1
|
Reza N, Gerada A, Stott KE, Howard A, Sharland M, Hope W. Challenges for global antibiotic regimen planning and establishing antimicrobial resistance targets: implications for the WHO Essential Medicines List and AWaRe antibiotic book dosing. Clin Microbiol Rev 2024; 37:e0013923. [PMID: 38436564 PMCID: PMC11324030 DOI: 10.1128/cmr.00139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYThe World Health Organisation's 2022 AWaRe Book provides guidance for the use of 39 antibiotics to treat 35 infections in primary healthcare and hospital facilities. We review the evidence underpinning suggested dosing regimens. Few (n = 18) population pharmacokinetic studies exist for key oral AWaRe antibiotics, largely conducted in homogenous and unrepresentative populations hindering robust estimates of drug exposures. Databases of minimum inhibitory concentration distributions are limited, especially for community pathogen-antibiotic combinations. Minimum inhibitory concentration data sources are not routinely reported and lack regional diversity and community representation. Of studies defining a pharmacodynamic target for ß-lactams (n = 80), 42 (52.5%) differed from traditionally accepted 30%-50% time above minimum inhibitory concentration targets. Heterogeneity in model systems and pharmacodynamic endpoints is common, and models generally use intravenous ß-lactams. One-size-fits-all pharmacodynamic targets are used for regimen planning despite complexity in drug-pathogen-disease combinations. We present solutions to enable the development of global evidence-based antibiotic dosing guidance that provides adequate treatment in the context of the increasing prevalence of antimicrobial resistance and, moreover, minimizes the emergence of resistance.
Collapse
Affiliation(s)
- Nada Reza
- Department of
Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems,
Molecular and Integrative Biology, University of
Liverpool, Liverpool,
United Kingdom
- Liverpool University
Hospitals NHS Foundation Trust,
Liverpool, United Kingdom
| | - Alessandro Gerada
- Department of
Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems,
Molecular and Integrative Biology, University of
Liverpool, Liverpool,
United Kingdom
- Liverpool University
Hospitals NHS Foundation Trust,
Liverpool, United Kingdom
| | - Katharine E. Stott
- Department of
Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems,
Molecular and Integrative Biology, University of
Liverpool, Liverpool,
United Kingdom
- Liverpool University
Hospitals NHS Foundation Trust,
Liverpool, United Kingdom
| | - Alex Howard
- Department of
Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems,
Molecular and Integrative Biology, University of
Liverpool, Liverpool,
United Kingdom
- Liverpool University
Hospitals NHS Foundation Trust,
Liverpool, United Kingdom
| | - Mike Sharland
- Centre for Neonatal
and Paediatric Infection, Institute for Infection and Immunity, St
George’s, University of London,
London, United Kingdom
| | - William Hope
- Department of
Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems,
Molecular and Integrative Biology, University of
Liverpool, Liverpool,
United Kingdom
- Liverpool University
Hospitals NHS Foundation Trust,
Liverpool, United Kingdom
| |
Collapse
|
2
|
Peng Y, Minichmayr IK, Liu H, Xie F, Friberg LE. Multistate modeling for survival analysis in critically ill patients treated with meropenem. CPT Pharmacometrics Syst Pharmacol 2024; 13:222-233. [PMID: 37881115 PMCID: PMC10864930 DOI: 10.1002/psp4.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Appropriate antibiotic dosing to ensure early and sufficient target attainment is crucial for improving clinical outcome in critically ill patients. Parametric survival analysis is a preferred modeling method to quantify time-varying antibiotic exposure - response effects, whereas bias may be introduced in hazard functions and survival functions when competing events occur. This study investigated predictors of in-hospital mortality in critically ill patients treated with meropenem by pharmacometric multistate modeling. A multistate model comprising five states (ongoing meropenem treatment, other antibiotic treatment, antibiotic treatment termination, discharge, and death) was developed to capture the transitions in a cohort of 577 critically ill patients treated with meropenem. Various factors were investigated as potential predictors of the transitions, including patient demographics, creatinine clearance calculated by Cockcroft-Gault equation (CLCRCG ), time that unbound concentrations exceed the minimum inhibitory concentration (fT>MIC ), and microbiology-related measures. The probabilities to transit to other states from ongoing meropenem treatment increased over time. A 10 mL/min decrease in CLCRCG was found to elevate the hazard of transitioning from states of ongoing meropenem treatment and antibiotic treatment termination to the death state by 18%. The attainment of 100% fT>MIC significantly increased the transition rate from ongoing meropenem treatment to antibiotic treatment termination (by 9.7%), and was associated with improved survival outcome. The multistate model prospectively assessed predictors of death and can serve as a useful tool for survival analysis in different infection scenarios, particularly when competing risks are present.
Collapse
Affiliation(s)
- Yaru Peng
- Department of PharmacyUppsala UniversityUppsalaSweden
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| | - Iris K. Minichmayr
- Department of PharmacyUppsala UniversityUppsalaSweden
- Department of Clinical PharmacologyMedical University ViennaViennaAustria
| | - Han Liu
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| | | |
Collapse
|
3
|
Greppmair S, Brinkmann A, Roehr A, Frey O, Hagel S, Dorn C, Marsot A, El-Haffaf I, Zoller M, Saller T, Zander J, Schatz LM, Scharf C, Briegel J, Minichmayr IK, Wicha SG, Liebchen U. Towards model-informed precision dosing of piperacillin: multicenter systematic external evaluation of pharmacokinetic models in critically ill adults with a focus on Bayesian forecasting. Intensive Care Med 2023; 49:966-976. [PMID: 37439872 PMCID: PMC10425489 DOI: 10.1007/s00134-023-07154-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Inadequate piperacillin (PIP) exposure in intensive care unit (ICU) patients threatens therapeutic success. Model-informed precision dosing (MIPD) might be promising to individualize dosing; however, the transferability of published models to external populations is uncertain. This study aimed to externally evaluate the available PIP population pharmacokinetic (PopPK) models. METHODS A multicenter dataset of 561 ICU patients (11 centers/3654 concentrations) was used for the evaluation of 24 identified models. Model performance was investigated for a priori (A) predictions, i.e., considering dosing records and patient characteristics only, and for Bayesian forecasting, i.e., additionally including the first (B1) or first and second (B2) therapeutic drug monitoring (TDM) samples per patient. Median relative prediction error (MPE) [%] and median absolute relative prediction error (MAPE) [%] were calculated to quantify accuracy and precision. RESULTS The evaluation revealed a large inter-model variability (A: MPE - 135.6-78.3% and MAPE 35.7-135.6%). Integration of TDM data improved all model predictions (B1/B2 relative improvement vs. A: |MPE|median_all_models 45.1/67.5%; MAPEmedian_all_models 29/39%). The model by Kim et al. was identified to be most appropriate for the total dataset (A/B1/B2: MPE - 9.8/- 5.9/- 0.9%; MAPE 37/27.3/23.7%), Udy et al. performed best in patients receiving intermittent infusion, and Klastrup et al. best predicted patients receiving continuous infusion. Additional evaluations stratified by sex and renal replacement therapy revealed further promising models. CONCLUSION The predictive performance of published PIP models in ICU patients varied considerably, highlighting the relevance of appropriate model selection for MIPD. Our differentiated external evaluation identified specific models suitable for clinical use, especially in combination with TDM.
Collapse
Affiliation(s)
- Sebastian Greppmair
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Alexander Brinkmann
- Department of Anaesthesiology and Intensive Care Medicine, General Hospital of Heidenheim, 89522, Heidenheim, Germany
| | - Anka Roehr
- Department of Pharmacy, General Hospital of Heidenheim, 89522, Heidenheim, Germany
| | - Otto Frey
- Department of Pharmacy, General Hospital of Heidenheim, 89522, Heidenheim, Germany
| | - Stefan Hagel
- Institute for Infectious Diseases and Infection Control, University Hospital, Friedrich-Schiller-University Jena, 07747, Jena, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | - Amélie Marsot
- Faculty of Pharmacy, University of Montréal, Pavillon Jean-Coutu, 2940 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - Ibrahim El-Haffaf
- Faculty of Pharmacy, University of Montréal, Pavillon Jean-Coutu, 2940 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - Michael Zoller
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Thomas Saller
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Johannes Zander
- Laboratory Dr. Brunner, Laboratory Medical Care Center Konstanz GmbH, 78464, Constance, Germany
| | - Lea Marie Schatz
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, 48149, Muenster, Germany
| | - Christina Scharf
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Josef Briegel
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Iris K Minichmayr
- Department of Clinical Pharmacology, Medical University Vienna, 1090, Vienna, Austria
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146, Hamburg, Germany
| | - Uwe Liebchen
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
4
|
Piperacillin Steady State Concentrations in Target Tissues Relevant for PJI Treatment—A Randomized Porcine Microdialysis Study Comparing Continuous Infusion with Intermittent Short-Term Infusion. Antibiotics (Basel) 2023; 12:antibiotics12030577. [PMID: 36978444 PMCID: PMC10044349 DOI: 10.3390/antibiotics12030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
(1) Introduction: Piperacillin is a common antibiotic choice in the treatment of periprosthetic joint infections (PJI) caused by Pseudomonas aeruginosa. The aim of this study was to assess and compare the time with free piperacillin concentration above the minimum inhibitory concentration (fT > MIC) at steady state in target tissues relevant for PJI treatment following continuous and intermittent short-term infusion. (2) Methods: 16 pigs were randomized to receive either continuous or intermittent short-term infusion of piperacillin. Steady state piperacillin concentrations were assessed using microdialysis in tibial cortical bone, tibial cancellous bone, synovial fluid of the knee joint, and subcutaneous tissue. MIC-targets of 4, 8, 16, and 64 mg/L were applied. Plasma samples were obtained as reference. (3) Results: Continuous infusion resulted in longer fT > MIC for MIC targets of 4 mg/L and 8 mg/L compared to intermittent short-term infusion in all compartments with the exception of tibial cortical bone. For the MIC-target of 16 mg/L, continuous infusion resulted in a longer fT > MIC in all compartments except for the bone compartments. No differences between groups were seen when applying a MIC-target of 64 mg/L. (4) Conclusions: An aggressive dosing strategy may be necessary to obtain sufficient piperacillin concentrations in all bone compartments, particularly if more aggressive targets are applied. Based on the present study, continuous infusion should be considered in the treatment of PJI.
Collapse
|
5
|
Passon SG, Schmidt AR, Wittmann M, Velten M, Baehner T. Evaluation of continuous ampicillin/sulbactam infusion in critically ill patients. Life Sci 2023; 320:121567. [PMID: 36907327 DOI: 10.1016/j.lfs.2023.121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Continuous infusion (CI) of beta-lactam-antibiotics may improve pharmacodynamics in critically ill patients, but resulting concentrations have not been studied. Therapeutic drug monitoring is increasingly used to ensure antibiotic concentration. The aim of this study is to evaluate therapeutic ampicillin/sulbactam concentrations of a continuous infusion regimen. METHODS Medical records of all patients admitted to ICU between January 2019 and December 2020 were retrospectively reviewed. Each patient received a 2/1 g ampicillin/sulbactam loading dose, followed by a continuous infusion of 8/4 g per 24 h. Ampicillin serum concentrations were measured. Main outcomes were reaching of plasma concentrations breakpoint defined by minimum inhibitory concentration (MIC at 8 mg/l) and 4-fold MIC (MIC at 32 mg/l) during steady state of CI. RESULTS In 50 patients a total of 60 concentration measurements were performed. The first concentration was measured after a median of 29 h (IQR 21-61 h). Mean ampicillin concentration was 62.6 ± 39.1 mg/l. Furthermore, serum concentrations exceeded the defined MIC breakpoint in all measurements (100 %) and were above the 4-fold MIC in 43 analyses (71.1 %). However, patients suffering from acute kidney injury exhibited significant higher serum concentrations (81.1 ± 37.7 mg/l vs. 38.2 ± 24.8 mg/l; p < 0.001). Also, there was a negative correlation between ampicillin serum concentrations and GFR (r = -0.659; p < 0.001). CONCLUSION The described dosing regimen for ampicillin/sulbactam is safe with respect to the defined MIC breakpoints for ampicillin, and continuous subtherapeutic concentration is unlikely. However, with impaired renal function drug accumulation occurs, and with increased renal clearance, drug levels can be below the 4-fold MIC breakpoint.
Collapse
Affiliation(s)
- S G Passon
- Department of Anesthesiology and Intensive Care Medicine, St. Nikolaus Stiftshospital Andernach, Germany
| | - A R Schmidt
- Division of Pediatric Cardiac Anesthesia, Stanford University - School of Medicine, Palo Alto, CA, USA
| | - M Wittmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Germany
| | - M Velten
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Germany.
| | - T Baehner
- Department of Anesthesiology and Intensive Care Medicine, St. Nikolaus Stiftshospital Andernach, Germany; Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Germany
| |
Collapse
|
6
|
Beta-lactam target attainment and associated outcomes in patients with bloodstream infections. Int J Antimicrob Agents 2023; 61:106727. [PMID: 36646230 DOI: 10.1016/j.ijantimicag.2023.106727] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To evaluate the association between early and cumulative beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) parameters and therapy outcomes in bloodstream infection (BSI). METHODS Adult patients who received cefepime, meropenem, or piperacillin/tazobactam for BSI and had concentrations measured were included. Beta-lactam exposure was generated and the time that free concentration remained above the minimum inhibitory concentration (fT>MIC) and four multiples of MIC (fT>4 × MIC) were calculated for times 0-24 h and 0-7 days of therapy. Multiple regression analysis was performed to evaluate the impact of PK/PD on microbiological and clinical outcomes. RESULTS A total of 204 patients and 213 BSI episodes were included. The mean age was 58 years and weight 83 kg. Age, Sequential Organ Failure Assessment (SOFA) score, haemodialysis, Pitt bacteraemia score, and hours of empiric antibiotic therapy were significantly associated with certain outcomes and retained in the final model. In multiple regression analysis, fT>4 × MIC at 0-24 h and 0-7 days was a significant predictor of negative blood culture on day 7 (P=0.0161 and 0.0068, respectively). In the time-to-event analysis, patients who achieved 100% fT>4 × MIC at 0-24 h and 0-7 days had a shorter time to negative blood culture compared with those who did not (log-rank P=0.0004 and 0.0014, respectively). No significant associations were identified between PK/PD parameters and other outcomes, including improvement in symptoms at day 7 and 30-day mortality. CONCLUSION Early and cumulative achievement of fT>4 × MIC was a significant predictor of microbiological outcome in patients with BSI.
Collapse
|
7
|
Hemmersbach-Miller M, Balevic SJ, Winokur PL, Landersdorfer CB, Gu K, Chan AW, Cohen-Wolkowiez M, Conrad T, An G, Kirkpatrick CMJ, Swamy GK, Walter EB, Schmader KE. Population Pharmacokinetics of Piperacillin/Tazobactam Across the Adult Lifespan. Clin Pharmacokinet 2023; 62:127-139. [PMID: 36633812 PMCID: PMC9969806 DOI: 10.1007/s40262-022-01198-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Piperacillin/tazobactam is one of the most frequently used antimicrobials in older adults. Using an opportunistic study design, we evaluated the pharmacokinetics of piperacillin/tazobactam as a probe drug to evaluate changes in antibacterial drug exposure and dosing requirements, including in older adults. METHODS A total of 121 adult patients were included. The population pharmacokinetic models that best characterized the observed plasma concentrations of piperacillin and tazobactam were one-compartment structural models with zero-order input and linear elimination. RESULTS Among all potential covariates, estimated creatinine clearance had the most substantial impact on the elimination clearance for both piperacillin and tazobactam. After accounting for renal function and body size, there was no remaining impact of frailty on the pharmacokinetics of piperacillin and tazobactam. Monte Carlo simulations indicated that renal function had a greater impact on the therapeutic target attainment than age, although these covariates were highly correlated. Frailty, using the Canadian Study of Health and Aging Clinical Frailty Scale, was assessed in 60 patients who were ≥ 65 years of age. CONCLUSIONS The simulations suggested that adults ≤ 50 years of age infected with organisms with higher minimum inhibitory concentrations may benefit from continuous piperacillin/tazobactam infusions (12 g/day of piperacillin component) or extended infusions of 4 g every 8 hours. However, for a target of 50% fT + minimum inhibitory concentration, dosing based on renal function is generally preferable to dosing by age, and simulations suggested that patients with creatinine clearance ≥ 120 mL/min may benefit from infusions of 4 g every 8 hours for organisms with higher minimum inhibitory concentrations.
Collapse
Affiliation(s)
- Marion Hemmersbach-Miller
- Division of Infectious Diseases, Department of Internal Medicine, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
- ICON Plc, North Wales, PA, USA
| | - Stephen J Balevic
- Duke Clinical Research Institute, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Patricia L Winokur
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Kenan Gu
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Austin W Chan
- Division of Infectious Diseases, Department of Internal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | | | - Guohua An
- College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Carl M J Kirkpatrick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Geeta K Swamy
- Department of Obstetrics and Gynecology, Obstetrics Clinical Research, Duke University Medical System, Durham, NC, USA
| | - Emmanuel B Walter
- Duke Clinical Research Institute, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kenneth E Schmader
- Division of Geriatrics, Department of Medicine, Duke University Medical Center, Duke Box 3469, Durham, NC, 27710, USA.
- Geriatric Research Education and Clinical Center (GRECC), Durham Veterans Affairs Health Care System, Durham, NC, USA.
| |
Collapse
|
8
|
Abstract
OBJECTIVES In critically ill children, severely altered pharmacokinetics may result in subtherapeutic β-lactam antibiotic concentrations when standard pediatric dosing regimens are applied. However, it remains unclear how to recognize patients most at risk for suboptimal exposure and their outcome. This study aimed to: 1) describe target attainment for β-lactam antibiotics in critically ill children, 2) identify risk factors for suboptimal exposure, and 3) study the association between target nonattainment and clinical outcome. DESIGN Post hoc analysis of the "Antibiotic Dosing in Pediatric Intensive Care" study (NCT02456974, 2012-2019). Steady-state trough plasma concentrations were classified as therapeutic if greater than or equal to the minimum inhibitory concentration of the (suspected) pathogen. Factors associated with subtherapeutic concentrations and clinical outcome were identified by logistic regression analysis. SETTING The pediatric and cardiac surgery ICU of a Belgian tertiary-care hospital. PATIENTS One hundred fifty-seven patients (aged 1 mo to 15 yr) treated intravenously with amoxicillin-clavulanic acid, piperacillin-tazobactam, or meropenem. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Three hundred eighty-two trough concentrations were obtained from 157 patients (median age, 1.25 yr; interquartile range, 0.4-4.2 yr). Subtherapeutic concentrations were measured in 39 of 60 (65%), 43 of 48 (90%), and 35 of 49 (71%) of patients treated with amoxicillin-clavulanic acid, piperacillin-tazobactam, and meropenem, respectively. Estimates of glomerular filtration rate (eGFR; 54% increase in odds for each sd increase in value, 95% CI, 0.287-0.736; p = 0.001) and the absence of vasopressor treatment (2.8-fold greater odds, 95% CI, 1.079-7.253; p = 0.034) were independently associated with target nonattainment. We failed to identify an association between antibiotic concentrations and clinical failure. CONCLUSIONS Subtherapeutic β-lactam concentrations are common in critically ill children and correlate with renal function. eGFR equations may be helpful in identifying patients who may require higher dosing. Future studies should focus on the impact of subtherapeutic concentrations on clinical outcome.
Collapse
|
9
|
Is Piperacillin-Tazobactam an Appropriate Empirical Agent for Hospital-Acquired Sepsis and Community-Acquired Septic Shock of Unknown Origin in Australia? Healthcare (Basel) 2022; 10:healthcare10050851. [PMID: 35627988 PMCID: PMC9142067 DOI: 10.3390/healthcare10050851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/17/2022] Open
Abstract
Early appropriate empirical antibiotics are critical for reducing mortality in sepsis. For hospital-acquired sepsis of unknown origin in Australia, piperacillin-tazobactam (TZP) is recommended as an empirical therapy. Anecdotally, some institutions also use TZP for community-acquired septic shock. This narrative review aimed to scrutinise the appropriateness of TZP as an empirical agent for undifferentiated hospital-acquired sepsis and community-acquired septic shock. An online database (Medline) was searched for relevant studies in adults published in the last 10 years. Studies were included if they addressed separately reported clinical outcomes related to a relevant aspect of TZP therapy in sepsis. Of 290 search results, no studies directly addressed the study aim. This review therefore explores several themes that emerged from the contemporary literature, all of which must be considered to fully interrogate the appropriateness of TZP use in this context. This review reveals the paucity and low quality of evidence available for TZP use in sepsis of unclear origin, while demonstrating the urgent need and equipoise for an Australian audit of TZP use in patients with sepsis of unknown origin.
Collapse
|
10
|
Youk HJ, Hwang SH, Oh HB, Ko DH. Evaluation and management of platelet transfusion refractoriness. Blood Res 2022; 57:6-10. [PMID: 35483919 PMCID: PMC9057673 DOI: 10.5045/br.2022.2021229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Platelet transfusion refractoriness (PTR), in which platelet counts do not increase after transfusion, occurs in many patients receiving platelet transfusions. PTR is a clinical condition that can harm patients. The causes of PTR can be divided into two types: immune and non-immune. Most cases of PTR are non-immune. Among immune causes, the most common is human leukocyte antigen (HLA) class I molecules. PTR caused by anti-HLA antibodies is usually managed by transfusing HLA-matched platelets. Therefore, it is important, especially for hemato-oncologists who frequently perform transfusion, to accurately diagnose whether the cause of platelet transfusion failure is alloimmune or non-immunological when determining the treatment direction for the patient. In this review, we discuss the definitions, causes, countermeasures, and prevention methods of PTR.
Collapse
Affiliation(s)
- Hee-Jeong Youk
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heung-Bum Oh
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae-Hyun Ko
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Molecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates. Rep Biochem Mol Biol 2022; 11:102-110. [PMID: 35765529 PMCID: PMC9208561 DOI: 10.52547/rbmb.11.1.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/19/2021] [Indexed: 01/11/2023]
Abstract
Background Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient acquisition. Methods The study include investigation of 50 isolates of MDRPA for transport secretion system and resistance for antibiotics. Molecular diagnosis using P. aeruginosa specific primer pairs, investigation of AprF, HasF, XcpQ, HxcQ, PscC, CdrB, CupB3, and Hcp using specific primer pairs by PCR were also performed. Results The results revealed high resistance to beta lactam antibiotics (78% for ceftazidime, 78% for cefepime and 46% for piperacillin) can indicate possessing of isolates for beta lactamases and this confirmed by dropping resistance to piperacillin to 16% when combined with tazobactam. Also, the results shown the ability of MDRPA for pyocyanin biosynthesis using the system of genes. Conclusion The current study conclude that all isolates of P. aeruginosa were highly virulent due to their possessing of all transport secretion system to deliver different effector proteins with possible harmful effects of these proteins.
Collapse
|
12
|
Imburgia TA, Engdahl SR, Pettit RS. Evaluation of the safety of cefepime prolonged infusions in pediatric patients with cystic fibrosis. Pediatr Pulmonol 2022; 57:919-925. [PMID: 34989183 DOI: 10.1002/ppul.25817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Pediatric cystic fibrosis (CF) patients possess unique pharmacokinetics and may benefit from prolonged beta-lactam infusions to optimize pharmacodynamics. This study compared adverse drug event (ADE) rates with cefepime prolonged (PI) and standard infusions (SI). METHODS This retrospective study included pediatric patients treated with cefepime for CF exacerbations between 2009 and 2019. One encounter per patient was analyzed with prioritization of SI encounters given sample size limitations. Baseline lab abnormalities, seizure disorders, and bleeding were exclusion criteria. The primary outcome was a composite safety endpoint (acute kidney injury [AKI], hepatotoxicity, hematologic toxicity, neurotoxicity, and hypersensitivity). RESULTS Of 188 patients, 135 received PI and 53 received SI. Baseline characteristics were similar between groups. More PI patients used CF transmembrane conductance regulator (CFTR) modulators (25% vs. 0%, p < 0.01) or had antibiotic allergies (62% vs. 38%, p = 0.02). Difference in rates of composite safety endpoint was not statistically significant between PI and SI (21 [15.6%] vs. 6 [11.3%] p = 0.46) nor was incidence of AKI (16 [11.8%] vs. 6 [11.3%], p = 0.92). Other ADEs were rarely observed. Length of stay (12.2 vs. 10.1 days, p = 0.06), change in discharge ppFEV1 from admission (13 vs. 12, p = 0.91) or from baseline (-4 vs. -6.5, p = 0.33), and time to next exacerbation (249.7 vs. 192.5 days, p = 0.93) were similar. CONCLUSIONS No difference in risk of ADEs including AKI was seen with cefepime PI in pediatric CF patients. Clinical outcomes were not significantly different between groups, but sample size may have limited comparison. PI cefepime may be considered in pediatric CF patients to optimize pharmacodynamics.
Collapse
Affiliation(s)
- Taylor A Imburgia
- Department of Pharmacy, West Virginia University Medicine Children's, Morgantown, West Virginia, USA
| | - Samantha R Engdahl
- Department of Pharmacy, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana, USA
| | - Rebecca S Pettit
- Department of Pharmacy, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Imburgia TA, Kussin ML. A Review of Extended and Continuous Infusion Beta-Lactams in Pediatric Patients. J Pediatr Pharmacol Ther 2022; 27:214-227. [PMID: 35350159 DOI: 10.5863/1551-6776-27.3.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
Intravenous beta-lactam antibiotics are the most prescribed antibiotic class in US hospitalized patients of all ages; therefore, optimizing their dosing is crucial. Bactericidal killing is best predicted by the time in which beta-lactam drug concentrations are maintained above the organism's minimum inhibitory concentration (MIC), rather than achievement of a high peak concentration. As such, administration of beta-lactam antibiotics via extended or continuous infusions over a minimum of 3 hours, rather than standard infusions over approximately 30 minutes, has been associated with improved achievement of pharmacodynamic targets and improved clinical outcomes in adult medical literature. This review summarizes the pediatric medical literature. Applicable studies include pharmacodynamic models, case series, retrospective analyses, and prospective studies on the use of extended infusion and continuous infusion penicillins, cephalosporins, carbapenems, and monobactams in neonates, infants, children, and adolescents. Specialized patient populations with unique pharmacokinetics and high-risk infections (neonates, critically ill, febrile neutropenia, cystic fibrosis) are also reviewed. While more studies are needed to confirm prospective clinical outcomes, the current body of evidence suggests extended and continuous infusions of beta-lactam antibiotics are well tolerated in children and improve achievement of pharmacokineticpharmacodynamic targets with similar or superior clinical outcomes, particularly in infections associated with high MICs.
Collapse
Affiliation(s)
- Taylor A Imburgia
- Department of Pharmacy (TAI), WVU Medicine Children's, Morgantown, WV
| | - Michelle L Kussin
- Department of Pharmacy (MLK), Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
14
|
Berry AV, Kuti JL. Pharmacodynamic Thresholds for Beta-Lactam Antibiotics: A Story of Mouse Versus Man. Front Pharmacol 2022; 13:833189. [PMID: 35370708 PMCID: PMC8971958 DOI: 10.3389/fphar.2022.833189] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/24/2022] [Indexed: 01/20/2023] Open
Abstract
Beta-lactams remain a critical member of our antibiotic armamentarium and are among the most commonly prescribed antibiotic classes in the inpatient setting. For these agents, the percentage of time that the free concentration remains above the minimum inhibitory concentration (%fT > MIC) of the pathogen has been shown to be the best predictor of antibacterial killing effects. However, debate remains about the quantity of fT > MIC exposure needed for successful clinical response. While pre-clinical animal based studies, such as the neutropenic thigh infection model, have been widely used to support dosing regimen selection for clinical development and susceptibility breakpoint evaluation, pharmacodynamic based studies in human patients are used validate exposures needed in the clinic and for guidance during therapeutic drug monitoring (TDM). For the majority of studied beta-lactams, pre-clinical animal studies routinely demonstrated the fT > MIC should exceed approximately 40–70% fT > MIC to achieve 1 log reductions in colony forming units. In contrast, clinical studies tend to suggest higher exposures may be needed, but tremendous variability exists study to study. Herein, we will review and critique pre-clinical versus human-based pharmacodynamic studies aimed at determining beta-lactam exposure thresholds, so as to determine which targets may be best suited for optimal dosage selection, TDM, and for susceptibility breakpoint determination. Based on our review of murine and clinical literature on beta-lactam pharmacodynamic thresholds, murine based targets specific to each antibiotic are most useful during dosage regimen development and susceptibility breakpoint assessment, while a range of exposures between 50 and 100% fT > MIC are reasonable to define the beta-lactam TDM therapeutic window for most infections.
Collapse
|
15
|
Effect of therapeutic drug monitoring-based dose optimization of piperacillin/tazobactam on sepsis-related organ dysfunction in patients with sepsis: a randomized controlled trial. Intensive Care Med 2022; 48:311-321. [PMID: 35106617 PMCID: PMC8866359 DOI: 10.1007/s00134-021-06609-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Insufficient antimicrobial exposure is associated with worse outcomes in sepsis. We evaluated whether therapeutic drug monitoring (TDM)-guided antibiotic therapy improves outcomes. METHODS Randomized, multicenter, controlled trial from January 2017 to December 2019. Adult patients (n = 254) with sepsis or septic shock were randomly assigned 1:1 to receive continuous infusion of piperacillin/tazobactam with dosing guided by daily TDM of piperacillin or continuous infusion with a fixed dose (13.5 g/24 h if eGFR ≥ 20 mL/min). Target plasma concentration was four times the minimal inhibitory concentration (range ± 20%) of the underlying pathogen, respectively, of Pseudomonas aeruginosa in empiric situation. Primary outcome was the mean of daily total Sequential Organ Failure Assessment (SOFA) score up to day 10. RESULTS Among 249 evaluable patients (66.3 ± 13.7 years; female, 30.9%), there was no significant difference in mean SOFA score between patients with TDM (7.9 points; 95% CI 7.1-8.7) and without TDM (8.2 points; 95% CI 7.5-9.0) (p = 0.39). Patients with TDM-guided therapy showed a lower 28-day mortality (21.6% vs. 25.8%, RR 0.8, 95% CI 0.5-1.3, p = 0.44) and a higher rate of clinical (OR 1.9; 95% CI 0.5-6.2, p = 0.30) and microbiological cure (OR 2.4; 95% CI 0.7-7.4, p = 0.12), but these differences did not reach statistical significance. Attainment of target concentration was more common in patients with TDM (37.3% vs. 14.6%, OR 4.5, CI 95%, 2.9-6.9, p < 0.001). CONCLUSION TDM-guided therapy showed no beneficial effect in patients with sepsis and continuous infusion of piperacillin/tazobactam with regard to the mean SOFA score. Larger studies with strategies to ensure optimization of antimicrobial exposure are needed to definitively answer the question.
Collapse
|
16
|
Abdul-Aziz MH, Brady K, Cotta MO, Roberts JA. Therapeutic Drug Monitoring of Antibiotics: Defining the Therapeutic Range. Ther Drug Monit 2022; 44:19-31. [PMID: 34750338 DOI: 10.1097/ftd.0000000000000940] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE In the present narrative review, the authors aimed to discuss the relationship between the pharmacokinetic/pharmacodynamic (PK/PD) of antibiotics and clinical response (including efficacy and toxicity). In addition, this review describes how this relationship can be applied to define the therapeutic range of a particular antibiotic (or antibiotic class) for therapeutic drug monitoring (TDM). METHODS Relevant clinical studies that examined the relationship between PK/PD of antibiotics and clinical response (efficacy and response) were reviewed. The review (performed for studies published in English up to September 2021) assessed only commonly used antibiotics (or antibiotic classes), including aminoglycosides, beta-lactam antibiotics, daptomycin, fluoroquinolones, glycopeptides (teicoplanin and vancomycin), and linezolid. The best currently available evidence was used to define the therapeutic range for these antibiotics. RESULTS The therapeutic range associated with maximal clinical efficacy and minimal toxicity is available for commonly used antibiotics, and these values can be implemented when TDM for antibiotics is performed. Additional data are needed to clarify the relationship between PK/PD indices and the development of antibiotic resistance. CONCLUSIONS TDM should only be regarded as a means to achieve the main goal of providing safe and effective antibiotic therapy for all patients. The next critical step is to define exposures that can prevent the development of antibiotic resistance and include these exposures as therapeutic drug monitoring targets.
Collapse
Affiliation(s)
- Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kara Brady
- Adult Intensive Care Unit and Pharmacy, The Prince Charles Hospital, Brisbane, Australia
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia; and
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
17
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) infections such as ventriculitis and meningitis are associated with significant morbidity and mortality. In part, this may be due to increased difficulties in achieving a therapeutic antibiotic concentration at the site of infection due to both the pharmacokinetic (PK) changes observed during critical illness and the reduced antibiotic penetration through the blood brain barrier. This paper reviews the pharmacodynamics (PD) and CNS PKs of antibiotics used for Gram-negative bacterial CNS infections to provide clinicians with practical dosing advice. RECENT FINDINGS Recent PK studies have shown that currently used intravenous antibiotic dosing regimens may not achieve a therapeutic exposure within the CNS, even for reportedly 'susceptible' bacteria per the current clinical meningitis breakpoints. Limited data exist for new β-lactam antibiotic/β-lactamase inhibitor combinations, which may be required for multidrug resistant infections. Intraventricular antibiotic administration, although not a new concept, has further evidence demonstrating improved patient outcomes compared with intravenous therapy alone, despite the ongoing paucity of PK studies guiding dosing recommendations. SUMMARY Clinicians should obtain the bacterial minimum inhibitory concentration when treating patients with CNS Gram-negative bacterial infections and consider the underlying PK/PD principles when prescribing antibiotics. Therapeutic drug monitoring, where available, should be considered to guide dosing. Intraventricular therapy should also be considered for patients with ventricular drains to optimise clinical outcomes.
Collapse
|
19
|
Hamilton F, Albur M, Noel A, MacGowan AP. Comment on: The case for 'conservative pharmacotherapy'. J Antimicrob Chemother 2021; 76:2489-2491. [PMID: 33993247 DOI: 10.1093/jac/dkab153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- F Hamilton
- Bristol Centre for Antimicrobial Chemotherapy (BCARE), North Bristol NHS Trust, Bristol, UK.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - M Albur
- Bristol Centre for Antimicrobial Chemotherapy (BCARE), North Bristol NHS Trust, Bristol, UK
| | - A Noel
- Bristol Centre for Antimicrobial Chemotherapy (BCARE), North Bristol NHS Trust, Bristol, UK
| | - A P MacGowan
- Bristol Centre for Antimicrobial Chemotherapy (BCARE), North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
20
|
Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy 2021; 41:220-233. [PMID: 33480024 DOI: 10.1002/phar.2505] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Therapeutic drug monitoring (TDM) opens the door to personalized medicine, yet it is infrequently applied to β-lactam antibiotics, one of the most commonly prescribed drug classes in the hospital setting. As we continue to understand more about β-lactam pharmacodynamics (PD) and wide inter- and intra-patient variability in pharmacokinetics (PK), the utility of TDM has become increasingly apparent. For β-lactams, the time that free concentrations remain above the minimum inhibitory concentration (MIC) as a function of the dosing interval (%fT>MIC) has been shown to best predict antibacterial effect. Many studies have shown that β-lactam %fT>MIC exposures are often suboptimal across a wide variety of disease states and clinical settings. A limitation to implementing this practice is the general lack of understanding on how to best operationalize this intervention and interpret the results. The instrumentation and expertise needed to quantify β-lactams for TDM is rarely available locally, but certain laboratories advertise these services and perform them regularly. Familiarity with the modalities and nuances of antimicrobial susceptibility testing is crucial to establishing β-lactam concentration targets that meet the relevant exposure thresholds. Evaluation of these concentrations is best accomplished using population PK software and Bayesian modeling, for which a multitude of programs are available. While TDM of β-lactams has shown an ability to increase the rate of target attainment, there is currently limited evidence to suggest that it leads to improved clinical outcomes. Although consensus guidelines for β-lactam TDM do not exist in the United States, guidance would help to promote this important practice and better standardize the approach across institutions. Herein, we discuss the basis for β-lactam TDM, review supporting evidence, and provide guidance for implementation in specific patient populations.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - David P Nicolau
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Joseph L Kuti
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
21
|
Scharf C, Liebchen U, Paal M, Taubert M, Vogeser M, Irlbeck M, Zoller M, Schroeder I. The higher the better? Defining the optimal beta-lactam target for critically ill patients to reach infection resolution and improve outcome. J Intensive Care 2020; 8:86. [PMID: 33292582 PMCID: PMC7686672 DOI: 10.1186/s40560-020-00504-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Beta-lactam antibiotics are often subject to therapeutic drug monitoring, but breakpoints of target attainment are mostly based on expert opinions. Studies that show a correlation between target attainment and infection resolution are missing. This analysis investigated whether there is a difference in infection resolution based on two breakpoints of target attainment. METHODS An outcome group out of 1392 critically ill patients treated with meropenem or piperacillin-tazobactam was formed due to different selection criteria. Afterwards, three groups were created: group 1=free drug concentration (f) was < 100% of the time (T) above the minimal inhibitory concentration (MIC) (< 100% fT > MIC), group 2=100% fT > MIC < 4xMIC, and group 3=100% fT > 4xMIC. Parameters for infection control, renal and liver function, and estimated and observed in-hospital mortality were compared between those groups. Statistical analysis was performed with one-way analysis of variance, Tukey post hoc test, U test, and bivariate logistic regression. RESULTS The outcome group consisted of 55 patients (groups 1-3, 17, 24, and 14 patients, respectively). Patients allocated to group 2 or 3 had a significantly faster reduction of the C-reactive protein in contrast to patients allocated to group 1 (p = 0.033 and p = 0.026). Patients allocated to group 3 had a worse renal function, a higher Acute Physiology and Chronic Health Evaluation (APACHE II) score, were older, and had a significantly higher in-hospital mortality compared to group 1 (p = 0.017) and group 2 (p = 0.001). The higher mortality was significantly influenced by worse liver function, higher APACHE II, and higher Sequential Organ Failure Assessment (SOFA) score and norepinephrine therapy. CONCLUSION Achieving the target 100% fT > MIC leads to faster infection resolution in the critically ill. However, there was no benefit for patients who reached the highest target of 100% fT > 4xMIC, although the mortality rate was higher possibly due to confounding effects. In conclusion, we recommend the target 100% fT > MIC < 4xMIC for critically ill patients. TRIAL REGISTRATION NCT03985605.
Collapse
Affiliation(s)
- Christina Scharf
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Uwe Liebchen
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Max Taubert
- Department I of Pharmacology, Centre for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Irlbeck
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Zoller
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Ines Schroeder
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|