1
|
Tang B, Zhao H, Li J, Liu N, Huang Y, Wang J, Yue M. Detection of clinical Serratia marcescens isolates carrying blaKPC-2 in a hospital in China. Heliyon 2024; 10:e29702. [PMID: 38660286 PMCID: PMC11040119 DOI: 10.1016/j.heliyon.2024.e29702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Serratia marcescens is an opportunistic and nosocomial pathogen found in the intensive care unit (ICU), but its antimicrobial resistance (AMR) is rarely addressed. Here, we reported two blaKPC-2-positive S. marcescens strains, SMBC31 and SMBC50, recovered from the ICU of a hospital in Zhengzhou, China. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method, while S1-PFGE was employed to demonstrate plasmid size approximation. Complete genome sequences were obtained through Illumina NovaSeq 6000 and Oxford Nanopore Technologies. Both strains exhibit resistance to meropenem and harbor the blaKPC-2 and blaSRT-1 resistance genes. The plasmid pSMBC31-39K in strain SMBC31 and pSMBC50-107K in strain SMBC50 were identified as carrying the blaKPC-2 gene. Notably, both of these plasmids were successfully transferred to Escherichia coli strain J53. Phylogenetic analysis based on plasmid sequences revealed that pSMBC31-39K exhibited high homology with plasmids found in Aeromonas caviae, Citrobacter sp., and Pseudomonas aeruginosa, while pSMBC50-107K showed significant similarity to those of E. coli and Klebsiella pneumoniae. Notably, the coexistence of blaKPC-2 and blaSRT-1 was observed in all 94 KPC-2-producing S. marcescens strains by mining all genomes available under the GenBank database, which were mainly isolated from hospitalized patients. The emergence of multidrug-resistant S. marcescens poses significant challenges in treating clinical infections, highlighting the need for increased surveillance of this pathogen.
Collapse
Affiliation(s)
- Biao Tang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haoyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Na Liu
- Translational Medicine Research Center, Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Yuting Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Min Yue
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
| |
Collapse
|
2
|
Wang X, Tang B, Liu G, Wang M, Sun J, Tan R, Pan T, Qu J, Liu J, Ou HY, Qu H. Transmission of Nonconjugative Virulence or Resistance Plasmids Mediated by a Self-Transferable IncN3 Plasmid from Carbapenem-Resistant Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0136422. [PMID: 35863038 PMCID: PMC9430514 DOI: 10.1128/spectrum.01364-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae poses a critical challenge to clinical and public health. Along with conjugative plasmids, nonconjugative resistance or virulence plasmids associated with carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP), and even carbapenem-resistant and hypervirulent K. pneumoniae (CR-hvKP) strains have been spreading globally. In this study, a clinical CRKP strain KP2648 was isolated, and the transferability of its plasmids was assessed using conjugation experiments. The transconjugants were characterized by polymerase chain reaction (PCR) detection, XbaI and S1-pulsed-field gel electrophoresis (PFGE), and/or whole-genome sequencing. Genetically modified IncN3 plasmids were employed to elucidate the self-transferability and the mobilization mechanisms. KP2648 has three natural plasmids: a nonconjugative IncFIB/IncHI3B virulence plasmid, a nonconjugative IncFII/IncR carbapenem-resistant plasmid, and a self-transferable IncN3 plasmid with a high conjugation frequency (7.54 ± 1.06) × 10-1. The IncN3 plasmid could mobilize the coexisting nonconjugative virulence/resistance plasmids either directly or by employing intermediate E. coli with two forms: a hybrid plasmid fused with IncN3 or a cotransfer with the helper plasmid, IncN3. Various mobile genetic elements, including ISKpn74, ISKpn14, IS26, ISShes11, ISAba11, and Tn3, are involved in the genetic transposition of diverse hybrid plasmids and the cotransfer process during the intra/interspecies transmission. IMPORTANCE Nowadays, the underlying mobilization mechanism and evolutionary processes of nonconjugative virulence or resistance plasmids in Klebsiella pneumoniae remain poorly understood. Our study revealed the high conjugation ability of IncN3 plasmid isolated from carbapenem-resistant K. pneumoniae and confirmed its capability to mobilize the nonconjugative virulence or resistance plasmids. The self-transferable IncN3 plasmid could facilitate the transmission of pathogenicity and genetic evolution of carbapenem-resistant and hypervirulent K. pneumoniae, including hv-CRKP (virulence plasmid obtained by carbapenem-resistant K. pneumoniae) and CR-hvKP (resistance plasmid obtained by hypervirulent K. pneumoniae), warranting further monitoring.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Tang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guitian Liu
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyong Sun
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Lee H, Ko KS. Effect of multiple, compatible plasmids on the fitness of the bacterial host by inducing transcriptional changes. J Antimicrob Chemother 2021; 76:2528-2537. [PMID: 34279638 DOI: 10.1093/jac/dkab240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Bacteria that acquire plasmids incur a biological cost. Despite this fact, clinical Enterobacteriaceae isolates commonly contain multiple co-existing plasmids harbouring carbapenemase genes. METHODS Six different plasmids carrying blaNDM-1, blaNDM-5, blaCTX-M-15, blaKPC-2, blaOXA-181 and blaOXA-232 genes were obtained from Klebsiella pneumoniae and Escherichia coli clinical isolates. Using the E. coli DH5α strain as recipient, 14 transconjugants with diverse plasmid combinations (single or double plasmids) were generated. For each of these, the effects of plasmid carriage on the bacterial host were investigated using in vitro and in vivo competition assays; additionally, the effects were investigated in the context of biofilm formation, serum resistance and survival inside macrophages. Transcriptomic changes in single- and double-plasmid recipients were also investigated. RESULTS Increased in vitro and in vivo competitiveness was observed when two plasmids carrying blaNDM-1 and blaOXA-232 were co-introduced into the host bacteria. However, DH5α::pNDM5 + pOXA232 and other double-plasmid recipients did not show such competitiveness. DH5α::pNDM5 + pOXA181 did not show any fitness cost compared with a plasmid-free host and single-plasmid transconjugants, while both the double-plasmid recipients with pCTXM15 or pKPC2 exhibited a fitness burden. The double-plasmid recipient DH5α::pNDM1 + pOXA232 also exhibited increased biofilm formation, serum resistance and survival inside macrophages. Transcriptomic analysis revealed that the genes of DH5α::pNDM1 + pOXA232 involved in metabolic pathways, transport and stress response were up-regulated, while those involved in translation were down-regulated. CONCLUSIONS Our study suggests that bacterial strains can gain fitness through the acquisition of multiple plasmids harbouring antibiotic resistance genes, which may be mediated by transcriptomic changes in the chromosomal genes of the bacterial host.
Collapse
Affiliation(s)
- Haejeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Hao Y, Shao C, Geng X, Bai Y, Jin Y, Lu Z. Genotypic and Phenotypic Characterization of Clinical Escherichia coli Sequence Type 405 Carrying IncN2 Plasmid Harboring bla NDM-1. Front Microbiol 2019; 10:788. [PMID: 31105653 PMCID: PMC6499153 DOI: 10.3389/fmicb.2019.00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023] Open
Abstract
We report a bla NDM-carrying ST405 Escherichia coli recovered from the abdominal fluid of a patient in Shandong, China. This strain belonged to the high-risk phylogenetic group D and carried the virulence genes, papG II, papG III, papC, and iroN. In addition to bla NDM-1, this isolate carried the quinolone resistance gene acc(6')-Ib and extended-spectrum β-lactamase (ESBL) genes bla CTX-M-15 and bla CTX-M-14. bla NDM-1 was located on a 41 Kb IncN2 self-transmissible plasmid. The IncN2 plasmid named as pJN24NDM1 was fully sequenced and analyzed. Genome comparative analysis showed that IncN2 plasmids harboring carbapenem-resistance genes possessed conserved backbones and variable accessory regions. Phylogenetic analysis of 87 IncN plasmids based on orthologous genes indicated that 9 IncN2 plasmids fell into one phylogenetic clade, while 4 IncN3 plasmids were in two phylogenetic clades of the 74 IncN1 plasmids. The presence of IncN2 plasmids harboring bla NDM in the high-risk clone ST405 E. coli raises serious concerns for its potential of dissemination.
Collapse
Affiliation(s)
| | | | | | | | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|