1
|
Sartelli M, Tascini C, Coccolini F, Dellai F, Ansaloni L, Antonelli M, Bartoletti M, Bassetti M, Boncagni F, Carlini M, Cattelan AM, Cavaliere A, Ceresoli M, Cipriano A, Cortegiani A, Cortese F, Cristini F, Cucinotta E, Dalfino L, De Pascale G, De Rosa FG, Falcone M, Forfori F, Fugazzola P, Gatti M, Gentile I, Ghiadoni L, Giannella M, Giarratano A, Giordano A, Girardis M, Mastroianni C, Monti G, Montori G, Palmieri M, Pani M, Paolillo C, Parini D, Parruti G, Pasero D, Pea F, Peghin M, Petrosillo N, Podda M, Rizzo C, Rossolini GM, Russo A, Scoccia L, Sganga G, Signorini L, Stefani S, Tumbarello M, Tumietto F, Valentino M, Venditti M, Viaggi B, Vivaldi F, Zaghi C, Labricciosa FM, Abu-Zidan F, Catena F, Viale P. Management of intra-abdominal infections: recommendations by the Italian council for the optimization of antimicrobial use. World J Emerg Surg 2024; 19:23. [PMID: 38851757 PMCID: PMC11162065 DOI: 10.1186/s13017-024-00551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
Intra-abdominal infections (IAIs) are common surgical emergencies and are an important cause of morbidity and mortality in hospital settings, particularly if poorly managed. The cornerstones of effective IAIs management include early diagnosis, adequate source control, appropriate antimicrobial therapy, and early physiologic stabilization using intravenous fluids and vasopressor agents in critically ill patients. Adequate empiric antimicrobial therapy in patients with IAIs is of paramount importance because inappropriate antimicrobial therapy is associated with poor outcomes. Optimizing antimicrobial prescriptions improves treatment effectiveness, increases patients' safety, and minimizes the risk of opportunistic infections (such as Clostridioides difficile) and antimicrobial resistance selection. The growing emergence of multi-drug resistant organisms has caused an impending crisis with alarming implications, especially regarding Gram-negative bacteria. The Multidisciplinary and Intersociety Italian Council for the Optimization of Antimicrobial Use promoted a consensus conference on the antimicrobial management of IAIs, including emergency medicine specialists, radiologists, surgeons, intensivists, infectious disease specialists, clinical pharmacologists, hospital pharmacists, microbiologists and public health specialists. Relevant clinical questions were constructed by the Organizational Committee in order to investigate the topic. The expert panel produced recommendation statements based on the best scientific evidence from PubMed and EMBASE Library and experts' opinions. The statements were planned and graded according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) hierarchy of evidence. On November 10, 2023, the experts met in Mestre (Italy) to debate the statements. After the approval of the statements, the expert panel met via email and virtual meetings to prepare and revise the definitive document. This document represents the executive summary of the consensus conference and comprises three sections. The first section focuses on the general principles of diagnosis and treatment of IAIs. The second section provides twenty-three evidence-based recommendations for the antimicrobial therapy of IAIs. The third section presents eight clinical diagnostic-therapeutic pathways for the most common IAIs. The document has been endorsed by the Italian Society of Surgery.
Collapse
Affiliation(s)
- Massimo Sartelli
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100, Macerata, Italy.
| | - Carlo Tascini
- Infectious Diseases Clinic, Santa Maria Della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
- Infectious Diseases Clinic, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Federico Coccolini
- Department of General, Emergency and Trauma Surgery, Azienda Ospedaliero Universitaria Pisana, University Hospital, Pisa, Italy
| | - Fabiana Dellai
- Infectious Diseases Clinic, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Luca Ansaloni
- Division of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Bassetti
- Division of Infectious Diseases, Department of Health Sciences, University of Genova, Genoa, Italy
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Boncagni
- Anesthesiology and Intensive Care Unit, Macerata Hospital, Macerata, Italy
| | - Massimo Carlini
- Department of General Surgery, S. Eugenio Hospital, Rome, Italy
| | - Anna Maria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, Padua, Italy
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Arturo Cavaliere
- Unit of Hospital Pharmacy, Viterbo Local Health Authority, Viterbo, Italy
| | - Marco Ceresoli
- General and Emergency Surgery, Milano-Bicocca University, School of Medicine and Surgery, Monza, Italy
| | - Alessandro Cipriano
- Department of Emergency Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical Surgical and Critical Care, University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | | | - Francesco Cristini
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, Forlì, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Eugenio Cucinotta
- Department of Human Pathology of the Adult and Evolutive Age "Gaetano Barresi", Section of General Surgery, University of Messina, Messina, Italy
| | - Lidia Dalfino
- Anesthesia and Intensive Care Unit, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University of Bari, Bari, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Francesco Forfori
- Anesthesia and Intensive Care, Anesthesia and Resuscitation Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Paola Fugazzola
- Division of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Ivan Gentile
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lorenzo Ghiadoni
- Department of Emergency Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
- Department on Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonino Giarratano
- Department of Precision Medicine in Medical Surgical and Critical Care, University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Alessio Giordano
- Unit of Emergency Surgery, Careggi University Hospital, Florence, Italy
| | - Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, AOU Policlinico Umberto 1, Sapienza University of Rome, Rome, Italy
| | - Gianpaola Monti
- Department of Anesthesia and Intensive Care, ASST GOM Niguarda Ca' Granda, Milan, Italy
| | - Giulia Montori
- Unit of General and Emergency Surgery, Vittorio Veneto Hospital, Vittorio Veneto, Italy
| | - Miriam Palmieri
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100, Macerata, Italy
| | - Marcello Pani
- Hospital Pharmacy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ciro Paolillo
- Emergency Department, University of Verona, Verona, Italy
| | - Dario Parini
- General Surgery Department, Santa Maria Della Misericordia Hospital, Rovigo, Italy
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, Pescara, Italy
| | - Daniela Pasero
- Department of Emergency, Anaesthesia and Intensive Care Unit, ASL1 Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Nicola Petrosillo
- Infection Prevention and Control Service, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Mauro Podda
- Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, "Renato Dulbecco" Teaching Hospital, Catanzaro, Italy
| | - Loredana Scoccia
- Hospital Pharmacy Unit, Macerata Hospital, AST Macerata, Macerata, Italy
| | - Gabriele Sganga
- Emergency and Trauma Surgery Unit, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Liana Signorini
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Infectious and Tropical Diseases Unit, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Fabio Tumietto
- UO Antimicrobial Stewardship-AUSL Bologna, Bologna, Italy
| | | | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Bruno Viaggi
- Intensive Care Department, Careggi Hospital, Florence, Italy
| | | | - Claudia Zaghi
- General, Emergency and Trauma Surgery Department, Vicenza Hospital, Vicenza, Italy
| | | | - Fikri Abu-Zidan
- Statistics and Research Methodology, The Research Office, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Fausto Catena
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Sartelli M, Barie P, Agnoletti V, Al-Hasan MN, Ansaloni L, Biffl W, Buonomo L, Blot S, Cheadle WG, Coimbra R, De Simone B, Duane TM, Fugazzola P, Giamarellou H, Hardcastle TC, Hecker A, Inaba K, Kirkpatrick AW, Labricciosa FM, Leone M, Martin-Loeches I, Maier RV, Marwah S, Maves RC, Mingoli A, Montravers P, Ordóñez CA, Palmieri M, Podda M, Rello J, Sawyer RG, Sganga G, Tattevin P, Thapaliya D, Tessier J, Tolonen M, Ulrych J, Vallicelli C, Watkins RR, Catena F, Coccolini F. Intra-abdominal infections survival guide: a position statement by the Global Alliance For Infections In Surgery. World J Emerg Surg 2024; 19:22. [PMID: 38851700 PMCID: PMC11161965 DOI: 10.1186/s13017-024-00552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
Intra-abdominal infections (IAIs) are an important cause of morbidity and mortality in hospital settings worldwide. The cornerstones of IAI management include rapid, accurate diagnostics; timely, adequate source control; appropriate, short-duration antimicrobial therapy administered according to the principles of pharmacokinetics/pharmacodynamics and antimicrobial stewardship; and hemodynamic and organ functional support with intravenous fluid and adjunctive vasopressor agents for critical illness (sepsis/organ dysfunction or septic shock after correction of hypovolemia). In patients with IAIs, a personalized approach is crucial to optimize outcomes and should be based on multiple aspects that require careful clinical assessment. The anatomic extent of infection, the presumed pathogens involved and risk factors for antimicrobial resistance, the origin and extent of the infection, the patient's clinical condition, and the host's immune status should be assessed continuously to optimize the management of patients with complicated IAIs.
Collapse
Affiliation(s)
- Massimo Sartelli
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, Macerata, 62100, Italy.
| | - Philip Barie
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Vanni Agnoletti
- Anesthesia and Intensive Care Unit, Bufalini Hospital - AUSL della Romagna, Cesena, Italy
| | - Majdi N Al-Hasan
- Department of Internal Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Luca Ansaloni
- Department of General and Emergency Surgery, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Walter Biffl
- Division of Trauma and Acute Care Surgery, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Luis Buonomo
- Emergency, Urgency and Trauma Surgery, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - William G Cheadle
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Raul Coimbra
- Comparative Effectiveness and Clinical Outcomes Research Center - CECORC - Riverside University Health System, Moreno Valley, CA, USA
- Department of Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | - Paola Fugazzola
- Department of General and Emergency Surgery, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Helen Giamarellou
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Timothy C Hardcastle
- Department of Surgical Sciences, Nelson R Mandela School of Clinical Medicine, University of KwaZulu-Natal, and Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Kenji Inaba
- Department of Surgery, University of Southern California, Los Angeles, CA, USA
| | - Andrew W Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | | | - Marc Leone
- Department of Anaesthesia and Intensive Care Unit, AP-HM, Aix-Marseille University, North Hospital, Marseille, France
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organisation, St James's Hospital, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
- Centro de Investigacion Biomedica En Red Entermedades Respiratorias, Institute of Health Carlos III, Madrid, Spain
- Pulmonary Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Ronald V Maier
- Department of Surgery, Harborview Medical Centre, University of Washington, Seattle, USA
| | - Sanjay Marwah
- Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Ryan C Maves
- Section of Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Andrea Mingoli
- Emergency Department, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Philippe Montravers
- Anesthesiology and Critical Care Medicine Department, DMU PARABOL, Bichat Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Carlos A Ordóñez
- Division of Trauma and Acute Care Surgery, Department of Surgery, Fundación Valle del Lili, Cali, Colombia
| | - Miriam Palmieri
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, Macerata, 62100, Italy
| | - Mauro Podda
- Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Jordi Rello
- Global Health eCore, Vall d'Hebron University Hospital Campus, Barcelona, 08035, Spain
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat del Valles, Spain
| | - Robert G Sawyer
- Department of Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Gabriele Sganga
- Emergency Surgery and Trauma, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pierre Tattevin
- Infectious Disease and Intensive Care Unit, Pontchaillou University Hospital, Rennes, France
| | | | - Jeffrey Tessier
- Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matti Tolonen
- Emergency Surgery department, Meilahti Tower Hospital, HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki, Finland
| | - Jan Ulrych
- First Department of Surgery, Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Carlo Vallicelli
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Richard R Watkins
- Department of Medicine, Division of Infectious Diseases, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Fausto Catena
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Federico Coccolini
- General, Emergency and Trauma Surgery Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
3
|
Roepcke S, Passarell J, Walker H, Flanagan S. Population pharmacokinetic modeling and target attainment analyses of rezafungin for the treatment of candidemia and invasive candidiasis. Antimicrob Agents Chemother 2023; 67:e0091623. [PMID: 38014945 PMCID: PMC10720538 DOI: 10.1128/aac.00916-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023] Open
Abstract
Rezafungin is a chemically and metabolically stable echinocandin with a longer half-life than other echinocandins, allowing for a once-weekly intravenous infusion versus a daily infusion. Rezafungin is approved in the US for the treatment of candidemia and/or invasive candidiasis and is in development for the prevention of invasive fungal disease caused by Candida, Aspergillus, and Pneumocystis spp. in immunosuppressed patients. A population pharmacokinetic (PPK) model was developed using data from five Phase 1, one Phase 2, and one Phase 3 study. The model found to best describe the available data was a three-compartment PPK model with first-order elimination characterized by the parameters clearance (CL), central volume (V1), peripheral volume (V23), intercompartmental clearance 1, and intercompartmental clearance 2. The variability model included correlated interindividual variability in CL, V1, and V23 and a proportional residual variability model. The following statistically significant covariates were identified: albumin concentrations on V23; body surface area (BSA) on CL, V1, and V23; and disease state on CL and V1. Disease states were defined as patients from the Phase 2 and Phase 3 studies and hepatically impaired subjects. Covariates of BSA, disease state, or albumin, included in the final model, were not associated with clinically meaningful changes in PK, nor were any other patient factors, indicating that a common dose regimen is adequate for all adult patients. Target attainment simulations were performed to estimate the probability of achieving PK/pharmacodynamic targets across the range of minimum inhibitory concentration values for six species of Candida.
Collapse
Affiliation(s)
- Stefan Roepcke
- Cognigen Division of Simulations Plus, Inc., Buffalo, New York, USA
| | - Julie Passarell
- Cognigen Division of Simulations Plus, Inc., Buffalo, New York, USA
| | | | | |
Collapse
|
4
|
Rinaldi M, Bartoletti M, Bonazzetti C, Caroccia N, Gatti M, Tazza B, Horna CS, Giannella M, Viale P. Tolerability of pulsed high-dose L-AmB as pre-emptive therapy in patients at high risk for intra-abdominal candidiasis: A phase 2 study (LAMBDA study). Int J Antimicrob Agents 2023; 62:106998. [PMID: 37838147 DOI: 10.1016/j.ijantimicag.2023.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Intra-abdominal candidiasis (IAC) has a high mortality rate. However, the correct management of a critically ill patient with suspected IAC remains unclear. The aim of this study was to evaluate the safety of pulsed high-dose liposomal amphotericin B (L-AmB) in patients with suspected IAC managed with a beta-D-glucan (BDG)-guided strategy. METHODS This phase 2 prospective study enrolled adult patients with intra-abdominal sepsis following surgery. Patients received a single dose of L-AmB 5 mg/kg on day 1. On day 3, L-AmB was discontinued in patients with a negative basal BDG result, and continued (3 mg/kg/daily) in patients with a positive basal BDG result or microbiologically confirmed IAC. The primary endpoint was the occurrence of adverse events, defined using the Common Toxicity Criteria classification. RESULTS In total, 40 patients were enrolled from January 2019 to August 2022. Fifteen (37.5%) patients were male, and the median age was 65 [interquartile range (IQR) 49-76] years. Thirty-one (77.5%) patients underwent urgent surgery, and the principal indication was secondary/tertiary peritonitis (n=22, 55%); half of the patients had undergone a previous surgical operation within the preceding 30 days. Five (12.5%) patients met the criteria for septic shock at enrolment. The median APACHE II score on admission to the intensive care unit was 12 (IQR 10-15). IAC was excluded in 33 (85%) patients, but IAC was probable and proven in five (12.5%) and two (5%) patients, respectively. The single dose of L-AmB 5 mg/kg was well tolerated in all patients, and no early or late severe adverse events related to the drug were reported. L-AmB was discontinued in 65% of patients following a negative basal BDG result. The all-cause 30-day mortality rate was 15%, and no deaths were related to L-AmB administration or uncontrolled IAC. The mortality rates for patients with and without proven IAC were 0% and 15.8%, respectively (P=0.99). CONCLUSIONS The rate of proven IAC among critically ill high-risk patients was low (5%). A single dose of L-AmB 5 mg/kg, with prompt withdrawal in the case of a basal negative BDG result, seems to be a safe and effective approach in this population.
Collapse
Affiliation(s)
- Matteo Rinaldi
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Michele Bartoletti
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Cecilia Bonazzetti
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Natascia Caroccia
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beatrice Tazza
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Clara Solera Horna
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Novy E, Roger C, Roberts JA, Cotta MO. Pharmacokinetic and pharmacodynamic considerations for antifungal therapy optimisation in the treatment of intra-abdominal candidiasis. Crit Care 2023; 27:449. [PMID: 37981676 PMCID: PMC10659066 DOI: 10.1186/s13054-023-04742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Intra-abdominal candidiasis (IAC) is one of the most common of invasive candidiasis observed in critically ill patients. It is associated with high mortality, with up to 50% of deaths attributable to delays in source control and/or the introduction of antifungal therapy. Currently, there is no comprehensive guidance on optimising antifungal dosing in the treatment of IAC among the critically ill. However, this form of abdominal sepsis presents specific pharmacokinetic (PK) alterations and pharmacodynamic (PD) challenges that risk suboptimal antifungal exposure at the site of infection in critically ill patients. This review aims to describe the peculiarities of IAC from both PK and PD perspectives, advocating an individualized approach to antifungal dosing. Additionally, all current PK/PD studies relating to IAC are reviewed in terms of strength and limitations, so that core elements for the basis of future research can be provided.
Collapse
Affiliation(s)
- Emmanuel Novy
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
- Department of Anaesthesiology, Critical Care and Peri-Operative Medicine, University Hospital of Nancy, Nancy, France
- Université de Lorraine, SIMPA, 54500, Nancy, France
| | - Claire Roger
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France
- UR UM103 IMAGINE, Univ Montpellier, Montpellier, France
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia.
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France.
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
6
|
Flanagan S, Walker H, Ong V, Sandison T. Absence of Clinically Meaningful Drug-Drug Interactions with Rezafungin: Outcome of Investigations. Microbiol Spectr 2023; 11:e0133923. [PMID: 37154682 PMCID: PMC10269561 DOI: 10.1128/spectrum.01339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Rezafungin is a novel once-weekly echinocandin for intravenous injection currently in development for the treatment of Candida infections and the prevention of Candida, Aspergillus, and Pneumocystis infections in allogeneic blood and marrow transplant recipients. While in vitro data indicated that rezafungin exposure was unlikely to be affected by commonly prescribed medicines, interactions resulting in the altered systemic exposure of some drugs coadministered with rezafungin could not be excluded. Two phase 1 open label crossover studies, conducted in healthy subjects, examined drug interactions between rezafungin and multiple drug probe cytochrome P450 (CYP) substrates and/or transporter proteins, immunosuppressants, and cancer therapies. Statistical analysis compared the outcomes for drugs coadministered with rezafungin to those for the drugs administered alone. The geometric mean ratio was reported, and a default 90% confidence interval (CI) no-effect equivalence range of 80 to 125% was used for the maximal plasma concentration (Cmax), the area under the curve from time zero to the final sampling time point (AUC0-t), and the AUC from time zero to infinity (AUC0-∞). Most probes and concomitant drugs were within the equivalence range. For tacrolimus, ibrutinib, mycophenolic acid, and venetoclax, the AUC or Cmax was reduced (10 to 19%), with lower bounds of the 90% CI values falling outside the no-effect range. The rosuvastatin AUC and Cmax and the repaglinide AUC0-∞ were increased (12 to 16%), with the 90% CI being marginally above the upper bound. Overall, the in vitro and in vivo data demonstrated a low drug interaction potential with rezafungin via CYP substrate/transporter pathways and commonly prescribed comedications, suggesting that coadministration was unlikely to result in clinically significant effects. Treatment-emergent adverse events were typically mild, and rezafungin was generally well tolerated. IMPORTANCE Antifungal agents used to treat life-threatening infections are often associated with severe drug-drug interactions (DDIs) that may limit their usefulness. Rezafungin, a newly approved once-weekly echinocandin, has been shown to be free of DDIs based on extensive nonclinical and clinical testing described in this study.
Collapse
Affiliation(s)
| | | | - Voon Ong
- Cidara Therapeutics, Inc., San Diego, California, USA
| | | |
Collapse
|
7
|
Lin XB, Hu XG, Tang ZX, Guo PH, Liu XM, Liang T, Xia YZ, Lui KY, Chen P, Tang KJ, Chen X, Cai CJ. Pharmacokinetics of Voriconazole in Peritoneal Fluid of Critically Ill Patients. Antimicrob Agents Chemother 2023; 67:e0172122. [PMID: 37022169 PMCID: PMC10190584 DOI: 10.1128/aac.01721-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Data on the distribution of voriconazole (VRC) in the human peritoneal cavity are sparse. This prospective study aimed to describe the pharmacokinetics of intravenous VRC in the peritoneal fluid of critically ill patients. A total of 19 patients were included. Individual pharmacokinetic curves, drawn after single (first dose on day 1) and multiple (steady-state) doses, displayed a slower rise and lower fluctuation of VRC concentrations in peritoneal fluid than in plasma. Good but variable penetration of VRC into the peritoneal cavity was observed, and the median (range) peritoneal fluid/plasma ratios of the area under the concentration-time curve (AUC) were 0.54 (0.34 to 0.73) and 0.67 (0.63 to 0.94) for single and multiple doses, respectively. Approximately 81% (13/16) of the VRC steady-state trough concentrations (Cmin,ss) in plasma were within the therapeutic range (1 to 5.5 μg/mL), and the corresponding Cmin,ss (median [range]) in peritoneal fluid was 2.12 (1.39 to 3.72) μg/mL. Based on the recent 3-year (2019 to 2021) surveillance of the antifungal susceptibilities for Candida species isolated from peritoneal fluid in our center, the aforementioned 13 Cmin,ss in peritoneal fluid exceeded the MIC90 of C. albicans, C. glabrata, and C. parapsilosis (0.06, 1.00, and 0.25 μg/mL, respectively), which supported VRC as a reasonable choice for initial empirical therapies against intraabdominal candidiasis caused by these three Candida species, prior to the receipt of susceptibility testing results.
Collapse
Affiliation(s)
- Xiao-bin Lin
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-guang Hu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhao-xia Tang
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng-hao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-man Liu
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Liang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-zhe Xia
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ka Yin Lui
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke-jing Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang-jie Cai
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Marx J, Reinstadler V, Gasperetti T, Welte R, Oberacher H, Moser P, Joannidis M, Bellmann R. Human Tissue Distribution of Caspofungin. Int J Antimicrob Agents 2022; 59:106553. [PMID: 35176477 DOI: 10.1016/j.ijantimicag.2022.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
Tissue concentrations of caspofungin were determined in nine different tissues taken during autopsy of twenty patients who had deceased during treatment or within 23 days after cessation. The highest levels were achieved in liver with concentrations ranging from ≤0.50 to 91.5 µg/g (0.60 µg/g 21 days after the last administration), followed by spleen (<0.25 to 46.3 µg/g), kidney (<0.25 to 33.6 µg/g), and lung (<0.25 to 31.0 µg/g). Intermediate concentrations were found in pancreas, skeletal muscle, thyroid, and myocardium. The smallest amounts were recovered from brain where caspofungin could be measured in six out of seventeen samples only. Caspofungin concentrations exceeded the MIC values of pathogenic Candida species in most of the tissue samples taken from patients who had deceased during treatment, except in brain samples. Our findings warrant clinical outcome studies for establishment of optimal treatment of deep-seated candidiasis and support the current recommendations against echinocandins for treatment of fungal meningoencephalitis.
Collapse
Affiliation(s)
- Jana Marx
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Vera Reinstadler
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Tiziana Gasperetti
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - René Welte
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Romuald Bellmann
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|