1
|
Khan UB, Portal EAR, Sands K, Lo S, Chalker VJ, Jauneikaite E, Spiller OB. Genomic Analysis Reveals New Integrative Conjugal Elements and Transposons in GBS Conferring Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:544. [PMID: 36978411 PMCID: PMC10044541 DOI: 10.3390/antibiotics12030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of neonatal sepsis and increasingly found as an invasive pathogen in older patient populations. Beta-lactam antibiotics remain the most effective therapeutic with resistance rarely reported, while the majority of GBS isolates carry the tetracycline resistance gene tet(M) in fixed genomic positions amongst five predominant clonal clades. In the UK, GBS resistance to clindamycin and erythromycin has increased from 3% in 1991 to 11.9% (clindamycin) and 20.2% (erythromycin), as reported in this study. Here, a systematic investigation of antimicrobial resistance genomic content sought to fully characterise the associated mobile genetic elements within phenotypically resistant GBS isolates from 193 invasive and non-invasive infections of UK adult patients collected during 2014 and 2015. Resistance to erythromycin and clindamycin was mediated by erm(A) (16/193, 8.2%), erm(B) (16/193, 8.2%), mef(A)/msr(D) (10/193, 5.1%), lsa(C) (3/193, 1.5%), lnu(C) (1/193, 0.5%), and erm(T) (1/193, 0.5%) genes. The integrative conjugative elements (ICEs) carrying these genes were occasionally found in combination with high gentamicin resistance mediating genes aac(6')-aph(2″), aminoglycoside resistance genes (ant(6-Ia), aph(3'-III), and/or aad(E)), alternative tetracycline resistance genes (tet(O) and tet(S)), and/or chloramphenicol resistance gene cat(Q), mediating resistance to multiple classes of antibiotics. This study provides evidence of the retention of previously reported ICESag37 (n = 4), ICESag236 (n = 2), and ICESpy009 (n = 3), as well as the definition of sixteen novel ICEs and three novel transposons within the GBS lineage, with no evidence of horizontal transfer.
Collapse
Affiliation(s)
- Uzma Basit Khan
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, 6th Floor University Hospital of Wales, Cardiff CF14 4XN, UK
- Parasites and Microbes Programme, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Edward A. R. Portal
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, 6th Floor University Hospital of Wales, Cardiff CF14 4XN, UK
- Bacterial Reference Department, UK Health Security Agency, London NW9 5DF, UK
- Department of Biology, Ineos Oxford Institute, University of Oxford, Oxford OX1 3RE, UK
| | - Kirsty Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, 6th Floor University Hospital of Wales, Cardiff CF14 4XN, UK
- Department of Biology, Ineos Oxford Institute, University of Oxford, Oxford OX1 3RE, UK
| | - Stephanie Lo
- Parasites and Microbes Programme, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Victoria J. Chalker
- Bacterial Reference Department, UK Health Security Agency, London NW9 5DF, UK
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Owen B. Spiller
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, 6th Floor University Hospital of Wales, Cardiff CF14 4XN, UK
- Bacterial Reference Department, UK Health Security Agency, London NW9 5DF, UK
| |
Collapse
|
2
|
Rafei R, Al Iaali R, Osman M, Dabboussi F, Hamze M. A global snapshot on the prevalent macrolide-resistant emm types of Group A Streptococcus worldwide, their phenotypes and their resistance marker genotypes during the last two decades: A systematic review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105258. [PMID: 35219865 DOI: 10.1016/j.meegid.2022.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Watchful epidemiological surveillance of macrolide-resistant Group A Streptococcus (MRGAS) clones is important owing to the evolutionary and epidemiological dynamic of GAS. Meanwhile, data on the global distribution of MRGAS emm types according to macrolide resistance phenotypes and genotypes are scant and need to be updated. For this, the present systematic review analyses a global set of extensively characterized MRGAS isolates from patients of diverse ages and clinical presentations over approximately two decades (2000 to 2020) and recaps the peculiar epidemiological features of the dominant MRGAS clones. Based on the inclusion and exclusion criteria, 53 articles (3593 macrolide-resistant and 15,951 susceptible isolates) distributed over 23 countries were dissected with a predominance of high-income countries over low-income ones. Although macrolide resistance in GAS is highly variable in different countries, its within-GAS distribution seems not to be random. emm pattern E, 13 major emm types (emm12, 4, 28, 77, 75, 11, 22, 92, 58, 60, 94, 63, 114) and 4 emm clusters (A-C4, E1, E6, and E2) were significantly associated with macrolide resistance. emm patterns A-C and D, 14 major emm types (emm89, 3, 6, 2, 44, 82, 87, 118, 5, 49, 81, 59, 227, 78) and 3 well-defined emm clusters (A-C5, E3, and D4) were significantly associated with macrolide susceptibility. Scrutinizing the tendency of each MRGAS emm type to be significantly associated with specific macrolide resistance phenotype or genotype, interesting vignettes are also unveiled. The 30-valent vaccine covers ~95% of MRGAS isolates. The presented data urge the importance of comprehensive nationwide sustained surveillance of MRGAS circulating clones particularly in Low and Middle income countries where sampling bias is high and GAS epidemiology is obfuscated and needs to be demystified.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Rayane Al Iaali
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
3
|
Liu T, Wang E, Wei W, Wang K, Yang Q, Ai X. TcpA, a novel Yersinia ruckeri TIR-containing virulent protein mediates immune evasion by targeting MyD88 adaptors. FISH & SHELLFISH IMMUNOLOGY 2019; 94:58-65. [PMID: 31470137 DOI: 10.1016/j.fsi.2019.08.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
TIR domain-containing protein is an important member for some bacterial pathogens to subvert host defenses. Here we described a fish virulent Yersinia ruckeri SC09 strain that interfered directly with Toll-like receptor (TLR) function by a TIR-containing protein. Firstly, the novel TIR-containing protein was identified by bioinformatics analysis and named as TcpA. Secondly, the toxic effects of TcpA in fish was demonstrated in vivo challenge experiments through knockout mutant and complement mutant of tcpA gene. Thirdly, The study in vitro revealed that TcpA could down-regulate the expression and secretion of IL-6, IL-1β and TNF-α. Finally, we demonstrated that TcpA could inhibit the TLR signaling pathway through interaction with myeloid differentiation factor 88 (MyD88) in experiments such as NF-κB dependent luciferase reporter system, co-immunoprecipitation, GST pull-down and yeast two-hybrid. The study revealed that TcpA was essential for virulence and was able to interact with the TIR adaptor protein MyD88 and inhibit the pre-inflammatory signal of immune cells and promote the intracellular survival of pathogenic Yersinia ruckeri SC09 strain. In conclusion, our results showed that TcpA acted as a new virulence factor in Y. ruckeri could suppress innate immune response and increase virulence by inhibiting TLR and MyD88-mediated specific signaling, highlighting a novel strategy for innate immune evasion in bacteria.
Collapse
Affiliation(s)
- Tao Liu
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Erlong Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Wenyan Wei
- Institute of Fisheries of Chengdu Agriculture and Forestry Academy, Chengdu, PR China
| | - Kaiyu Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| | - Qian Yang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, PR China
| |
Collapse
|
4
|
A Yersinia ruckeri TIR Domain-Containing Protein (STIR-2) Mediates Immune Evasion by Targeting the MyD88 Adaptor. Int J Mol Sci 2019; 20:ijms20184409. [PMID: 31500298 PMCID: PMC6769684 DOI: 10.3390/ijms20184409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
TIR domain-containing proteins are essential for bacterial pathogens to subvert host defenses. This study describes a fish pathogen, Yersinia ruckeri SC09 strain, with a novel TIR domain-containing protein (STIR-2) that affects Toll-like receptor (TLR) function. STIR-2 was identified in Y. ruckeri by bioinformatics analysis. The toxic effects of this gene on fish were determined by in vivo challenge experiments in knockout mutants and complement mutants of the stir-2 gene. In vitro, STIR-2 downregulated the expression and secretion of IL-6, IL-1β, and TNF-α. Furthermore, the results of NF-κB-dependent luciferase reporter system, co-immunoprecipitation, GST pull-down assays, and yeast two-hybrid assay indicated that STIR-2 inhibited the TLR signaling pathway by interacting with myeloid differentiation factor 88 (MyD88). In addition, STIR-2 promoted the intracellular survival of pathogenic Yersinia ruckeri SC09 strain by binding to the TIR adaptor protein MyD88 and inhibiting the pre-inflammatory signal of immune cells. These results showed that STIR-2 increased virulence in Y. ruckeri and suppressed the innate immune response by inhibiting TLR and MyD88-mediated signaling, serving as a novel strategy for innate immune evasion.
Collapse
|
5
|
Wang R, Li L, Huang T, Huang W, Lei A, Chen M. Capsular Switching and ICE Transformation Occurred in Human Streptococcus agalactiae ST19 With High Pathogenicity to Fish. Front Vet Sci 2018; 5:281. [PMID: 30483518 PMCID: PMC6242859 DOI: 10.3389/fvets.2018.00281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
Although Streptococcus agalactiae (GBS) cross-infection between human and fish has been confirmed in experimental and clinical studies, the mechanisms underlying GBS cross-species infection remain largely unclear. We have found different human GBS ST19 strains exhibiting strong or weak pathogenic to fish (sGBS and wGBS). In this study, our objective was to identify the genetic elements responsible for GBS cross species infection based on genome sequence data and comparative genomics. The genomes of 11 sGBS strains and 11 wGBS strains were sequenced, and the genomic analysis was performed base on pan-genome, CRISPRs, phylogenetic reconstruction and genome comparison. The results from the pan-genome, CRISPRs analysis and phylogenetic reconstruction indicated that genomes between sGBS were more conservative than that of wGBS. The genomic differences between sGBS and wGBS were primarily in the Cps region (about 111 kb) and its adjacent ICE region (about 106 kb). The Cps region included the entire cps operon, and all sGBS were capsular polysaccharide (CPS) type V, while all wGBS were CPS type III. The ICE region of sGBS contained integrative and conjugative elements (ICE) with IQ element and erm(TR), and was very conserved, whereas the ICE region of wGBS contained ICE with mega elements and the variation was large. The capsular switching (III–V) and transformation of ICE adjacent to the Cps region occurred in human GBS ST19 with different pathogenicity to fish, which may be related to the capability of GBS cross-infection.
Collapse
Affiliation(s)
- Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China.,Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Weiyi Huang
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Aiying Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|