showed an 8- to 128-fold and a 4- to 512-fold decrease, respectively. The combination showed synergy, especially against biofilms (FICIs were 0.033-0.375 and 0.091-0.5, and Bliss cumulative synergy volumes were 6.96 and 32.39 for echinocandin-susceptible and -resistant isolates, respectively). The caspofungin-exposed (4 mg/L) C. auris biofilms exhibited increased cell death in the presence of posaconazole (0.03 mg/L) compared to untreated, caspofungin-exposed and posaconazole-treated biofilms. Despite the favorable effect of caspofungin with posaconazole, in vivo studies are needed to confirm the therapeutic potential of this combination in C. auris-associated infections.
Collapse
|
22
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
23
|
Abstract
Isavuconazole is the newest of the clinically available advanced generation triazole antifungals and is active against a variety of yeasts, molds, and dimorphic fungi. Its current FDA-approved indications include the management of invasive aspergillosis as well as mucormycosis, though the latter indication is supported by limited clinical data. Isavuconazole did not achieve noninferiority to caspofungin for the treatment of invasive candidiasis and therefore lacks an FDA-approved indication for this invasive disease. Significant advantages of isavuconazole, primarily over voriconazole but in some circumstances posaconazole as well, make it an appealing option for the management of complex patients with invasive fungal infections. These potential advantages include lack of QTc interval prolongation, more predictable pharmacokinetics, a less complicated drug interaction profile, and improved tolerability, particularly when compared to voriconazole. This review discusses these topics in addition to addressing the in vitro activity of the compound against a variety of fungi and provides insight into other distinguishing factors among isavuconazole, voriconazole, and posaconazole. The review concludes with an opinion section in which the authors provide the reader with a framework for the current role of isavuconazole in the antifungal armamentarium and where further data are required.
Collapse
|
24
|
Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents. Antimicrob Agents Chemother 2022; 66:e0005322. [PMID: 35770999 PMCID: PMC9295560 DOI: 10.1128/aac.00053-22] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Candida auris is an urgent antimicrobial resistance threat due to its global emergence, high mortality, and persistent transmissions. Nearly half of C. auris clinical and surveillance cases in the United States are from the New York and New Jersey Metropolitan area. We performed genome, and drug-resistance analysis of C. auris isolates from a patient who underwent multi-visceral transplantation. Whole-genome comparisons of 19 isolates, collected over 72 days, revealed closed similarity (Average Nucleotide Identity > 0.9996; Aligned Percentage > 0.9764) and a distinct subcluster of NY C. auris South Asia Clade I. All isolates had azole-linked resistance in ERG11(K143R) and CDR1(V704L). Echinocandin resistance first appeared with FKS1(S639Y) mutation and then a unique FKS1(F635C) mutation. Flucytosine-resistant isolates had mutations in FCY1, FUR1, and ADE17. Two pan-drug-resistant C. auris isolates had uracil phosphoribosyltransferase deletion (FUR1[1Δ33]) and the elimination of FUR1 expression, confirmed by a qPCR test developed in this study. Besides ERG11 mutations, four amphotericin B-resistant isolates showed no distinct nonsynonymous variants suggesting unknown genetic elements driving the resistance. Pan-drug-resistant C. auris isolates were not susceptible to two-drug antifungal combinations tested by checkerboard, Etest, and time-kill methods. The fungal population pattern, discerned from SNP phylogenetic analysis, was consistent with in-hospital or inpatient evolution of C. auris isolates circulating locally and not indicative of a recent introduction from elsewhere. The emergence of pan-drug-resistance to four major classes of antifungals in C. auris is alarming. Patients at high risk for drug-resistant C. auris might require novel therapeutic strategies and targeted pre-and/or posttransplant surveillance.
Collapse
|
25
|
Domán M, Bányai K. COVID-19-Associated Fungal Infections: An Urgent Need for Alternative Therapeutic Approach? Front Microbiol 2022; 13:919501. [PMID: 35756020 PMCID: PMC9218862 DOI: 10.3389/fmicb.2022.919501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Secondary fungal infections may complicate the clinical course of patients affected by viral respiratory diseases, especially those admitted to intensive care unit. Hospitalized COVID-19 patients are at increased risk of fungal co-infections exacerbating the prognosis of disease due to misdiagnosis that often result in treatment failure and high mortality rate. COVID-19-associated fungal infections caused by predominantly Aspergillus and Candida species, and fungi of the order Mucorales have been reported from several countries to become significant challenge for healthcare system. Early diagnosis and adequate antifungal therapy is essential to improve clinical outcomes, however, drug resistance shows a rising trend highlighting the need for alternative therapeutic agents. The purpose of this review is to summarize the current knowledge on COVID-19-associated mycoses, treatment strategies and the most recent advancements in antifungal drug development focusing on peptides with antifungal activity.
Collapse
Affiliation(s)
- Marianna Domán
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary.,Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
26
|
McCarty TP, Luethy PM, Baddley JW, Pappas PG. Clinical utility of antifungal susceptibility testing. JAC Antimicrob Resist 2022; 4:dlac067. [PMID: 35774069 PMCID: PMC9237445 DOI: 10.1093/jacamr/dlac067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Invasive fungal diseases cause significant morbidity and mortality, in particular affecting immunocompromised patients. Resistant organisms are of increasing importance, yet there are many notable differences in the ability to both perform and interpret antifungal susceptibility testing compared with bacteria. In this review, we will highlight the strengths and limitations of resistance data of pathogenic yeasts and moulds that may be used to guide treatment and predict clinical outcomes.
Collapse
Affiliation(s)
- Todd P McCarty
- Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
- Birmingham VA Medical Center , Birmingham, AL , USA
| | - Paul M Luethy
- Department of Pathology, University of Maryland , Baltimore, MD , USA
| | - John W Baddley
- Department of Medicine, University of Maryland , Baltimore, MD , USA
| | - Peter G Pappas
- Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
27
|
Wurster S, Albert ND, Kontoyiannis DP. Candida auris Bloodstream Infection Induces Upregulation of the PD-1/PD-L1 Immune Checkpoint Pathway in an Immunocompetent Mouse Model. mSphere 2022; 7:e0081721. [PMID: 35224979 PMCID: PMC9044930 DOI: 10.1128/msphere.00817-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
Candida auris is a globally spreading yeast pathogen causing bloodstream infections with high mortality in critically ill patients. The inherent antifungal drug resistance of most C. auris isolates and threat of multidrug-resistant strains create a need for adjunct immunotherapeutic strategies. While C. albicans candidemia was shown to induce immune paralysis and activation of inhibitory immune checkpoints, in vivo data on host responses to C. auris bloodstream infection are lacking as is an immunocompetent murine infection model to study the immunopathology and immunotherapy of C. auris sepsis. Therefore, herein, we developed an immunocompetent C. auris sepsis model by intravenously infecting C57BL/6 mice with 1.5 × 108 to 8 × 108 yeast cells of aggregate-forming (AR-0384) and nonaggregative (AR-0381) C. auris reference isolates. Both isolates caused reproducible, inoculum-dependent increasing morbidity, mortality, and fungal burden in kidney tissue. Notably, morbidity and mortality outcomes were partially decoupled from fungal burden, suggesting a role of additional modulators of disease severity such as host immune responses. Flow cytometric analyses of splenic immune cells revealed significant upregulation of the programmed cell death protein 1 (PD-1) on T cells and its ligand PD-L1 on macrophages from mice infected with C. auris AR-0384 compared to uninfected mice. PD-L1 expression on macrophages from AR-0384-infected mice strongly correlated with fungal tissue burden (Spearman's rank correlation coefficient [ρ] = 0.95). Altogether, our findings suggest that C. auris sepsis promotes a suppressive immune phenotype through PD-1/PD-L1 induction, supporting further exploration of PD-1/PD-L1 blockade as an immunotherapeutic strategy to mitigate C. auris candidiasis. IMPORTANCE Health authorities consider Candida auris to be one of the most serious emerging nosocomial pathogens due to its transmissibility, resistance to disinfection procedures, and frequent antifungal drug resistance. The frequency of multidrug-resistant C. auris isolates necessitates the development of novel therapeutic platforms, including immunotherapy. However, in vivo data on host interactions with C. auris are scarce, compounded by the lack of reliable immunocompetent mammalian models of C. auris candidemia. Herein, we describe a C. auris sepsis model in immunocompetent C57BL/6 mice and demonstrate reproducible and inoculum-dependent acute infection with both aggregate-forming and nonaggregative reference isolates from different clades. Furthermore, we show that C. auris sepsis induces upregulation of the PD-1/PD-L1 immune checkpoint pathway in infected mice, raising the potential of a therapeutic benefit of immune checkpoint blockade. Our immunocompetent model of C. auris sepsis could provide a facile preclinical platform to thoroughly investigate immune checkpoint blockade and combination therapy with antifungals.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Nathaniel D. Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
28
|
Depletion of the Microbiota Has a Modest but Important Impact on the Fungal Burden of the Heart and Lungs during Early Systemic Candida auris Infection in Neutropenic Mice. Microorganisms 2022; 10:microorganisms10020330. [PMID: 35208785 PMCID: PMC8874628 DOI: 10.3390/microorganisms10020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The progression and systemic pathobiology of C. auris in the absence of a microbiota have not been described. Here, we describe the influence of the microbiota during the first 5 days of C. auris infection in germ-free or antibiotic-depleted mice. Depletion of the bacterial microbiota in both germ-free and antibiotic-depleted models results in a modest but important increase in the early stages of C. auris infection. Particularly the heart and lungs, followed by the cecum, uterus, and stomach, of intravenously (i.v.) infected neutropenic mice showed significant fungal organ burden. Understanding disease progression and pathobiology of C. auris in individuals with a depleted microbiota could potentially help in the development of care protocols that incorporate supplementation or restoration of the microbiota before invasive procedures, such as transplantation surgeries.
Collapse
|