1
|
Immunologic and Protective Properties of Subunit- vs. Whole Toxoid-Derived Anti-Botulinum Equine Antitoxin. Vaccines (Basel) 2022; 10:vaccines10091522. [PMID: 36146601 PMCID: PMC9506527 DOI: 10.3390/vaccines10091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Botulism is a paralytic disease caused by botulinum neurotoxins (BoNTs). Equine antitoxin is currently the standard therapy for botulism in human. The preparation of equine antitoxin relies on the immunization of horses with botulinum toxoid, which suffers from low yield and safety limitations. The Hc fragment of BoNTs was suggested to be a potent antibotulinum subunit vaccine. The current study presents a comparative evaluation of equine-based toxoid-derived antitoxin (TDA) and subunit-derived antitoxin (SDA). The potency of recombinant Hc/A, Hc/B, and Hc/E in mice was similar to that of toxoids of the corresponding serotypes. A single boost with Hc/E administered to a toxoid E-hyperimmune horse increased the neutralizing antibody concentration (NAC) from 250 to 850 IU/mL. Immunization of naïve horses with the recombinant subunits induced a NAC comparable to that of horses immunized with the toxoid. SDA and TDA bound common epitopes on BoNTs, as demonstrated by an in vitro competition binding assay. In vivo, SDA and TDA showed similar efficacy when administered to guinea pigs postexposure to a lethal dose of botulinum toxins. Collectively, the results of the current study suggest that recombinant BoNT subunits may replace botulinum toxoids as efficient and safe antigens for the preparation of pharmaceutical anti-botulinum equine antitoxins.
Collapse
|
2
|
Poortmans M, Vanoirbeek K, Dorner MB, Michiels CW. Selection and Development of Nontoxic Nonproteolytic Clostridium botulinum Surrogate Strains for Food Challenge Testing. Foods 2022; 11:1577. [PMID: 35681327 PMCID: PMC9180612 DOI: 10.3390/foods11111577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Clostridium botulinum causes severe foodborne intoxications by producing a potent neurotoxin. Challenge studies with this pathogen are an important tool to ensure the safety of new processing techniques and newly designed or modified foods, but they are hazardous and complicated by the lack of an effective selective counting medium. Therefore, this study aimed to develop selectable nontoxic surrogate strains for group II, or nonproteolytic, C. botulinum, which are psychotropic and hence of particular concern in mildly treated, refrigerated foods. Thirty-one natural nontoxic nonproteolytic strains, 16 of which were isolated in this work, were characterized in detail, revealing that 28 strains were genomically and phenotypically indistinguishable from toxic strains. Five strains, representing the genomic and phenotypic diversity of group II C. botulinum, were selected and successfully equipped with an erythromycin (Em) resistance marker in a defective structural phage gene without altering phenotypic features. Finally, a selective medium containing Em, cycloserine (Cs), gentamicin (Gm), and lysozyme (Ly) was developed, which inhibited the background microbiota of commercial cooked ham, chicken filet, and salami, but supported spore germination and growth of the Em-resistant surrogate strains. The surrogates developed in this work are expected to facilitate food challenge studies with nonproteolytic C. botulinum for the food industry and can also provide a safe alternative for basic C. botulinum research.
Collapse
Affiliation(s)
- Marijke Poortmans
- Department of Microbial and Molecular Systems, KU Leuven, 3000 Leuven, Belgium; (M.P.); (K.V.)
| | - Kristof Vanoirbeek
- Department of Microbial and Molecular Systems, KU Leuven, 3000 Leuven, Belgium; (M.P.); (K.V.)
| | - Martin B. Dorner
- Robert Koch Institute, ZBS3-Biological Toxins, Seestr. 10, 13353 Berlin, Germany;
| | - Chris W. Michiels
- Department of Microbial and Molecular Systems, KU Leuven, 3000 Leuven, Belgium; (M.P.); (K.V.)
| |
Collapse
|
3
|
Torgeman A, Diamant E, Dor E, Schwartz A, Baruchi T, Ben David A, Zichel R. A Rabbit Model for the Evaluation of Drugs for Treating the Chronic Phase of Botulism. Toxins (Basel) 2021; 13:toxins13100679. [PMID: 34678971 PMCID: PMC8537128 DOI: 10.3390/toxins13100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Antitoxin, the only licensed drug therapy for botulism, neutralizes circulating botulinum neurotoxin (BoNT). However, antitoxin is no longer effective when a critical amount of BoNT has already entered its target nerve cells. The outcome is a chronic phase of botulism that is characterized by prolonged paralysis. In this stage, blocking toxin activity within cells by next-generation intraneuronal anti-botulinum drugs (INABDs) may shorten the chronic phase of the disease and accelerate recovery. However, there is a lack of adequate animal models that simulate the chronic phase of botulism for evaluating the efficacy of INABDs. Herein, we report the development of a rabbit model for the chronic phase of botulism, induced by intoxication with a sublethal dose of BoNT. Spirometry monitoring enabled us to detect deviations from normal respiration and to quantitatively define the time to symptom onset and disease duration. A 0.85 rabbit intramuscular median lethal dose of BoNT/A elicited the most consistent and prolonged disease duration (mean = 11.8 days, relative standard deviation = 27.9%) that still enabled spontaneous recovery. Post-exposure treatment with antitoxin at various time points significantly shortened the disease duration, providing a proof of concept that the new model is adequate for evaluating novel therapeutics for botulism.
Collapse
|
4
|
Small Molecule Receptor Binding Inhibitors with In Vivo Efficacy against Botulinum Neurotoxin Serotypes A and E. Int J Mol Sci 2021; 22:ijms22168577. [PMID: 34445283 PMCID: PMC8395308 DOI: 10.3390/ijms22168577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most poisonous substances in nature. Currently, the only therapy for botulism is antitoxin. This therapy suffers from several limitations and hence new therapeutic strategies are desired. One of the limitations in discovering BoNT inhibitors is the absence of an in vitro assay that correlates with toxin neutralization in vivo. In this work, a high-throughput screening assay for receptor-binding inhibitors against BoNT/A was developed. The assay is composed of two chimeric proteins: a receptor-simulating protein, consisting of the fourth luminal loop of synaptic vesicle protein 2C fused to glutathione-S-transferase, and a toxin-simulating protein, consisting of the receptor-binding domain of BoNT/A fused to beta-galactosidase. The assay was applied to screen the LOPAC1280 compound library. Seven selected compounds were evaluated in mice exposed to a lethal dose of BoNT/A. The compound aurintricarboxylic acid (ATA) conferred 92% protection, whereas significant delayed time to death (p < 0.005) was observed for three additional compounds. Remarkably, ATA was also fully protective in mice challenged with a lethal dose of BoNT/E, which also uses the SV2 receptor. This study demonstrates that receptor-binding inhibitors have the potential to serve as next generation therapeutics for botulism, and therefore the assay developed may facilitate discovery of new anti-BoNT countermeasures.
Collapse
|
5
|
A Novel Running Wheel Mouse Model for Botulism and Its Use for the Evaluation of Postsymptom Antitoxin Efficacy. Antimicrob Agents Chemother 2021; 65:e0042121. [PMID: 33972251 DOI: 10.1128/aac.00421-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antitoxin is currently the only approved therapy for botulinum intoxications. The efficacy of antitoxin preparations is evaluated in animals. However, while in practice antitoxin is administered to patients only after symptom onset, in most animal studies, it is tested in relation to time postintoxication. This may be attributed to difficulties in quantitating early botulism symptoms in animals. In the current study, a novel system based on high-resolution monitoring of mouse activity on a running wheel was developed to allow evaluation of postsymptom antitoxin efficacy. The system enables automatic and remote monitoring of 48 mice simultaneously. Based on the nocturnal activity patterns of individual naive mice, two criteria were defined as the onset of symptoms. Postsymptom treatment with a human-normalized dose of antitoxin was fully protective in mice exposed to 4 50% lethal doses (LD50s) of botulinum neurotoxin serotype A (BoNT/A) and BoNT/B. Moreover, for the first time, a high protection rate was obtained in mice treated postsymptomatically, following a challenge with BoNT/E, the fastest-acting BoNT. The running wheel system was further modified to develop a mouse model for the evaluation of next-generation therapeutics for progressive botulism at time points where antitoxin is not effective. Exposure of mice to 0.3 LD50 of BoNT/A resulted in long-lasting paralysis and a reduction in running activity for 16 to 18 days. Antitoxin treatment was no longer effective when administered 72 h postintoxication, defining the time window to evaluate next-generation therapeutics. Altogether, the running wheel systems presented herein offer quantitative means to evaluate the efficacy of current and future antibotulinum drugs.
Collapse
|
6
|
Dor E, David T, Dekel Jaoui H, Schwartz A, Baruchi T, Torgeman A, Ben David A, Rosen O, Tal A, Rosner A, Zichel R, Diamant E. A Rabbit Model for Prolonged Continuous Intravenous Infusion Via a Peripherally Inserted Central Catheter. Front Pharmacol 2021; 12:637792. [PMID: 33897426 PMCID: PMC8061032 DOI: 10.3389/fphar.2021.637792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022] Open
Abstract
Medical treatment may require the continuous intravenous (IV) infusion of drugs to sustain the therapeutic blood concentration and to minimize dosing errors. Animal disease models that ultimately mimic the intended use of new potential drugs via a continuous IV infusion in unrestrained, free roaming animals are required. While peripherally inserted central catheters (PICCs) and other central line techniques for prolonged IV infusion of drugs are prevalent in the clinic, continuous IV infusion methods in an animal model are challenging and limited. In most cases, continuous IV infusion methods require surgical knowledge as well as expensive and complicated equipment. In the current work, we established a novel rabbit model for prolonged continuous IV infusion by inserting a PICC line from the marginal ear vein to the superior vena cava and connecting it to an externally carried ambulatory infusion pump. Either saline or a clinically relevant formulation could be steadily and continuously infused at 3–6 ml/h for 11 consecutive days into freely moving rabbits while maintaining normal body temperature, weight, and respiration physiology, as determined by daily spirometry. This new model is simple to execute and can advance the ability to administer and test new drug candidates.
Collapse
Affiliation(s)
- Eyal Dor
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tseela David
- Veterinary Center for Pre-clinical Research, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hani Dekel Jaoui
- Veterinary Center for Pre-clinical Research, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Arieh Schwartz
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tzadok Baruchi
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Amram Torgeman
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Alon Ben David
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Osnat Rosen
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Arnon Tal
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Amir Rosner
- Veterinary Center for Pre-clinical Research, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eran Diamant
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
7
|
Torgeman A, Schwartz A, Diamant E, Baruchi T, Dor E, Ben David A, Pass A, Barnea A, Tal A, Rosner A, Rosen O, Zichel R. Studying the differential efficacy of postsymptom antitoxin treatment in type A versus type B botulism using a rabbit spirometry model. Dis Model Mech 2018; 11:dmm.035089. [PMID: 30115749 PMCID: PMC6177009 DOI: 10.1242/dmm.035089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxin (BoNT) serotypes A, B and E are responsible for most cases of human botulism. The only approved therapy for botulism is antitoxin treatment administered to patients after symptom onset. However, a recent meta-analysis of antitoxin efficacy in human botulism cases over the past century concluded that a statistically significant reduction in mortality is associated with the use of type E and type A antitoxin, but not with type B antitoxin. Animal models could be highly valuable in studying postsymptom antitoxin efficacy (PSAE). However, the few attempts to evaluate PSAE in animals relied on subjective observations and showed ∼50% protection. Recently, we developed a novel spirometry model for the quantitative evaluation of PSAE in rabbits and used it to demonstrate full protection against BoNT/E. In the current study, a comparative evaluation of PSAE in botulism types A and B was conducted using this quantitative respiratory model. A lethal dose of each toxin induced a comparable course of disease both in terms of time to symptoms (TTS, 41.9±1.3 and 40.6±1.1 h, respectively) and of time to death (TTD, 71.3±3.1 and 66.3±1.7 h, respectively). However, in accordance with the differential serotypic PSAE observed in humans, postsymptom antitoxin treatment was fully effective only in BoNT/A-intoxicated rabbits. This serotypic divergence was reflected by a positive and statistically significant correlation between TTS and TTD in BoNT/A-intoxicated rabbits (r=0.91, P=0.0006), but not in those intoxicated with BoNT/B (r=0.06, P=0.88). The rabbit spirometry system might be useful in the evaluation toolkit of botulism therapeutics, including those under development and intended to act when antitoxin is no longer effective. Summary: Here, we used a quantitative rabbit respiratory model to study the human-related, differential antitoxin efficacy observed in type A and type B botulism.
Collapse
Affiliation(s)
- Amram Torgeman
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Arieh Schwartz
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Eran Diamant
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Tzadok Baruchi
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Eyal Dor
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Alon Ben David
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Avi Pass
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Ada Barnea
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Arnon Tal
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Amir Rosner
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Osnat Rosen
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| |
Collapse
|