1
|
Lee H, Park H, Kwak K, Lee CE, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. J Enzyme Inhib Med Chem 2025; 40:2435365. [PMID: 39714271 DOI: 10.1080/14756366.2024.2435365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.
Collapse
Affiliation(s)
- Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chae-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kumar I, Sagar A, Dhiman K, Bethel CR, Hujer AM, Carifi J, Ashish, Bonomo RA. Insights into dynamic changes in ADC-7 and P99 cephalosporinases using small angle x-ray scattering (SAXS). J Biomol Struct Dyn 2024; 42:7541-7553. [PMID: 37578017 DOI: 10.1080/07391102.2023.2240427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
To counter the emergence of β-lactamase (BL) mediated resistance, design of new β-lactamase inhibitors (BLIs) is critical. Many high-resolution crystallographic structures of BL complexed with BLIs are available. However, their impact on BLI design is struggling to keep pace with novel and emerging variants. Small angle x-ray scattering (SAXS) in combination with molecular modeling is a useful tool to determine dynamic structures of macromolecules in solution. An important application of SAXS is to determine the conformational changes that occur when BLI bind to BL. To probe if conformational dynamics occur in class C cephalosporinases, we studied SAXS profiles of two clinically relevant class C β-lactamases, Acinetobacter baumannii ADC-7 and Enterobacter cloacae P99 in apo format complexed with BLIs. Importantly, SAXS data analysis demonstrated that in solution, these representative class C enzymes remain monomeric and did not show the associated assemblies that were seen in various crystal structures. SAXS data acquired for ADC-7 and P99, in apo and inhibitor bound states, clearly showed that these enzymes undergo detectable conformational changes, and these class C β-lactamases also close upon binding inhibitors as does BlaC. Further analysis revealed that addition of inhibitor led to the compacting of a range of residues around the active site, indicating that the conformational changes that both P99 and ADC-7 undergo are central to inhibitor recognition and efficacy. Our findings support the importance of exploring conformational changes using SAXS analysis in the design of future BLIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ish Kumar
- Department of Chemistry, Biochemistry & Physics, Fairleigh Dickinson University, Teaneck, NJ, USA
| | - Amin Sagar
- Centre de Biochimie Structurale (CBS), Montpellier, France
| | - Kanika Dhiman
- GNR Advanced Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Andrea M Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Justin Carifi
- Department of Chemistry, Biochemistry & Physics, Fairleigh Dickinson University, Teaneck, NJ, USA
| | - Ashish
- GNR Advanced Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Departments of Biochemistry, Pharmacology, Molecular Biology and Microbiology, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES, Cleveland, OH, USA
| |
Collapse
|
3
|
Chatupheeraphat C, Peamchai J, Kaewsai N, Anuwongcharoen N, Eiamphungporn W. Enhancing the activity of β-lactamase inhibitory protein-II with cell-penetrating peptide against KPC-2-carrying Klebsiella pneumoniae. PLoS One 2024; 19:e0296727. [PMID: 38277388 PMCID: PMC10817188 DOI: 10.1371/journal.pone.0296727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/16/2023] [Indexed: 01/28/2024] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) is considered a paramount threat due to its rapid spread and high mortality rate. Klebsiella pneumoniae carbapenemases (KPCs), specifically KPC-2, are prevalent enzymes responsible for carbapenem resistance in many countries. While combinations of antibiotics are commonly used, they must be tailored to match the remaining susceptibility of the infecting strains. Therefore, there is a need to develop the β-lactamase inhibitor to effectively address this issue. β-lactamase inhibitor protein (BLIP) and its variants, BLIP-I and BLIP-II, have demonstrated the ability to inhibit class A β-lactamases. In particular, BLIP-II shows strong binding to the KPC-2 carbapenemase, making it a potential candidate for inhibition. To improve the intracellular penetration of BLIP-II, a cell-penetrating peptide (CPP) was employed. In this study, a KRK-rich peptide was introduced at either the N-terminal or C-terminal region of tBLIP-II, excluding the signal sequence of the BLIP-II protein. tBLIP-II, tBLIP-II-CPP, and CPP-BLIP-II were successfully expressed, and the chimeric proteins retained inhibitory activity compared to tBLIP-II alone. It is apparent that homology modeling demonstrated neither the poly-histidine tag nor the CPP interfered with the essential interaction residues of tBLIP-II. Interestingly, BLIP-II-CPP exhibited the highest inhibitory activity, reducing the minimal inhibitory concentration (MIC) of meropenem by 8 folds. Moreover, the combination of tBLIP-CPP with meropenem significantly decreased the viable bacterial cell count compared to the combination of tBLIP-II with meropenem or meropenem alone. These findings suggest that tBLIP-CPP is a promising candidate for restoring carbapenem susceptibility against CRE and provides a valuable therapeutic option for infections caused by CRE.
Collapse
Affiliation(s)
- Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Jiratchaya Peamchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Noramon Kaewsai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Nuttapat Anuwongcharoen
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Mack AR, Kumar V, Taracila MA, Mojica MF, O'Shea M, Schinabeck W, Silver G, Hujer AM, Papp-Wallace KM, Chen S, Haider S, Caselli E, Prati F, van den Akker F, Bonomo RA. Natural protein engineering in the Ω-loop: the role of Y221 in ceftazidime and ceftolozane resistance in Pseudomonas-derived cephalosporinase. Antimicrob Agents Chemother 2023; 67:e0079123. [PMID: 37850746 PMCID: PMC10648885 DOI: 10.1128/aac.00791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 10/19/2023] Open
Abstract
A wide variety of clinically observed single amino acid substitutions in the Ω-loop region have been associated with increased minimum inhibitory concentrations and resistance to ceftazidime (CAZ) and ceftolozane (TOL) in Pseudomonas-derived cephalosporinase and other class C β-lactamases. Herein, we demonstrate the naturally occurring tyrosine to histidine substitution of amino acid 221 (Y221H) in Pseudomonas-derived cephalosporinase (PDC) enables CAZ and TOL hydrolysis, leading to similar kinetic profiles (k cat = 2.3 ± 0.2 µM and 2.6 ± 0.1 µM, respectively). Mass spectrometry of PDC-3 establishes the formation of stable adducts consistent with the formation of an acyl enzyme complex, while spectra of E219K (a well-characterized, CAZ- and TOL-resistant comparator) and Y221H are consistent with more rapid turnover. Thermal denaturation experiments reveal decreased stability of the variants. Importantly, PDC-3, E219K, and Y221H are all inhibited by avibactam and the boronic acid transition state inhibitors (BATSIs) LP06 and S02030 with nanomolar IC50 values and the BATSIs stabilize all three enzymes. Crystal structures of PDC-3 and Y221H as apo enzymes and complexed with LP06 and S02030 (1.35-2.10 Å resolution) demonstrate ligand-induced conformational changes, including a significant shift in the position of the sidechain of residue 221 in Y221H (as predicted by enhanced sampling well-tempered metadynamics simulations) and extensive hydrogen bonding between the enzymes and BATSIs. The shift of residue 221 leads to the expansion of the active site pocket, and molecular docking suggests substrates orientate differently and make different intermolecular interactions in the enlarged active site compared to the wild-type enzyme.
Collapse
Affiliation(s)
- Andrew R. Mack
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Vijay Kumar
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Magdalena A. Taracila
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Margaret O'Shea
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - William Schinabeck
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Galen Silver
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Andrea M. Hujer
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Krisztina M. Papp-Wallace
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shuang Chen
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, England, United Kingdom
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, England, United Kingdom
- UCL Centre for Advanced Research Computing, University College London, London, England, United Kingdom
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Carlucci R, Lisa MN, Labadie GR. 1,2,3-Triazoles in Biomolecular Crystallography: A Geometrical Data-Mining Approach. J Med Chem 2023; 66:14377-14390. [PMID: 37903297 DOI: 10.1021/acs.jmedchem.3c01097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The 1,2,3-triazole scaffold has become very attractive to identify new chemical entities in drug discovery projects. Despite the widespread use of click chemistry to synthesize numerous 123Ts, there are few drugs on the market that incorporate this scaffold as a substructure. To investigate the true potential of 123Ts in protein-ligand interactions, we examined the noncovalent interactions between the 1,2,3-triazole ring and amino acids in protein-ligand cocrystals using a geometrical approach. For this purpose, we constructed a nonredundant database of 220 PDB IDs from available 123T-protein cocrystal structures. Subsequently, using the Protein Ligand Interaction Profiler web platform (PLIP), we determined whether 1,2,3-triazoles primarily act as linkers or if they can be considered interactive scaffolds. We then manually analyzed the geometrical descriptors from 333 interactions between 1,4-disubstituted 123T rings and amino acid residues in proteins. This study demonstrates that 1,2,3-triazoles exhibit diverse preferred interactions with amino acids, which contribute to protein-ligand binding.
Collapse
Affiliation(s)
- Renzo Carlucci
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
| | - María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
- Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, ARGENTINA
| |
Collapse
|
6
|
Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses. Antimicrob Agents Chemother 2023; 67:e0093022. [PMID: 36602311 PMCID: PMC9872677 DOI: 10.1128/aac.00930-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Design of novel β-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-β-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum β-lactamase [ESBL]) β-lactamases were evaluated. The 50% inhibitory concentrations (IC50s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k2/K for CTX-M-96 (24,000 M-1 s-1) was twice the reported value for KPC-2 (12,000 M-1 s-1); for MB_076, the k2/K values ranged from 1,200 M-1 s-1 (KPC-2) to 3,900 M-1 s-1 (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96-S02030 and CTX-M-96-MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2-S02030 and KPC-2-MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to β-lactamase inhibitor design.
Collapse
|
7
|
Li R, Chen X, Zhou C, Dai QQ, Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem 2022; 242:114677. [PMID: 35988449 DOI: 10.1016/j.ejmech.2022.114677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effectiveness of β-lactam antibiotics is increasingly influenced by serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which can hydrolyze β-lactam antibiotics. The development of effective β-lactamase inhibitors is an important direction to extend use of β-lactam antibiotics. Although six SBL inhibitors have been approved for clinical use, but no MBL inhibitors or MBL/SBL dual-action inhibitors are available so far. Broad-spectrum targeting clinically relevant MBLs and SBLs is currently desirable, while it is not easy to achieve such a purpose owing to structural and mechanistic differences between MBLs and SBLs. In this review, we summarized recent advances of inhibitor chemotypes targeting MBLs and SBLs and their inhibition mechanisms, particularly including lead discovery and structural optimization strategies, with the aim to provide useful information for future efforts to develop new MBL and SBL inhibitors.
Collapse
Affiliation(s)
- Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Xi Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Cong Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China.
| |
Collapse
|
8
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
9
|
Lee I, Nam H. Sequence-based prediction of protein binding regions and drug-target interactions. J Cheminform 2022; 14:5. [PMID: 35135622 PMCID: PMC8822694 DOI: 10.1186/s13321-022-00584-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Identifying drug-target interactions (DTIs) is important for drug discovery. However, searching all drug-target spaces poses a major bottleneck. Therefore, recently many deep learning models have been proposed to address this problem. However, the developers of these deep learning models have neglected interpretability in model construction, which is closely related to a model's performance. We hypothesized that training a model to predict important regions on a protein sequence would increase DTI prediction performance and provide a more interpretable model. Consequently, we constructed a deep learning model, named Highlights on Target Sequences (HoTS), which predicts binding regions (BRs) between a protein sequence and a drug ligand, as well as DTIs between them. To train the model, we collected complexes of protein-ligand interactions and protein sequences of binding sites and pretrained the model to predict BRs for a given protein sequence-ligand pair via object detection employing transformers. After pretraining the BR prediction, we trained the model to predict DTIs from a compound token designed to assign attention to BRs. We confirmed that training the BRs prediction model indeed improved the DTI prediction performance. The proposed HoTS model showed good performance in BR prediction on independent test datasets even though it does not use 3D structure information in its prediction. Furthermore, the HoTS model achieved the best performance in DTI prediction on test datasets. Additional analysis confirmed the appropriate attention for BRs and the importance of transformers in BR and DTI prediction. The source code is available on GitHub ( https://github.com/GIST-CSBL/HoTS ).
Collapse
Affiliation(s)
- Ingoo Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-ku, Gwangju, 61005 Republic of Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-ku, Gwangju, 61005 Republic of Korea
| |
Collapse
|
10
|
Ishikawa T, Furukawa N, Caselli E, Prati F, Taracila MA, Bethel CR, Ishii Y, Shimizu-Ibuka A, Bonomo RA. Insights Into the Inhibition of MOX-1 β-Lactamase by S02030, a Boronic Acid Transition State Inhibitor. Front Microbiol 2022; 12:720036. [PMID: 34970229 PMCID: PMC8713471 DOI: 10.3389/fmicb.2021.720036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The rise of multidrug resistant (MDR) Gram-negative bacteria has accelerated the development of novel inhibitors of class A and C β-lactamases. Presently, the search for novel compounds with new mechanisms of action is a clinical and scientific priority. To this end, we determined the 2.13-Å resolution crystal structure of S02030, a boronic acid transition state inhibitor (BATSI), bound to MOX-1 β-lactamase, a plasmid-borne, expanded-spectrum AmpC β-lactamase (ESAC) and compared this to the previously reported aztreonam (ATM)-bound MOX-1 structure. Superposition of these two complexes shows that S02030 binds in the active-site cavity more deeply than ATM. In contrast, the SO3 interactions and the positional change of the β-strand amino acids from Lys315 to Asn320 were more prominent in the ATM-bound structure. MICs were performed using a fixed concentration of S02030 (4 μg/ml) as a proof of principle. Microbiological evaluation against a laboratory strain of Escherichia coli expressing MOX-1 revealed that MICs against ceftazidime are reduced from 2.0 to 0.12 μg/ml when S02030 is added at a concentration of 4 μg/ml. The IC50 and Ki of S02030 vs. MOX-1 were 1.25 ± 0.34 and 0.56 ± 0.03 μM, respectively. Monobactams such as ATM can serve as informative templates for design of mechanism-based inhibitors such as S02030 against ESAC β-lactamases.
Collapse
Affiliation(s)
- Tatsuya Ishikawa
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Magdalena A Taracila
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Christopher R Bethel
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Akiko Shimizu-Ibuka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| |
Collapse
|
11
|
Structural Characterization of Diazabicyclooctane β-Lactam "Enhancers" in Complex with Penicillin-Binding Proteins PBP2 and PBP3 of Pseudomonas aeruginosa. mBio 2021; 12:mBio.03058-20. [PMID: 33593978 PMCID: PMC8545096 DOI: 10.1128/mbio.03058-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant (MDR) pathogens pose a significant public health threat. A major mechanism of resistance expressed by MDR pathogens is β-lactamase-mediated degradation of β-lactam antibiotics. The diazabicyclooctane (DBO) compounds zidebactam and WCK 5153, recognized as β-lactam “enhancers” due to inhibition of Pseudomonas aeruginosa penicillin-binding protein 2 (PBP2), are also class A and C β-lactamase inhibitors. To structurally probe their mode of PBP2 inhibition as well as investigate why P. aeruginosa PBP2 is less susceptible to inhibition by β-lactam antibiotics compared to the Escherichia coli PBP2, we determined the crystal structure of P. aeruginosa PBP2 in complex with WCK 5153. WCK 5153 forms an inhibitory covalent bond with the catalytic S327 of PBP2. The structure suggests a significant role for the diacylhydrazide moiety of WCK 5153 in interacting with the aspartate in the S-X-N/D PBP motif. Modeling of zidebactam in the active site of PBP2 reveals a similar binding mode. Both DBOs increase the melting temperature of PBP2, affirming their stabilizing interactions. To aid in the design of DBOs that can inhibit multiple PBPs, the ability of three DBOs to interact with P. aeruginosa PBP3 was explored crystallographically. Even though the DBOs show covalent binding to PBP3, they destabilized PBP3. Overall, the studies provide insights into zidebactam and WCK 5153 inhibition of PBP2 compared to their inhibition of PBP3 and the evolutionarily related KPC-2 β-lactamase. These molecular insights into the dual-target DBOs advance our knowledge regarding further DBO optimization efforts to develop novel potent β-lactamase-resistant, non-β-lactam PBP inhibitors.
Collapse
|
12
|
Structural Basis and Binding Kinetics of Vaborbactam in Class A β-Lactamase Inhibition. Antimicrob Agents Chemother 2020; 64:AAC.00398-20. [PMID: 32778546 DOI: 10.1128/aac.00398-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Class A β-lactamases are a major cause of β-lactam resistance in Gram-negative bacteria. The recently FDA-approved cyclic boronate vaborbactam is a reversible covalent inhibitor of class A β-lactamases, including CTX-M extended-spectrum β-lactamase and KPC carbapenemase, both frequently observed in the clinic. Intriguingly, vaborbactam displayed different binding kinetics and cell-based activity for these two enzymes, despite their similarity. A 1.0-Å crystal structure of CTX-M-14 demonstrated that two catalytic residues, K73 and E166, are positively charged and neutral, respectively. Meanwhile, a 1.25-Å crystal structure of KPC-2 revealed a more compact binding mode of vaborbactam versus CTX-M-14, as well as alternative conformations of W105. Together with kinetic analysis of W105 mutants, the structures demonstrate the influence of this residue and the unusual conformation of the β3 strand on the inactivation rate, as well as the stability of the reversible covalent bond with S70. Furthermore, studies of KPC-2 S130G mutant shed light on the different impacts of S130 in the binding of vaborbactam versus avibactam, another recently approved β-lactamase inhibitor. Taken together, these new data provide valuable insights into the inhibition mechanism of vaborbactam and future development of cyclic boronate inhibitors.
Collapse
|
13
|
Salam LB. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech 2020; 10:238. [PMID: 32405442 PMCID: PMC7205953 DOI: 10.1007/s13205-020-02219-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
The antibiotic and heavy metal resistome of a chronically polluted soil (3S) obtained from an automobile workshop in Ilorin, Kwara State, Nigeria was deciphered via functional annotation of putative ORFs (open reading frames). Functional annotation of antibiotic and heavy metal resistance genes in 3S metagenome was conducted using the Comprehensive Antibiotic Resistance Database (CARD), Antibiotic Resistance Gene-annotation (ARG-ANNOT) and Antibacterial Biocide and Metal Resistance Gene Database (BacMet). Annotation revealed detection of resistance genes for 15 antibiotic classes with the preponderance of beta lactamases, mobilized colistin resistance determinant (mcr), glycopepetide and tetracycline resistance genes, the OqxBgb and OqxA RND-type multidrug efflux pumps, among others. The dominance of resistance genes for antibiotics effective against members of the Enterobacteriaceae indicate possible contamination with faecal materials. Annotation of heavy metal resistance genes revealed diverse resistance genes responsible for the uptake, transport, detoxification, efflux and regulation of copper, zinc, cadmium, nickel, chromium, cobalt, mercury, arsenic, iron, molybdenum and several others. Majority of the antibiotic and heavy metal resistance genes detected in this study are borne on mobile genetic elements, which facilitate their spread and dissemination in the polluted soil. The presence of the heavy metal resistance genes is strongly believed to play a major role in the proliferation of antibiotic resistance genes. This study has established that soil is a huge repertoire of antibiotic and heavy metal resistome and due to the intricate link between human, animals and the soil environment, it may be a major contributor to the proliferation of multidrug-resistant clinical pathogens.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Summit University, Offa, Kwara Nigeria
| |
Collapse
|
14
|
Lefurgy ST, Caselli E, Taracila MA, Malashkevich VN, Biju B, Papp-Wallace KM, Bonanno JB, Prati F, Almo SC, Bonomo RA. Structures of FOX-4 Cephamycinase in Complex with Transition-State Analog Inhibitors. Biomolecules 2020; 10:biom10050671. [PMID: 32349291 PMCID: PMC7277225 DOI: 10.3390/biom10050671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Boronic acid transition-state analog inhibitors (BATSIs) are partners with β-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C β-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is an extended-spectrum class C cephalosporinase that demonstrates conformational flexibility when complexed with certain ligands. Like other β-lactamases of this class, studies on FOX-4 reveal important insights into structure–activity relationships. We show that SM23, a BATSI, shows both remarkable flexibility and affinity, binding similarly to other β-lactamases, yet retaining an IC50 value < 0.1 μM. Our analyses open up new opportunities for the design of novel transition-state analogs of class C enzymes.
Collapse
Affiliation(s)
- Scott T. Lefurgy
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | | | - Beena Biju
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Krisztina M. Papp-Wallace
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +216-791-3800 (ext. 64801); Fax: +216-231-3482
| |
Collapse
|
15
|
Biochemical Activity of Vaborbactam. Antimicrob Agents Chemother 2020; 64:AAC.01935-19. [PMID: 31712199 PMCID: PMC6985712 DOI: 10.1128/aac.01935-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/30/2019] [Indexed: 11/20/2022] Open
Abstract
The most common mechanism of resistance to β-lactams antibiotics in Gram-negative bacteria is production of β-lactamase enzymes capable of cleaving the β-lactam ring. Inhibition of β-lactamase activity with small-molecule drugs is a proven strategy to restore the potency of many β-lactam antibiotics. Vaborbactam (formerly RPX7009) is a cyclic boronic acid β-lactamase inhibitor (BLI) with a broad spectrum of activity against various serine β-lactamases, including KPC carbapenemases. The combination of vaborbactam and meropenem is approved in the United States and Europe for the treatment of various nosocomial infections. We attempted to gain more insight into the mechanism of action of vaborbactam by conducting detailed kinetic characterization of its interaction with various recombinant His-tagged β-lactamases. Vaborbactam demonstrated potent inhibition of class A and class C enzymes with Ki values ranging from 0.022 to 0.18 μM, while inhibition of class D enzymes was rather poor, and no activity against class B β-lactamases was detected. Importantly, vaborbactam inhibited KPC-2, KPC-3, BKC-1, and SME-2 carbapenemases at 1:1 stoichiometry, while these numbers were higher for other class A and C enzymes. Vaborbactam was also shown to be a potent progressive inactivator of several enzymes, including KPCs with inactivation constants k 2/K in the range of 3.4 × 103 to 2.4 × 104 M-1 s-1 Finally, experiments on the recovery of enzyme activity demonstrated the high stability of the vaborbactam-KPC complex, with 0.000040 s-1 k off values and a corresponding residence time of 7 h, whereas the release of vaborbactam bound to other serine β-lactamases was substantially faster. The biochemical characteristics of vaborbactam described in this study may facilitate further chemical optimization efforts to develop boronic BLIs with improved affinity and broader spectrum of inhibition.
Collapse
|
16
|
Pemberton OA, Jaishankar P, Akhtar A, Adams JL, Shaw LN, Renslo AR, Chen Y. Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine- and Metallocarbapenemases. J Med Chem 2019; 62:8480-8496. [PMID: 31483651 DOI: 10.1021/acs.jmedchem.9b00728] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gram-negative pathogens expressing serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), especially those with carbapenemase activity, threaten the clinical utility of almost all β-lactam antibiotics. Here we describe the discovery of a heteroaryl phosphonate scaffold that exhibits noncovalent cross-class inhibition of representative carbapenemases, specifically the SBL KPC-2 and the MBLs NDM-1 and VIM-2. The most potent lead, compound 16, exhibited low nM to low μM inhibition of KPC-2, NDM-1, and VIM-2. Compound 16 potentiated imipenem efficacy against resistant clinical and laboratory bacterial strains expressing carbapenemases while showing some cytotoxicity toward human HEK293T cells only at concentrations above 100 μg/mL. Complex structures with KPC-2, NDM-1, and VIM-2 demonstrate how these inhibitors achieve high binding affinity to both enzyme classes. These findings provide a structurally and mechanistically new scaffold for drug discovery targeting multidrug resistant Gram-negative pathogens and more generally highlight the active site features of carbapenemases that can be leveraged for lead discovery.
Collapse
Affiliation(s)
- Orville A Pemberton
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center , University of California, San Francisco , 600 16th Street, Genentech Hall N574 , San Francisco , California 94158 , United States
| | - Afroza Akhtar
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| | - Jessie L Adams
- Department of Cell Biology, Microbiology & Molecular Biology , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology & Molecular Biology , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center , University of California, San Francisco , 600 16th Street, Genentech Hall N574 , San Francisco , California 94158 , United States
| | - Yu Chen
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| |
Collapse
|
17
|
Wang YL, Liu S, Yu ZJ, Lei Y, Huang MY, Yan YH, Ma Q, Zheng Y, Deng H, Sun Y, Wu C, Yu Y, Chen Q, Wang Z, Wu Y, Li GB. Structure-Based Development of (1-(3′-Mercaptopropanamido)methyl)boronic Acid Derived Broad-Spectrum, Dual-Action Inhibitors of Metallo- and Serine-β-lactamases. J Med Chem 2019; 62:7160-7184. [PMID: 31269398 DOI: 10.1021/acs.jmedchem.9b00735] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yao-Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Sha Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Zhu-Jun Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yuan Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Meng-Yi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Qiang Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Hui Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ying Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| |
Collapse
|
18
|
Torelli NJ, Akhtar A, DeFrees K, Jaishankar P, Pemberton OA, Zhang X, Johnson C, Renslo AR, Chen Y. Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery. ACS Infect Dis 2019; 5:1013-1021. [PMID: 30942078 DOI: 10.1021/acsinfecdis.9b00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Serine and metallo-carbapenemases are a serious health concern due to their capability to hydrolyze nearly all β-lactam antibiotics. However, the molecular basis for their unique broad-spectrum substrate profile is poorly understood, particularly for serine carbapenemases, such as KPC-2. Using substrates and newly identified small molecules, we compared the ligand binding properties of KPC-2 with the noncarbapenemase CTX-M-14, both of which are Class A β-lactamases with highly similar active sites. Notably, compared to CTX-M-14, KPC-2 was more potently inhibited by hydrolyzed β-lactam products (product inhibition), as well as by a series of novel tetrazole-based inhibitors selected from molecular docking against CTX-M-14. Together with complex crystal structures, these data suggest that the KPC-2 active site has an enhanced ability to form favorable interactions with substrates and small molecule ligands due to its increased hydrophobicity and flexibility. Such properties are even more pronounced in metallo-carbapenemases, such as NDM-1, which was also inhibited by some of the novel tetrazole compounds, including one displaying comparable low μM affinities against both KPC-2 and NDM-1. Our results suggest that carbapenemase activity confers an evolutionary advantage on producers via a broad β-lactam substrate scope but also a mechanistic Achilles' heel that can be exploited for new inhibitor discovery. The complex structures demonstrate, for the first time, how noncovalent inhibitors can be engineered to simultaneously target both serine and metallo-carbapenemases. Despite the relatively modest activity of the current compounds, these studies also demonstrate that hydrolyzed products and tetrazole-based chemotypes can provide valuable starting points for broad-spectrum inhibitor discovery against carbapenemases.
Collapse
Affiliation(s)
- Nicholas J. Torelli
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Afroza Akhtar
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Kyle DeFrees
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Orville A. Pemberton
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Cody Johnson
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| |
Collapse
|
19
|
Shurina BA, Page RC. Influence of substrates and inhibitors on the structure of Klebsiella pneumoniae carbapenemase-2. Exp Biol Med (Maywood) 2019; 244:1596-1604. [PMID: 31161945 DOI: 10.1177/1535370219854322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hydrolysis of last resort carbapenem antibiotics by Klebsiella pneumoniae carbapenemase-2 (KPC-2) presents a significant danger to global health. Combined with horizontal gene transfer, the emergence KPC-2 threatens to quickly expand carbapenemase activity to ever increasing numbers of pathogens. Our understanding of KPC-2 has greatly increased over the past decade thanks, in great part, to 20 crystal structures solved by groups around the world. These include apo KPC-2 structures, along with structures featuring a library of 10 different inhibitors representing diverse structural and functional classes. Herein we focus on cataloging the available KPC-2 structures and presenting a discussion of key aspects of each structure and important relationships between structures. Although the available structures do not provide information on dynamic motions with KPC-2, and the family of structures indicates small conformational changes across a wide array of bound inhibitors, substrates, and products, the structures provide a strong foundation for additional studies in the coming years to discover new KPC-2 inhibitors. Impact statement The work herein is important to the field as it provides a clear and succinct accounting of available KPC-2 structures. The work advances the field by collecting and analyzing differences and similarities across the available structures. This work features new analyses and interpretations of the existing structures which will impact the field in a positive way by making structural insights more widely available among the beta-lactamase community.
Collapse
Affiliation(s)
- Ben A Shurina
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
20
|
Romero-Aguilar KS, Arciniega-Martínez IM, Farfán-García ED, Campos-Rodríguez R, Reséndiz-Albor AA, Soriano-Ursúa MA. Effects of boron-containing compounds on immune responses: review and patenting trends. Expert Opin Ther Pat 2019; 29:339-351. [PMID: 31064237 DOI: 10.1080/13543776.2019.1612368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Boron-containing compounds induce effects on immune responses. Such effects are interesting to the biomedical field for the development of therapeutic tools to modulate the immune system. AREAS COVERED The scope of BCC use to modify immune responses is expanding, mainly with regard to inflammatory diseases. The information was organized to demonstrate the breadth of reported effects. BCCs act as modulators of innate and adaptive immunity, with the former including regulation of cluster differentiation and cytokine production. In addition, BCCs exert effects on inflammation induced by infectious and noninfectious agents, and there are also reports regarding their effects on mechanisms involving hypersensitivity and transplants. Finally, the authors discuss the beneficial effects of BCCs on pathologies involving various targets and mechanisms. EXPERT OPINION Some BCCs are currently used as drugs in humans. The mechanisms by which these BCCs modulate immune responses, as well as the required structure-activity relationship for each observed mechanism of action, should be clarified. The former will allow for the development of improved immunomodulatory drugs with extensive applications in medicine. Patenting trends involve claims concerning the synthesis and actions of identified molecules with a defined profile regarding cytokines, cell differentiation, proliferation, and antibody production.
Collapse
Affiliation(s)
- Karla S Romero-Aguilar
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Ivonne M Arciniega-Martínez
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Eunice D Farfán-García
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Rafael Campos-Rodríguez
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Aldo A Reséndiz-Albor
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Marvin A Soriano-Ursúa
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| |
Collapse
|
21
|
Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur J Med Chem 2019; 168:357-372. [DOI: 10.1016/j.ejmech.2019.02.055] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 01/07/2023]
|
22
|
Tehrani KHME, Martin NI. β-lactam/β-lactamase inhibitor combinations: an update. MEDCHEMCOMM 2018; 9:1439-1456. [PMID: 30288219 PMCID: PMC6151480 DOI: 10.1039/c8md00342d] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance caused by β-lactamase production continues to present a growing challenge to the efficacy of β-lactams and their role as the most important class of clinically used antibiotics. In response to this threat however, only a handful of β-lactamase inhibitors have been introduced to the market over the past thirty years. The first-generation β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) are all β-lactam derivatives and work primarily by inactivating class A and some class C serine β-lactamases. The newer generations of β-lactamase inhibitors including avibactam and vaborbactam are based on non-β-lactam structures and their spectrum of inhibition is extended to KPC as an important class A carbapenemase. Despite these advances several class D and virtually all important class B β-lactamases are resistant to existing inhibitors. The present review provides an overview of recent FDA-approved β-lactam/β-lactamase inhibitor combinations as well as an update on research efforts aimed at the discovery and development of novel β-lactamase inhibitors.
Collapse
Affiliation(s)
- Kamaleddin H M E Tehrani
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
- Biological Chemistry Group , Institute of Biology Leiden , Leiden University , Sylvius Laboratories, Sylviusweg 72 , 2333 BE Leiden , The Netherlands . ; Tel: +31 (0)6 1878 5274
| |
Collapse
|
23
|
Knight DB, Rudin SD, Bonomo RA, Rather PN. Acinetobacter nosocomialis: Defining the Role of Efflux Pumps in Resistance to Antimicrobial Therapy, Surface Motility, and Biofilm Formation. Front Microbiol 2018; 9:1902. [PMID: 30186249 PMCID: PMC6111201 DOI: 10.3389/fmicb.2018.01902] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/27/2018] [Indexed: 11/26/2022] Open
Abstract
Acinetobacter nosocomialis is a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex. Increasingly, reports are emerging of the pathogenic profile and multidrug resistance (MDR) phenotype of this species. To define novel therapies to overcome resistance, we queried the role of the major efflux pumps in A. nosocomialis strain M2 on antimicrobial susceptibility profiles. A. nosocomialis strains with the following mutations were engineered by allelic replacement; ΔadeB, ΔadeJ, and ΔadeB/adeJ. In these isogenic strains, we show that the ΔadeJ mutation increased susceptibility to beta-lactams, beta-lactam/beta-lactamase inhibitors, chloramphenicol, monobactam, tigecycline, and trimethoprim. The ΔadeB mutation had a minor effect on resistance to certain beta-lactams, rifampicin and tigecycline. In addition, the ΔadeJ mutation resulted in a significant decrease in surface motility and a minor decrease in biofilm formation. Our results indicate that the efflux pump, AdeIJK, has additional roles outside of antibiotic resistance in A. nosocomialis.
Collapse
Affiliation(s)
- Daniel B Knight
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Susan D Rudin
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Medicine, Pharmacology and Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Case Western Reserve University Veterans Affairs Center for Antimicrobial Resistance (Case-VA CARES), Cleveland, OH, United States
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Medicine, Pharmacology and Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Case Western Reserve University Veterans Affairs Center for Antimicrobial Resistance (Case-VA CARES), Cleveland, OH, United States
| | - Philip N Rather
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
24
|
Zhou J, Stapleton P, Haider S, Healy J. Boronic acid inhibitors of the class A β-lactamase KPC-2. Bioorg Med Chem 2018; 26:2921-2927. [PMID: 29784271 DOI: 10.1016/j.bmc.2018.04.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
The rapid rise of antimicrobial resistance is one of the greatest challenges currently facing medical science. The most common cause of resistance to β-lactam antibiotics is the expression of β-lactamase enzymes, such as KPC-2. As such the development of novel inhibitors of KPC-2 and related enzymes is of the upmost importance. We report the design and synthesis of novel boronic acid transition state analogs containing a 1,4-substituted 1,2,3-triazole linker based on the known inhibitor 3-nitrophenyl boronic acid and demonstrate that they are promising scaffolds for the development inhibitors of KPC-2 with the ability to recover sensitivity to the antibiotic cefotaxime.
Collapse
Affiliation(s)
- Jingyuan Zhou
- UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, UK
| | - Paul Stapleton
- UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, UK
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, UK
| | - Jess Healy
- UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, UK.
| |
Collapse
|
25
|
van den Akker F, Bonomo RA. Exploring Additional Dimensions of Complexity in Inhibitor Design for Serine β-Lactamases: Mechanistic and Intra- and Inter-molecular Chemistry Approaches. Front Microbiol 2018; 9:622. [PMID: 29675000 PMCID: PMC5895744 DOI: 10.3389/fmicb.2018.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023] Open
Abstract
As a bacterial resistance strategy, serine β-lactamases have evolved from cell wall synthesizing enzymes known as penicillin-binding proteins (PBP), by not only covalently binding β-lactam antibiotics but, also acquiring mechanisms of deacylating these antibiotics. This critical deacylation step leads to release of hydrolyzed and inactivated β-lactams, thereby providing resistance for the bacteria against these antibiotics targeting the cell wall. To combat β-lactamase-mediated antibiotic resistance, numerous β-lactamase inhibitors were developed that utilize various strategies to inactivate the β-lactamase. Most of these compounds are “mechanism-based” inhibitors that in some manner mimic the β-lactam substrate, having a carbonyl moiety and a negatively charged carboxyl or sulfate group. These compounds form a covalent adduct with the catalytic serine via an initial acylation step. To increase the life-time of the inhibitory covalent adduct intermediates, a remarkable array of different strategies was employed to improve inhibition potency. Such approaches include post-acylation intra- and intermolecular chemical rearrangements as well as affecting the deacylation water. These approaches transform the inhibitor design process from a 3-dimensional problem (i.e., XYZ coordinates) to one with additional dimensions of complexity as the reaction coordinate and time spent at each chemical state need to be taken into consideration. This review highlights the mechanistic intricacies of the design efforts of the β-lactamase inhibitors which so far have resulted in the development of “two generations” and 5 clinically available inhibitors.
Collapse
Affiliation(s)
- Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Robert A Bonomo
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medicine, Pharmacology, Molecular Biology and Microbiology, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medical Service and Geriatric Research, Education, and Clinical Centers (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Case Western Reserve University-VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| |
Collapse
|
26
|
Celenza G, Vicario M, Bellio P, Linciano P, Perilli M, Oliver A, Blazquez J, Cendron L, Tondi D. Phenylboronic Acid Derivatives as Validated Leads Active in Clinical Strains Overexpressing KPC-2: A Step against Bacterial Resistance. ChemMedChem 2018; 13:713-724. [PMID: 29356380 DOI: 10.1002/cmdc.201700788] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 12/28/2022]
Abstract
The emergence and dissemination of multidrug resistant (MDR) pathogens resistant to nearly all available antibiotics poses a significant threat in clinical therapy. Among them, Klebsiella pneumoniae clinical isolates overexpressing KPC-2 carbapenemase are the most worrisome, extending bacterial resistance to last-resort carbapenems. In this study, we investigate the molecular recognition requirements in the KPC-2 active site by small phenylboronic acid derivatives. Four new phenylboronic acid derivatives were designed and tested against KPC-2. For the most active, despite their simple chemical structures, nanomolar affinity was achieved. The new derivatives restored susceptibility to meropenem in clinical strains overexpressing KPC-2. Moreover, no cytotoxicity was detected in cell-viability assays, which further validated the designed leads. Two crystallographic binary complexes of the best inhibitors binding KPC-2 were obtained at high resolution. Kinetic descriptions of slow binding, time-dependent inhibition, and interaction geometries in KPC-2 were fully investigated. This study will ultimately lead toward the optimization and development of more-effective KPC-2 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Celenza
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Università dell'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Mattia Vicario
- Dipartimento di Biologia, Università di Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Pierangelo Bellio
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Università dell'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Pasquale Linciano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Mariagrazia Perilli
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Università dell'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Mallorca, Palma de Mallorca, Spain
| | - Jesús Blazquez
- Department of Microbial Biotechnology, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), C/ Darwin, 3, Campus de la Universidad Autonoma-Cantoblanco, 28049, Madrid, Spain
| | - Laura Cendron
- Dipartimento di Biologia, Università di Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Donatella Tondi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| |
Collapse
|
27
|
Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering. mBio 2017; 8:mBio.00528-17. [PMID: 29089425 PMCID: PMC5666153 DOI: 10.1128/mbio.00528-17] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The emergence of Klebsiella pneumoniae carbapenemases (KPCs), β-lactamases that inactivate “last-line” antibiotics such as imipenem, represents a major challenge to contemporary antibiotic therapies. The combination of ceftazidime (CAZ) and avibactam (AVI), a potent β-lactamase inhibitor, represents an attempt to overcome this formidable threat and to restore the efficacy of the antibiotic against Gram-negative bacteria bearing KPCs. CAZ-AVI-resistant clinical strains expressing KPC variants with substitutions in the Ω-loop are emerging. We engineered 19 KPC-2 variants bearing targeted mutations at amino acid residue Ambler position 179 in Escherichia coli and identified a unique antibiotic resistance phenotype. We focus particularly on the CAZ-AVI resistance of the clinically relevant Asp179Asn variant. Although this variant demonstrated less hydrolytic activity, we demonstrated that there was a prolonged period during which an acyl-enzyme intermediate was present. Using mass spectrometry and transient kinetic analysis, we demonstrated that Asp179Asn “traps” β-lactams, preferentially binding β-lactams longer than AVI owing to a decreased rate of deacylation. Molecular dynamics simulations predict that (i) the Asp179Asn variant confers more flexibility to the Ω-loop and expands the active site significantly; (ii) the catalytic nucleophile, S70, is shifted more than 1.5 Å and rotated more than 90°, altering the hydrogen bond networks; and (iii) E166 is displaced by 2 Å when complexed with ceftazidime. These analyses explain the increased hydrolytic profile of KPC-2 and suggest that the Asp179Asn substitution results in an alternative complex mechanism leading to CAZ-AVI resistance. The future design of novel β-lactams and β-lactamase inhibitors must consider the mechanistic basis of resistance of this and other threatening carbapenemases. Antibiotic resistance is emerging at unprecedented rates and threatens to reach crisis levels. One key mechanism of resistance is the breakdown of β-lactam antibiotics by β-lactamase enzymes. KPC-2 is a β-lactamase that inactivates carbapenems and β-lactamase inhibitors (e.g., clavulanate) and is prevalent around the world, including in the United States. Resistance to the new antibiotic ceftazidime-avibactam, which was designed to overcome KPC resistance, had already emerged within a year. Using protein engineering, we uncovered a mechanism by which resistance to this new drug emerges, which could arm scientists with the ability to forestall such resistance to future drugs.
Collapse
|
28
|
Schillaci D, Spanò V, Parrino B, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G, Cascioferro S. Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J Med Chem 2017; 60:8268-8297. [PMID: 28594170 DOI: 10.1021/acs.jmedchem.7b00215] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the derivatives of the β-lactamase inhibitor avibactam, are closer to the clinic than other molecules. For example, MK-7655, in combination with imipenem, is in clinical development for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat. In addition, other molecules targeting multidrug-resistance mechanisms, such as efflux pumps, are under development and hold promise for the treatment of multidrug resistant infections.
Collapse
Affiliation(s)
- Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
29
|
Abstract
β-Lactamases, the enzymes that hydrolyze β-lactam antibiotics, remain the greatest threat to the usage of these agents. In this review, the mechanism of hydrolysis is discussed for both those enzymes that use serine at the active site and those that require divalent zinc ions for hydrolysis. The β-lactamases now include >2000 unique, naturally occurring amino acid sequences. Some of the clinically most important of these are the class A penicillinases, the extended-spectrum β-lactamases (ESBLs), the AmpC cephalosporinases, and the carbapenem-hydrolyzing enzymes in both the serine and metalloenzyme groups. Because of the versatility of these enzymes to evolve as new β-lactams are used therapeutically, new approaches to antimicrobial therapy may be required.
Collapse
Affiliation(s)
- Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44120.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44120
| |
Collapse
|
30
|
Boronic Acid Transition State Inhibitors Active against KPC and Other Class A β-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design. Antimicrob Agents Chemother 2016; 60:1751-9. [PMID: 26729496 DOI: 10.1128/aac.02641-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/27/2015] [Indexed: 11/20/2022] Open
Abstract
Boronic acid transition state inhibitors (BATSIs) are competitive, reversible β-lactamase inhibitors (BLIs). In this study, a series of BATSIs with selectively modified regions (R1, R2, and amide group) were strategically designed and tested against representative class A β-lactamases of Klebsiella pneumoniae, KPC-2 and SHV-1. Firstly, the R1 group of compounds 1a to 1c and 2a to 2e mimicked the side chain of cephalothin, whereas for compounds 3a to 3c, 4a, and 4b, the thiophene ring was replaced by a phenyl, typical of benzylpenicillin. Secondly, variations in the R2 groups which included substituted aryl side chains (compounds 1a, 1b, 1c, 3a, 3b, and 3c) and triazole groups (compounds 2a to 2e) were chosen to mimic the thiazolidine and dihydrothiazine ring of penicillins and cephalosporins, respectively. Thirdly, the amide backbone of the BATSI, which corresponds to the amide at C-6 or C-7 of β-lactams, was also changed to the following bioisosteric groups: urea (compound 3b), thiourea (compound 3c), and sulfonamide (compounds 4a and 4b). Among the compounds that inhibited KPC-2 and SHV-1 β-lactamases, nine possessed 50% inhibitory concentrations (IC50s) of ≤ 600 nM. The most active compounds contained the thiopheneacetyl group at R1 and for the chiral BATSIs, a carboxy- or hydroxy-substituted aryl group at R2. The most active sulfonamido derivative, compound 4b, lacked an R2 group. Compound 2b (S02030) was the most active, with acylation rates (k2/K) of 1.2 ± 0.2 × 10(4) M(-1) s(-1) for KPC-2 and 4.7 ± 0.6 × 10(3) M(-1) s(-1) for SHV-1, and demonstrated antimicrobial activity against Escherichia coli DH10B carrying blaSHV variants and blaKPC-2 or blaKPC-3 and against clinical strains of Klebsiella pneumoniae and E. coli producing different class A β-lactamase genes. At most, MICs decreased from 16 to 0.5 mg/liter.
Collapse
|