1
|
Fang XM, Li J, Wang NF, Zhang T, Yu LY. Metagenomics uncovers microbiome and resistome in soil and reindeer faeces from Ny-Ålesund (Svalbard, High Arctic). ENVIRONMENTAL RESEARCH 2024; 262:119788. [PMID: 39159777 DOI: 10.1016/j.envres.2024.119788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Research on the microbiome and resistome in polar environments, such as the Arctic, is crucial for understanding the emergence and spread of antibiotic resistance genes (ARGs) in the environment. In this study, soil and reindeer faeces samples collected from Ny-Ålesund (Svalbard, High Arctic) were examined to analyze the microbiome, ARGs, and biocide/metal resistance genes (BMRGs). The dominant phyla in both soil and faeces were Pseudomonadota, Actinomycetota, and Bacteroidota. A total of 2618 predicted Open Reading Frames (ORFs) containing antibiotic resistance genes (ARGs) were detected. These ARGs belong to 162 different genes across 17 antibiotic classes, with rifamycin and multidrug resistance genes being the most prevalent. We focused on investigating antibiotic resistance mechanisms in the Ny-Ålesund environment by analyzing the resistance genes and their biological pathways. Procrustes analysis demonstrated a significant correlation between bacterial communities and ARG/BMRG profiles in soil and faeces samples. Correlation analysis revealed that Pseudomonadota contributed most to multidrug and triclosan resistance, while Actinomycetota were predominant contributors to rifamycin and aminoglycoside resistance. The geochemical factors, SiO42- and NH4+, were found to significantly influence the microbial composition and ARG distribution in the soil samples. Analysis of ARGs, BMRGs, virulence factors (VFs), and pathogens identified potential health risks associated with certain bacteria, such as Cryobacterium and Pseudomonas, due to the presence of different genetic elements. This study provided valuable insights into the molecular mechanisms and geochemical factors contributing to antibiotic resistance and enhanced our understanding of the evolution of antibiotic resistance genes in the environment.
Collapse
Affiliation(s)
- Xiao-Mei Fang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China
| | - Jun Li
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China
| | - Neng-Fei Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China.
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China.
| |
Collapse
|
2
|
Wachino JI, Doi Y, Arakawa Y. Aminoglycoside Resistance: Updates with a Focus on Acquired 16S Ribosomal RNA Methyltransferases. Infect Dis Clin North Am 2020; 34:887-902. [PMID: 33011054 PMCID: PMC10927307 DOI: 10.1016/j.idc.2020.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The clinical usefulness of aminoglycosides has been revisited as an effective choice against β-lactam-resistant and fluoroquinolone-resistant gram-negative bacterial infections. Plazomicin, a next-generation aminoglycoside, was introduced for the treatment of complicated urinary tract infections and acute pyelonephritis. In contrast, bacteria have resisted aminoglycosides, including plazomicin, by producing 16S ribosomal RNA (rRNA) methyltransferases (MTases) that confer high-level and broad-range aminoglycoside resistance. Aminoglycoside-resistant 16S rRNA MTase-producing gram-negative pathogens are widespread in various settings and are becoming a grave concern. This article provides up-to-date information with a focus on aminoglycoside-resistant 16S rRNA MTases.
Collapse
Affiliation(s)
- Jun-Ichi Wachino
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, S829 Scaife Hall, 3350 Terrace Street, Pittsburgh, PA 15261, USA; Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan; Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Medical Technology, Shubun University, Japan
| |
Collapse
|
3
|
da Paz Pereira JN, de Andrade CADN, da Costa Lima JL, de Lima Neto RG, de Araújo PSR, Maciel MAV. Clonal Dissemination of Clinical Isolates of Acinetobacter baumannii Carriers of 16S rRNA Methylase Genes in an Oncological Hospital in Recife, Brazil. Curr Microbiol 2019; 77:32-39. [DOI: 10.1007/s00284-019-01786-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
|
4
|
Nosrati M, Dey D, Mehrani A, Strassler SE, Zelinskaya N, Hoffer ED, Stagg SM, Dunham CM, Conn GL. Functionally critical residues in the aminoglycoside resistance-associated methyltransferase RmtC play distinct roles in 30S substrate recognition. J Biol Chem 2019; 294:17642-17653. [PMID: 31594862 DOI: 10.1074/jbc.ra119.011181] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Indexed: 11/06/2022] Open
Abstract
Methylation of the small ribosome subunit rRNA in the ribosomal decoding center results in exceptionally high-level aminoglycoside resistance in bacteria. Enzymes that methylate 16S rRNA on N7 of nucleotide G1405 (m7G1405) have been identified in both aminoglycoside-producing and clinically drug-resistant pathogenic bacteria. Using a fluorescence polarization 30S-binding assay and a new crystal structure of the methyltransferase RmtC at 3.14 Å resolution, here we report a structure-guided functional study of 30S substrate recognition by the aminoglycoside resistance-associated 16S rRNA (m7G1405) methyltransferases. We found that the binding site for these enzymes in the 30S subunit directly overlaps with that of a second family of aminoglycoside resistance-associated 16S rRNA (m1A1408) methyltransferases, suggesting that both groups of enzymes may exploit the same conserved rRNA tertiary surface for docking to the 30S. Within RmtC, we defined an N-terminal domain surface, comprising basic residues from both the N1 and N2 subdomains, that directly contributes to 30S-binding affinity. In contrast, additional residues lining a contiguous adjacent surface on the C-terminal domain were critical for 16S rRNA modification but did not directly contribute to the binding affinity. The results from our experiments define the critical features of m7G1405 methyltransferase-substrate recognition and distinguish at least two distinct, functionally critical contributions of the tested enzyme residues: 30S-binding affinity and stabilizing a binding-induced 16S rRNA conformation necessary for G1405 modification. Our study sets the scene for future high-resolution structural studies of the 30S-methyltransferase complex and for potential exploitation of unique aspects of substrate recognition in future therapeutic strategies.
Collapse
Affiliation(s)
- Meisam Nosrati
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Atousa Mehrani
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Sarah E Strassler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Natalia Zelinskaya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Eric D Hoffer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Scott M Stagg
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|