1
|
Kenfack Teponnou GA, Joubert A, Spaltman S, Merwe MVD, Zangenberg E, Sawe S, Denti P, Castel S, Conradie F, Court R, Maartens G, Wiesner L. Development and validation of an LC-MS/MS multiplex assay for the quantification of bedaquiline, n-desmethyl bedaquiline, linezolid, levofloxacin, and clofazimine in dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124470. [PMID: 39827625 DOI: 10.1016/j.jchromb.2025.124470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Dried blood spot (DBS) assays to quantify novel and repurposed drugs for the treatment of rifampicin-resistant tuberculosis (RR-TB) would facilitate pharmacokinetic studies and therapeutic drug monitoring in low-middle income settings, considering their ease of application and simple sample storage requirements. We describe a DBS method for the simultaneous quantification of bedaquiline and metabolite N-desmethyl bedaquiline, linezolid, levofloxacin, and clofazimine. The analytes were extracted from the matrix and isolated by solid-phase extraction. Two LC-MS/MS systems were used, optimized for the separate analysis of the more polar compounds (linezolid and levofloxacin), and less polar compounds (bedaquiline, N-desmethyl bedaquiline, and clofazimine), employing gradient elution. Electrospray ionization and multiple reaction monitoring were used to quantify the analytes on a Sciex API3200 and an API5500 triple quadrupole mass spectrometer, for the more polar and less polar analytes, respectively. Isotopically labelled internal standards were used to compensate for variability in the quantification of each analyte. The method was validated according to international guidelines and applied to samples from a clinical trial. We performed correlation and agreement analysis of the DBS assay and in-house plasma methods using Deming regressions and Bland-Altman plots. Coefficients of correlation between measured plasma and DBS concentrations ranged from 0.866 (95% CI: 0.817-0.902) to 0.989 (95% CI: 0.985-0.992). More than 67% of the samples showed a difference between the observed and estimated plasma concentrations within 20% of their means, meeting EMA requirements for method reproducibility and demonstrating the interchangeability of our DBS and plasma LC-MS/MS methods.
Collapse
Affiliation(s)
| | - Anton Joubert
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa
| | - Saskia Spaltman
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa
| | - Marthinus van der Merwe
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa
| | - Edda Zangenberg
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa
| | - Sharon Sawe
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa
| | - Francesca Conradie
- Department of Clinical Medicine University of the Witwatersrand Johannesburg South Africa
| | - Richard Court
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology Department of Medicine University of Cape Town Cape Town South Africa.
| |
Collapse
|
2
|
Ndzamba BS, Egieyeh S, Fasinu P. Progress in Pharmacometrics Implementation and Regulatory Integration in Africa: A Systematic Review. Clin Pharmacol Ther 2024; 116:1525-1536. [PMID: 39165078 DOI: 10.1002/cpt.3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
The availability of clinical trial data, advocacy, and increased funding has facilitated the implementation of pharmacometrics in Africa, resulting in the establishment of additional training programs for pharmacometricians. This study conducted a systematic review to evaluate the progress made from the implementation of pharmacometrics in clinical drug development and its adoption into drug approval by regulatory authorities in Africa. We performed a comprehensive literature search using major databases such as PubMed and Google Scholar. The study included articles published until 2024, with no lower cutoff. Articles were excluded if not addressing the research question or of pharmacometrics studies done outside Africa with no collaboration with African researchers (study setting). For the review, a total of 121 articles were included for analysis. Among the reported pharmacometrics approaches, Population pharmacokinetics modeling approaches are the most used (95 (78.5%)). South Africa and Uganda researchers have the most research output in pharmacometrics in Africa (82 (89.1%) and 7 (7.61%), respectively), with the University of Cape Town (South Africa) producing the highest (71 (78.8%)) of all article in Africa. The most studied conditions are TB (43 (35.5%)), HIV (33 (27.3%), TB and HIV (22 (18.2%)), and malaria (12 (9.92%). Pharmacometrics is gaining momentum in Africa, and the progress made since inception will significantly improve the safety and efficacy of therapeutic agents used to treat HIV, TB, and other emerging conditions.
Collapse
Affiliation(s)
| | - Samuel Egieyeh
- School of Pharmacy, University of the Western Cape, Cape Town, South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Pius Fasinu
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Marwitz F, Hädrich G, Redinger N, Besecke KFW, Li F, Aboutara N, Thomsen S, Cohrs M, Neumann PR, Lucas H, Kollan J, Hozsa C, Gieseler RK, Schwudke D, Furch M, Schaible U, Dailey LA. Intranasal Administration of Bedaquiline-Loaded Fucosylated Liposomes Provides Anti-Tubercular Activity while Reducing the Potential for Systemic Side Effects. ACS Infect Dis 2024; 10:3222-3232. [PMID: 39136125 PMCID: PMC11406518 DOI: 10.1021/acsinfecdis.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Liposomal formulations of antibiotics for inhalation offer the potential for the delivery of high drug doses, controlled drug release kinetics in the lung, and an excellent safety profile. In this study, we evaluated the in vivo performance of a liposomal formulation for the poorly soluble, antituberculosis agent, bedaquiline. Bedaquiline was encapsulated within monodisperse liposomes of ∼70 nm at a relatively high drug concentration (∼3.6 mg/mL). Formulations with or without fucose residues, which bind to C-type lectin receptors and mediate a preferential binding to macrophage mannose receptor, were prepared, and efficacy was assessed in an in vivo C3HeB/FeJ mouse model of tuberculosis infection (H37Rv strain). Seven intranasal instillations of 5 mg/kg bedaquiline formulations administered every second day resulted in a significant reduction in lung burden (∼0.4-0.6 Δlog10 CFU), although no differences between fucosylated and nonfucosylated formulations were observed. A pharmacokinetic study in healthy, noninfected Balb/c mice demonstrated that intranasal administration of a single dose of 2.5 mg/kg bedaquiline liposomal formulation (fucosylated) improved the lung bioavailability 6-fold compared to intravenous administration of the same formulation at the same dose. Importantly, intranasal administration reduced systemic concentrations of the primary metabolite, N-desmethyl-bedaquiline (M2), compared with both intravenous and oral administration. This is a clinically relevant finding as the M2 metabolite is associated with a higher risk of QT-prolongation in predisposed patients. The results clearly demonstrate that a bedaquiline liposomal inhalation suspension may show enhanced antitubercular activity in the lung while reducing systemic side effects, thus meriting further nonclinical investigation.
Collapse
Affiliation(s)
- Franziska Marwitz
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
| | - Gabriela Hädrich
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Natalja Redinger
- Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40 ,Borstel 23845, Germany
| | - Karen F W Besecke
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Siegfried Hameln GmbH, Langes Feld 13 ,Hameln 31789, Germany
- Cardior Pharmaceuticals GmbH, Hollerithallee 20 ,Hannover 30419, Germany
| | - Feng Li
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
| | - Nadine Aboutara
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
| | - Simone Thomsen
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
| | - Michaela Cohrs
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
- General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460 ,Ghent 9000, Belgium
| | - Paul Robert Neumann
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Henrike Lucas
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Julia Kollan
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Constantin Hozsa
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Siegfried Hameln GmbH, Langes Feld 13 ,Hameln 31789, Germany
| | - Robert K Gieseler
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Department of Medicine, University Hospital, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25 ,Bochum 44892, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel 23845, Germany
- Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel 24118, Germany
| | - Marcus Furch
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Certmedica International GmbH, Magnolienweg 17 ,Aschaffenburg 63741, Germany
| | - Ulrich Schaible
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
- Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40 ,Borstel 23845, Germany
| | - Lea Ann Dailey
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
| |
Collapse
|
4
|
Mehta K, Balazki P, van der Graaf PH, Guo T, van Hasselt JGC. Predictions of Bedaquiline Central Nervous System Exposure in Patients with Tuberculosis Meningitis Using Physiologically based Pharmacokinetic Modeling. Clin Pharmacokinet 2024; 63:657-668. [PMID: 38530588 PMCID: PMC11106169 DOI: 10.1007/s40262-024-01363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND OBJECTIVE The use of bedaquiline as a treatment option for drug-resistant tuberculosis meningitis (TBM) is of interest to address the increased prevalence of resistance to first-line antibiotics. To this end, we describe a whole-body physiologically based pharmacokinetic (PBPK) model for bedaquiline to predict central nervous system (CNS) exposure. METHODS A whole-body PBPK model was developed for bedaquiline and its metabolite, M2. The model included compartments for brain and cerebrospinal fluid (CSF). Model predictions were evaluated by comparison to plasma PK time profiles following different dosing regimens and sparse CSF concentrations data from patients. Simulations were then conducted to compare CNS and lung exposures to plasma exposure at clinically relevant dosing schedules. RESULTS The model appropriately described the observed plasma and CSF bedaquiline and M2 concentrations from patients with pulmonary tuberculosis (TB). The model predicted a high impact of tissue binding on target site drug concentrations in CNS. Predicted unbound exposures within brain interstitial exposures were comparable with unbound vascular plasma and unbound lung exposures. However, unbound brain intracellular exposures were predicted to be 7% of unbound vascular plasma and unbound lung intracellular exposures. CONCLUSIONS The whole-body PBPK model for bedaquiline and M2 predicted unbound concentrations in brain to be significantly lower than the unbound concentrations in the lung at clinically relevant doses. Our findings suggest that bedaquiline may result in relatively inferior efficacy against drug-resistant TBM when compared with efficacy against drug-resistant pulmonary TB.
Collapse
Affiliation(s)
- Krina Mehta
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | | | - Piet H van der Graaf
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara, Canterbury, UK
| | - Tingjie Guo
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J G Coen van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Wang S, Forsman LD, Xu C, Zhang H, Zhu Y, Shao G, Wang S, Cao J, Xiong H, Niward K, Schön T, Bruchfeld J, Zhu L, Alffenaar JW, Hu Y. Second-line antituberculosis drug exposure thresholds predictive of adverse events in multidrug-resistant tuberculosis treatment. Int J Infect Dis 2024; 140:62-69. [PMID: 38176643 DOI: 10.1016/j.ijid.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the association between drug exposure and adverse events (AEs) during the standardized multidrug-resistant tuberculosis (MDR-TB) treatment, as well as to identify predictive drug exposure thresholds. METHODS We conducted a prospective, observational multicenter study among participants receiving standardized MDR-TB treatment between 2016 and 2019 in China. AEs were monitored throughout the treatment and their relationships to drug exposure (e.g., the area under the drug concentration-time curve from 0 to 24 h, AUC0-24 h) were analyzed. The thresholds of pharmacokinetic predictors of observed AEs were identified by boosted classification and regression tree (CART) and further evaluated by external validation. RESULTS Of 197 study participants, 124 (62.9%) had at least one AE, and 15 (7.6%) experienced serious AEs. The association between drug exposure and AEs was observed including bedaquiline, its metabolite M2, moxifloxacin and QTcF prolongation (QTcF >450 ms), linezolid and mitochondrial toxicity, cycloserine and psychiatric AEs. The CART-derived thresholds of AUC0-24 h predictive of the respective AEs were 3.2 mg·h/l (bedaquiline M2); 49.3 mg·h/l (moxifloxacin); 119.3 mg·h/l (linezolid); 718.7 mg·h/l (cycloserine). CONCLUSIONS This study demonstrated the drug exposure thresholds predictive of AEs for key drugs against MDR-TB treatment. Using the derived thresholds will provide the knowledge base for further randomized clinical trials of dose adjustment to minimize the risk of AEs.
Collapse
Affiliation(s)
- Sainan Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Chunhua Xu
- Fengxian District Center for Disease Control and Prevention, Shanghai, China
| | - Haoyue Zhang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Yue Zhu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ge Shao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Shanshan Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Jiayi Cao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Haiyan Xiong
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Katarina Niward
- Department of Infectious Diseases in Östergötland, Region Östergötland and Institution for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Thomas Schön
- Department of Infectious Diseases in Östergötland, Region Östergötland and Institution for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Sweden
| | - Judith Bruchfeld
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Limei Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia; Westmead Hospital, Sydney, Australia; Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Kassegne L, Veziris N, Fraisse P. [A pharmacologic approach to treatment of Mycobacterium abscessus pulmonary disease]. Rev Mal Respir 2024; 41:29-42. [PMID: 38016833 DOI: 10.1016/j.rmr.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/22/2023] [Indexed: 11/30/2023]
Abstract
Mycobacterium abscessus is a fast-growing non-tuberculous mycobacteria complex causing pulmonary infections, comprising the subspecies abscessus, massiliense and bolletii. Differences are based predominantly on natural inducible macrolide resistance, active in most Mycobacterium abscessus spp abscessus species and in Mycobacterium abscessus spp bolletii but inactive in Mycobacterium abscessus spp massiliense. Therapy consists in long-term treatment, combining multiple antibiotics. Prognosis is poor, as only 40% of patients experience cure. Pharmacodynamic and pharmacokinetic data on M. abscessus have recently been published, showing that therapy ineffectiveness might be explained by intrinsic bacterial resistance (macrolides…) and by the unfavorable pharmacokinetics of the recommended antibiotics. Other molecules and inhaled antibiotics are promising.
Collapse
Affiliation(s)
- L Kassegne
- Service de pneumologie, pôle de pathologie thoracique, nouvel hôpital civil, Strasbourg, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France.
| | - N Veziris
- Département de bactériologie, Inserm U1135, Centre d'immunologie et des maladies infectieuses (CIMI-Paris), Centre national de référence des mycobactéries et de la résistance des mycobactéries aux antituberculeux, Groupe hospitalier AP-HP, Sorbonne université, site Saint-Antoine, Paris, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France
| | - P Fraisse
- Service de pneumologie, pôle de pathologie thoracique, nouvel hôpital civil, Strasbourg, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France
| |
Collapse
|
7
|
Ding Y, Liu H, Wang F, Fu L, Zhu H, Fu S, Wang N, Zhuang X, Lu Y. Coadministration of bedaquiline and pyrifazimine reduce exposure to toxic metabolite N-desmethyl bedaquiline. Front Pharmacol 2023; 14:1154780. [PMID: 37860115 PMCID: PMC10582325 DOI: 10.3389/fphar.2023.1154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Background: A new, effective anti-tuberculosis (TB) regimen containing bedaquiline (BDQ) and pyrifazimine (TBI-166) has been recommended for a phase IIb clinical trial. Preclinical drug-drug interaction (DDI) studies of the combination of BDQ and TBI-166 have been designed to support future clinical trials. In this study, we investigated whether a DDI between BDQ and TBI-166 affects the pharmacokinetics of BDQ. Methods: We performed in vitro quantification of the fractional contributions of the fraction of drug metabolism by individual CYP enzymes (f m) of BDQ and the inhibition potency of key metabolic pathways of TBI-166. Furthermore, we conducted an in vivo steady-state pharmacokinetics study in a murine TB model and healthy BALB/c mice. Results: The in vitro f m value indicated that the CYP3A4 pathway contributed more than 75% to BDQ metabolism to N-desmethyl-bedaquiline (M2), and TBI-166 was a moderate (IC50 2.65 µM) potential CYP3A4 inhibitor. Coadministration of BDQ and TBI-166 greatly reduced exposure to metabolite M2 (AUC0-t 76310 vs 115704 h ng/mL, 66% of BDQ alone), whereas the exposure to BDQ and TBI-166 did not changed. The same trend was observed both in healthy and TB model mice. The plasma concentration of M2 decreased significantly after coadministration of BDQ and TBI-166 and decreased further during treatment in the TB model. Conclusions: In conclusion, our results showed that the combination of BDQ and TBI-166 significantly reduced exposure to the toxic metabolite M2 by inhibiting the activity of the CYP3A4 pathway. The potential safety and efficacy benefits demonstrated by the TB treatment highly suggest that coadministration of BDQ and TBI-166 should be studied further.
Collapse
Affiliation(s)
- Yangming Ding
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Haiting Liu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Furun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lei Fu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hui Zhu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shuang Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Wang
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ernest JP, Goh JJN, Strydom N, Wang Q, van Wijk RC, Zhang N, Deitchman A, Nuermberger E, Savic RM. Translational predictions of phase 2a first-in-patient efficacy studies for antituberculosis drugs. Eur Respir J 2023; 62:2300165. [PMID: 37321622 PMCID: PMC10469274 DOI: 10.1183/13993003.00165-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Phase 2a trials in tuberculosis typically use early bactericidal activity (EBA), the decline in sputum CFU over 14 days, as the primary end-point for testing the efficacy of drugs as monotherapy. However, the cost of phase 2a trials can range from USD 7 million to USD 19.6 million on average, while >30% of drugs fail to progress to phase 3. Better utilising pre-clinical data to predict and prioritise the most likely drugs to succeed will thus help to accelerate drug development and reduce costs. We aim to predict clinical EBA using pre-clinical in vivo pharmacokinetic (PK)-pharmacodynamic (PD) data and a model-based translational pharmacology approach. METHODS AND FINDINGS First, mouse PK, PD and clinical PK models were compiled. Second, mouse PK-PD models were built to derive an exposure-response relationship. Third, translational prediction of clinical EBA studies was performed using mouse PK-PD relationships and informed by clinical PK models and species-specific protein binding. Presence or absence of clinical efficacy was accurately predicted from the mouse model. Predicted daily decreases of CFU in the first 2 days of treatment and between day 2 and day 14 were consistent with clinical observations. CONCLUSION This platform provides an innovative solution to inform or even replace phase 2a EBA trials, to bridge the gap between mouse efficacy studies and phase 2b and phase 3 trials, and to substantially accelerate drug development.
Collapse
Affiliation(s)
- Jacqueline P Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Janice Jia Ni Goh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Rob C van Wijk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Nan Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Amelia Deitchman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Mehta K, Guo T, van der Graaf PH, van Hasselt JGC. Predictions of Bedaquiline and Pretomanid Target Attainment in Lung Lesions of Tuberculosis Patients using Translational Minimal Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 2023; 62:519-532. [PMID: 36802057 PMCID: PMC10042768 DOI: 10.1007/s40262-023-01217-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Site-of-action concentrations for bedaquiline and pretomanid from tuberculosis patients are unavailable. The objective of this work was to predict bedaquiline and pretomanid site-of-action exposures using a translational minimal physiologically based pharmacokinetic (mPBPK) approach to understand the probability of target attainment (PTA). METHODS A general translational mPBPK framework for the prediction of lung and lung lesion exposure was developed and validated using pyrazinamide site-of-action data from mice and humans. We then implemented the framework for bedaquiline and pretomanid. Simulations were conducted to predict site-of-action exposures following standard bedaquiline and pretomanid, and bedaquiline once-daily dosing. Probabilities of average concentrations within lesions and lungs greater than the minimum bactericidal concentration for non-replicating (MBCNR) and replicating (MBCR) bacteria were calculated. Effects of patient-specific differences on target attainment were evaluated. RESULTS The translational modeling approach was successful in predicting pyrazinamide lung concentrations from mice to patients. We predicted that 94% and 53% of patients would attain bedaquiline average daily PK exposure within lesions (Cavg-lesion) > MBCNR during the extensive phase of bedaquiline standard (2 weeks) and once-daily (8 weeks) dosing, respectively. Less than 5% of patients were predicted to achieve Cavg-lesion > MBCNR during the continuation phase of bedaquiline or pretomanid treatment, and more than 80% of patients were predicted to achieve Cavg-lung >MBCR for all simulated dosing regimens of bedaquiline and pretomanid. CONCLUSIONS The translational mPBPK model predicted that the standard bedaquiline continuation phase and standard pretomanid dosing may not achieve optimal exposures to eradicate non-replicating bacteria in most patients.
Collapse
Affiliation(s)
- Krina Mehta
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Tingjie Guo
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Piet H. van der Graaf
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara, Canterbury, UK
| | | |
Collapse
|
10
|
Molecular mechanism for the involvement of CYP2E1/NF-κB axis in bedaquiline-induced hepatotoxicity. Life Sci 2023; 315:121375. [PMID: 36621541 DOI: 10.1016/j.lfs.2023.121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Bedaquiline (BDQ) is a new class of anti-tubercular (anti-TB) drugs and is currently reserved for multiple drug resistance (MDR-TB). However, after receiving fast-track approval, its clinical studies demonstrate that its treatment is associated with hepatotoxicity and labeled as 'boxed warning' by the USFDA. No data is available on BDQ to understand the mechanism for drug-induced liver injury (DILI), a severe concern for therapeutic failure/unbearable tolerated toxicities leading to drug resistance. Therefore, we performed mechanistic studies to decipher the potential of BDQ at three dose levels (80 to 320 mg/kg) upon the repeated dose administration orally using a widely used mice model for TB. Results of BDQ treatment at the highest dose level showed that substantial increase of hepatic marker enzymes (SGPT and SGOT) in serum, oxidative stress marker levels (MDA and GSH) in hepatic tissue, and pro-inflammatory cytokine levels (TNF-α, IL-6, and IL-1β) in serum compared to control animals. Induction of liver injury situation was further evaluated by Western blotting for various protein expressions linked to oxidative stress (SOD, Nrf2, and Keap1), inflammation (NF-ĸB and IKKβ), apoptosis (BAX, Bcl-2, and Caspase-3) and drug metabolism enzymes (CYP3A4 and CYP2E1). The elevated plasma level of BDQ and its metabolite (N-desmethyl BDQ) were observed, corresponding to BDQ doses. Histopathological examination and SEM analysis of the liver tissue corroborate the above-mentioned findings. Overall results suggest that BDQ treatment-associated generation of its cytotoxic metabolite could act on CYP2E1/NF-kB pathway to aggravate the condition of oxidative stress, inflammation, and apoptosis in the liver and precipitating hepatotoxicity.
Collapse
|
11
|
Xiao H, Yu X, Shang Y, Ren R, Xue Y, Dong L, Zhao L, Jiang G, Huang H. In vitro and Intracellular Antibacterial Activity of Sudapyridine (WX-081) Against Tuberculosis. Infect Drug Resist 2023; 16:217-224. [PMID: 36647451 PMCID: PMC9840375 DOI: 10.2147/idr.s390187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background Sudapyridine (WX-081) has exhibited equivalent efficacy than its counterpart parent drug bedaquiline (BDQ) but better safety profile against Mycobacterium tuberculosis (Mtb). Our study was aimed to evaluate in vitro activity of WX-081 against the clinical isolates of Mtb with different drug-resistance profiles and the intracellular bactericidal activity against the reference strain. Methods The minimum inhibitory concentrations (MICs) of WX-081 and BDQ were tested against 114 Mtb clinical isolates. The intracellular activity of WX-081 and BDQ against the Mtb reference strain H37Rv in THP-1 cells was also evaluated in parallel. Results The MICs for WX-081 of the enrolled isolates ranged from 0.0156 μg/mL to 1 μg/mL. The MIC50 and MIC90 of WX-081 were, respectively, 0.25 μg/mL and 0.5 μg/mL, with 95.6% of the enrolled strains having MICs ≤0.25 μg/mL. For a given strain, the MIC value of WX-081 was generally equivalent to or 2-fold than MIC of BDQ. The intracellular bacterial killing was acquired with the tested drug concentrations that were presumed attainable during clinical usage. Conclusion WX-081 exhibited potent efficacy against the clinical isolates in vitro. The intracellular killing effect of sudapyridine against the reference strain supports its potential efficacy in treating TB patients.
Collapse
Affiliation(s)
- Hua Xiao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Yuanyuan Shang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Ruyan Ren
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Yi Xue
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Liping Zhao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China,Correspondence: Hairong Huang, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, No. 97 Ma Chang, Tongzhou District, Beijing, 101149, People’s Republic of China, Tel +86-10-89509159, Fax +86-10-89509160, Email
| |
Collapse
|
12
|
van Beek SW, Tanneau L, Meintjes G, Wasserman S, Gandhi NR, Campbell A, Viljoen CA, Wiesner L, Aarnoutse RE, Maartens G, Brust JCM, Svensson EM. Model-Predicted Impact of ECG Monitoring Strategies During Bedaquiline Treatment. Open Forum Infect Dis 2022; 9:ofac372. [PMID: 36043179 PMCID: PMC9420883 DOI: 10.1093/ofid/ofac372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background The M2 metabolite of bedaquiline causes QT-interval prolongation, making electrocardiogram (ECG) monitoring of patients receiving bedaquiline for drug-resistant tuberculosis necessary. The objective of this study was to determine the relationship between M2 exposure and Fridericia-corrected QT (QTcF)-interval prolongation and to explore suitable ECG monitoring strategies for 6-month bedaquiline treatment. Methods Data from the PROBeX study, a prospective observational cohort study, were used to characterize the relationship between M2 exposure and QTcF. Established nonlinear mixed-effects models were fitted to pharmacokinetic and ECG data. In a virtual patient population, QTcF values were simulated for scenarios with and without concomitant clofazimine. ECG monitoring strategies to identify patients who need to interrupt treatment (QTcF > 500 ms) were explored. Results One hundred seventy patients were included, providing 1131 bedaquiline/M2 plasma concentrations and 1702 QTcF measurements; 2.1% of virtual patients receiving concomitant clofazimine had QTcF > 500 ms at any point during treatment (0.7% without concomitant clofazimine). With monthly monitoring, almost all patients with QTcF > 500 ms were identified by week 12; after week 12, patients were predominantly falsely identified as QTcF > 500 ms due to stochastic measurement error. Following a strategy with monitoring before treatment and at weeks 2, 4, 8, and 12 in simulations with concomitant clofazimine, 93.8% of all patients who should interrupt treatment were identified, and 26.4% of all interruptions were unnecessary (92.1% and 32.2%, respectively, without concomitant clofazimine). Conclusions Our simulations enable an informed decision for a suitable ECG monitoring strategy by weighing the risk of missing patients with QTcF > 500 ms and that of interrupting bedaquiline treatment unnecessarily. We propose ECG monitoring before treatment and at weeks 2, 4, 8, and 12 after starting bedaquiline treatment.
Collapse
Affiliation(s)
- Stijn W van Beek
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lénaïg Tanneau
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Graeme Meintjes
- Department of Medicine, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Department of Medicine, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Neel R Gandhi
- Departments of Epidemiology & Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Angie Campbell
- Departments of Epidemiology & Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Charle A Viljoen
- Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gary Maartens
- Department of Medicine, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - James C M Brust
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Upton CM, Steele CI, Maartens G, Diacon AH, Wiesner L, Dooley KE. Pharmacokinetics of bedaquiline in cerebrospinal fluid (CSF) in patients with pulmonary tuberculosis (TB). J Antimicrob Chemother 2022; 77:1720-1724. [PMID: 35257182 PMCID: PMC9633714 DOI: 10.1093/jac/dkac067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND With current treatment options most patients with CNS TB develop severe disability or die. Drug-resistant tuberculous meningitis is nearly uniformly fatal. Novel treatment strategies are needed. Bedaquiline, a potent anti-TB drug, has been reported to be absent from CSF in a single report. OBJECTIVES To explore the pharmacokinetics of bedaquiline and its M2 metabolite in the CSF of patients with pulmonary TB. PATIENTS AND METHODS Individuals with rifampicin-resistant pulmonary TB established on a 24 week course of treatment with bedaquiline underwent a lumbar puncture along with multiple blood sample collections over 24 h for CSF and plasma pharmacokinetic assessment, respectively. To capture the expected low bedaquiline and M2 concentrations (due to high protein binding in plasma) we optimized CSF collection and storage methods in vitro before concentrations were quantified via liquid chromatography with tandem MS. RESULTS Seven male participants were enrolled, two with HIV coinfection. Using LoBind® tubes lined with a 5% BSA solution, bedaquiline and M2 could be accurately measured in CSF. Bedaquiline and M2 were present in all patients at all timepoints at concentrations similar to the estimated unbound fractions in plasma. CONCLUSIONS Bedaquiline and M2 penetrate freely into the CSF of pulmonary TB patients with a presumably intact blood-brain barrier. Clinical studies are urgently needed to determine whether bedaquiline can contribute meaningfully to the treatment of CNS TB.
Collapse
Affiliation(s)
| | - Chanel I Steele
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|