1
|
Papazachariou A, Tziolos RN, Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:423. [PMID: 38786151 PMCID: PMC11117269 DOI: 10.3390/antibiotics13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Acinetobacter baumannii has emerged as a pressing challenge in clinical practice, mainly due to the development of resistance to multiple antibiotics, including colistin, one of the last-resort treatments. This review highlights all the possible mechanisms of colistin resistance and the genetic basis contributing to this resistance, such as modifications to lipopolysaccharide or lipid A structures, alterations in outer membrane permeability via porins and heteroresistance. In light of this escalating threat, the review also evaluates available treatment options. The development of new antibiotics (cefiderocol, sulbactam/durlobactam) although not available everywhere, and the use of various combinations and synergistic drug combinations (including two or more of the following: a polymyxin, ampicillin/sulbactam, carbapenems, fosfomycin, tigecycline/minocycline, a rifamycin, and aminoglycosides) are discussed in the context of overcoming colistin resistance of A. baumannii infections. Although most studied combinations are polymyxin-based combinations, non-polymyxin-based combinations have been emerging as promising options. However, clinical data remain limited and continued investigation is essential to determine optimal therapeutic strategies against colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Andria Papazachariou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Renatos-Nikolaos Tziolos
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Stamatis Karakonstantis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - George Samonis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
- Metropolitan Hospital, Neon Faliron, 18547 Athens, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| |
Collapse
|
2
|
Pinchera B, Buonomo AR, Schiano Moriello N, Scotto R, Villari R, Gentile I. Update on the Management of Surgical Site Infections. Antibiotics (Basel) 2022; 11:1608. [PMID: 36421250 PMCID: PMC9686970 DOI: 10.3390/antibiotics11111608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 10/29/2023] Open
Abstract
Surgical site infections are an increasingly important issue in nosocomial infections. The progressive increase in antibiotic resistance, the ever-increasing number of interventions and the ever-increasing complexity of patients due to their comorbidities amplify this problem. In this perspective, it is necessary to consider all the risk factors and all the current preventive and prophylactic measures which are available. At the same time, given multiresistant microorganisms, it is essential to consider all the possible current therapeutic interventions. Therefore, our review aims to evaluate all the current aspects regarding the management of surgical site infections.
Collapse
Affiliation(s)
- Biagio Pinchera
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Mohd Sazlly Lim S, Heffernan A, Naicker S, Wallis S, Roberts JA, Sime FB. Evaluation of Fosfomycin-Sulbactam Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Isolates in a Hollow-Fibre Infection Model. Antibiotics (Basel) 2022; 11:1578. [PMID: 36358238 PMCID: PMC9686642 DOI: 10.3390/antibiotics11111578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 12/17/2023] Open
Abstract
Static concentration in vitro studies have demonstrated that fosfomycin- or sulbactam-based combinations may be efficacious against carbapenem-resistant Acinetobacter baumannii (CRAB). In the present study, we aimed to evaluate the bacterial killing and resistance suppression potential of fosfomycin-sulbactam combination therapies against CRAB isolates in a dynamic infection model. We simulated clinically relevant dosing regimens of fosfomycin (8 g every 8 h, 1 h infusion) and sulbactam (12 g continuous infusion or 4 g every 8 h, 4 h infusion) alone and in combination for 7 days in a hollow-fibre infection model (HFIM) against three clinical isolates of CRAB. The simulated pharmacokinetic profiles in the HFIM were based on fosfomycin and sulbactam data from critically ill patients. Fosfomycin monotherapy resulted in limited bacterial killing. Sulbactam monotherapies resulted in ~ 3 to 4 log10 kill within the first 8 to 32 h followed by regrowth of up to 8 to 10 log10 CFU/mL. A combination of fosfomycin and continuous infusion of sulbactam led to a ~2 to 4 log10 reduction in bacterial burden within the first 24 h, which was sustained throughout the duration of the experiments. A combination of fosfomycin and extended infusion of sulbactam produced a ~4 log10 reduction in colony count within 24 h. This study demonstrated that fosfomycin in combination with sulbactam is a promising option for the treatment of MDR A. baumannii. Further studies are needed to further assess the potential clinical utility of this combination.
Collapse
Affiliation(s)
- Sazlyna Mohd Sazlly Lim
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4029, Australia
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Aaron Heffernan
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4029, Australia
- School of Medicine, Griffith University, Southport, QLD 4222, Australia
| | - Saiyuri Naicker
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4029, Australia
| | - Steven Wallis
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4029, Australia
| | - Jason A. Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4029, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 30900 Nîmes, France
| | - Fekade Bruck Sime
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
4
|
In search for a synergistic combination against pandrug-resistant A. baumannii; methodological considerations. Infection 2022; 50:569-581. [PMID: 34982411 DOI: 10.1007/s15010-021-01748-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/18/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Pending approval of new antimicrobials, synergistic combinations are the only treatment option against pandrug-resistant A. baumannii (PDRAB). Considering the lack of a standardized methodology, the aim of this manuscript is to systematically review the methodology and discuss unique considerations for assessing antimicrobial combinations against PDRAB. METHODS Post-hoc analysis of a systematic review (conducted in PubMed and Scopus from inception to April 2021) of studies evaluating antimicrobial combination against A. baumannii, based on antimicrobials that are inactive in vitro alone. RESULTS Eighty-four publications were reviewed, using a variety of synergy testing methods, including; gradient-based methods (n = 11), disk-based methods (n = 6), agar dilution (n = 2), checkerboard assay (n = 44), time-kill assay (n = 50), dynamic in vitro PK/PD models (n = 6), semi-mechanistic PK/PD models (n = 5), and in vivo animal models (n = 11). Several variations in definitions of synergy and interpretation of each method were observed and are discussed. Challenges related to testing combinations of antimicrobials that are inactive alone (with regards to concentrations at which the combinations are assessed), as well as other considerations (assessment of stasis vs killing, clinical relevance of re-growth in vitro after initial killing, role of in vitro vs in vivo conditions, challenges of clinical testing of antimicrobial combinations against PDRAB infections) are discussed. CONCLUSION This review demonstrates the need for consensus on a standardized methodology and clinically relevant definitions for synergy. Modifications in the methodology and definitions of synergy as well as a roadmap for further development of antimicrobial combinations against PDRAB are proposed.
Collapse
|
5
|
Gatti M, Viaggi B, Rossolini GM, Pea F, Viale P. An Evidence-Based Multidisciplinary Approach Focused on Creating Algorithms for Targeted Therapy of Infection-Related Ventilator-Associated Complications (IVACs) Caused by Pseudomonas aeruginosa and Acinetobacter baumannii in Critically Ill Adult Patients. Antibiotics (Basel) 2021; 11:antibiotics11010033. [PMID: 35052910 PMCID: PMC8773303 DOI: 10.3390/antibiotics11010033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: To develop evidence-based algorithms for targeted antibiotic therapy of infection-related ventilator-associated complications (IVACs) caused by non-fermenting Gram-negative pathogens. (2) Methods: A multidisciplinary team of four experts had several rounds of assessments for developing algorithms devoted to targeted antimicrobial therapy of IVACs caused by two non-fermenting Gram-negative pathogens. A literature search was performed on PubMed-MEDLINE (until September 2021) to provide evidence for supporting therapeutic choices. Quality and strength of evidence was established according to a hierarchical scale of the study design. Six different algorithms with associated recommendations in terms of therapeutic choice and dosing optimization were suggested according to the susceptibility pattern of two non-fermenting Gram-negative pathogens: multi-susceptible Pseudomonas aeruginosa (PA), multidrug-resistant (MDR) metallo-beta-lactamase (MBL)-negative-PA, MBL-positive-PA, carbapenem-susceptible Acinetobacter baumannii (AB), and carbapenem-resistant AB. (3) Results: Piperacillin–tazobactam or fourth-generation cephalosporins represent the first therapeutic choice in IVACs caused by multi-susceptible PA. A carbapenem-sparing approach favouring the administration of novel beta-lactam/beta-lactamase inhibitors should be pursued in the management of MDR-MBL-negative PA infections. Cefiderocol should be used as first-line therapy for the management of IVACs caused by MBL-producing-PA or carbapenem-resistant AB. Fosfomycin-based combination therapy, as well as inhaled colistin, could be considered as a reasonable alternative for the management of IVACs due to MDR-PA and carbapenem-resistant AB. (4) Conclusions: The implementation of algorithms focused on prompt revision of antibiotic regimens guided by results of conventional and rapid diagnostic methodologies, appropriate place in therapy of novel beta-lactams, implementation of strategies for sparing the broadest-spectrum antibiotics, and pharmacokinetic/pharmacodynamic optimization of antibiotic dosing regimens is strongly suggested.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (P.V.)
- SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Bruno Viaggi
- Neurointensive Care Unit, Department of Anesthesiology, Careggi University Hospital, 50134 Florence, Italy;
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (P.V.)
- SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence:
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (P.V.)
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| |
Collapse
|
6
|
Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Systematic Review of Antimicrobial Combination Options for Pandrug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10111344. [PMID: 34827282 PMCID: PMC8615225 DOI: 10.3390/antibiotics10111344] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial combinations are at the moment the only potential treatment option for pandrug-resistant A. baumannii. A systematic review was conducted in PubMed and Scopus for studies reporting the activity of antimicrobial combinations against A. baumannii resistant to all components of the combination. The clinical relevance of synergistic combinations was assessed based on concentrations achieving synergy and PK/PD models. Eighty-four studies were retrieved including 818 eligible isolates. A variety of combinations (n = 141 double, n = 9 triple) were tested, with a variety of methods. Polymyxin-based combinations were the most studied, either as double or triple combinations with cell-wall acting agents (including sulbactam, carbapenems, glycopeptides), rifamycins and fosfomycin. Non-polymyxin combinations were predominantly based on rifampicin, fosfomycin, sulbactam and avibactam. Several combinations were synergistic at clinically relevant concentrations, while triple combinations appeared more active than the double ones. However, no combination was consistently synergistic against all strains tested. Notably, several studies reported synergy but at concentrations unlikely to be clinically relevant, or the concentration that synergy was observed was unclear. Selecting the most appropriate combinations is likely strain-specific and should be guided by in vitro synergy evaluation. Furthermore, there is an urgent need for clinical studies on the efficacy and safety of such combinations.
Collapse
|