1
|
Celegato M, Sturlese M, Vasconcelos Costa V, Trevisan M, Lallo Dias AS, Souza Passos IB, Queiroz-Junior CM, Messa L, Favaro A, Moro S, Teixeira MM, Loregian A, Mercorelli B. Small-Molecule Inhibitor of Flaviviral NS3-NS5 Interaction with Broad-Spectrum Activity and Efficacy In Vivo. mBio 2023; 14:e0309722. [PMID: 36622141 PMCID: PMC9973282 DOI: 10.1128/mbio.03097-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.
Collapse
Affiliation(s)
- Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Angélica Samer Lallo Dias
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Annagiulia Favaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
2
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
3
|
Kondo H, Koshizuka T, Majima R, Takahashi K, Ishioka K, Suzutani T, Inoue N. Characterization of a thiourea derivative that targets viral transactivators of cytomegalovirus and herpes simplex virus type 1. Antiviral Res 2021; 196:105207. [PMID: 34774602 DOI: 10.1016/j.antiviral.2021.105207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Although currently available antivirals against certain herpesviruses are effective, the development of resistance during long-term use has necessitated the search for seed compounds that work against novel target molecules. In this report, we identified a thiourea derivative compound, 147B3, that inhibits the infection of human cytomegalovirus (HCMV) in fibroblasts and herpes simplex virus type 1 (HSV-1) in Vero cells at a 50% effective concentration of 0.5 μM and 1.9 μM, respectively. Characterization of the compound provided the following clues regarding its mode of action. 1) Time-of-addition and block-release assays showed that 147B3 behaved similarly to ganciclovir. 2) 147B3 reduced the expression of early and late but not immediate-early gene products and the accumulation of viral genomic DNA in both HCMV-infected and HSV-1-infected cells. 3) 147B3 inhibited the HCMV IE2-dependent activation of viral early gene promoters. 4) Four HSV-1 clones resistant to 147B3 were isolated and next-generation sequencing analysis of their genome DNA revealed that all of them had a mutation(s) in the infected cell protein 4 (ICP4) gene, which encodes a viral transcriptional factor. 5) Although 147B3 did not reduce the amount of ICP4 in an immunoblotting analysis, it changed the localization of the ICP4 from the speckles in the nuclei to diffused dots in the cytoplasm. 6) 147B3 did not affect the localization of promyelocytic leukemia (PML) bodies. Our findings suggest that 147B3 targets viral transactivators, potentially through their interaction with factors required for the viral gene expression system.
Collapse
Affiliation(s)
- Hiroki Kondo
- Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu-Shi, Gifu, 501-1196, Japan
| | - Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu-Shi, Gifu, 501-1196, Japan; Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Japan.
| | - Ryuichi Majima
- Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu-Shi, Gifu, 501-1196, Japan
| | - Keita Takahashi
- Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu-Shi, Gifu, 501-1196, Japan
| | - Ken Ishioka
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu-Shi, Gifu, 501-1196, Japan.
| |
Collapse
|
4
|
Qiao Y, Kolibaba H, Mori Y, Liu T, Chen H, Guo J, Xu D, Zhang Y. Infection of Placental Extravillous Cytotrophoblasts with Human Cytomegalovirus Causes a Treg/Th17 Imbalance at the Maternal-Fetal Interface. Cell Transplant 2021; 29:963689720925055. [PMID: 32693638 PMCID: PMC7586263 DOI: 10.1177/0963689720925055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper aimed to evaluate whether human cytomegalovirus (HCMV) infection in extravillous cytotrophoblasts (EVT) could shift the balance between regulatory T (Treg) and T-helper type 17 (Th17) cells in vitro. In this study, primary EVT isolated from first trimester placental tissues were infected with HCMV, and conditional media were harvested after cultivation for 72 h. T lymphocytes were cultured in the presence or absence of HCMV-infected conditional media. The frequencies of Th17 or Treg cells from HCMV group were significantly lower or higher than those from the control group, with the expression of corresponding key cytokines at both messenger ribonucleic acid and secretion levels, respectively. The ratio of Treg to Th17 cells was significantly lower in HCMV group than that in control group (P < 0.01). In conclusion, tiled Th17/Treg balance at maternal–fetal interface exists after HCMV infection.
Collapse
Affiliation(s)
- Yuan Qiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, China
| | | | - Yukiko Mori
- Department of Biological Sciences, Osaka University, Japan
| | - Tao Liu
- Center for Reproductive Medicine, Tai'an Central Hospital, China
| | - Huijun Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, China
| | - Dan Xu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, China
| |
Collapse
|
5
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
6
|
Luganini A, Mercorelli B, Messa L, Palù G, Gribaudo G, Loregian A. The isoquinoline alkaloid berberine inhibits human cytomegalovirus replication by interfering with the viral Immediate Early-2 (IE2) protein transactivating activity. Antiviral Res 2019; 164:52-60. [PMID: 30738836 DOI: 10.1016/j.antiviral.2019.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
The identification and validation of new small molecules able to inhibit the replication of human cytomegalovirus (HCMV) remains a priority to develop alternatives to the currently used DNA polymerase inhibitors, which are often burdened by long-term toxicity and emergence of cross-resistance. To contribute to this advancement, here we report on the characterization of the mechanism of action of a bioactive plant-derived alkaloid, berberine (BBR), selected in a previous drug repurposing screen expressly devised to identify early inhibitors of HCMV replication. Low micromolar concentrations of BBR were confirmed to suppress the replication of different HCMV strains, including clinical isolates and strains resistant to approved DNA polymerase inhibitors. Analysis of the HCMV replication cycle in infected cells treated with BBR then revealed that the bioactive compound compromised the progression of virus cycle at a stage prior to viral DNA replication and Early (E) genes expression, but after Immediate-Early (IE) proteins expression. Mechanistic studies in fact highlighted that BBR interferes with the transactivating functions of the viral IE2 protein, thus impairing efficient E gene expression and the progression of HCMV replication cycle. Finally, the mechanism of the antiviral activity of BBR appears to be conserved among different CMVs, since BBR suppressed murine CMV (MCMV) replication and inhibited the transactivation of the prototypic MCMV E1 gene by the IE3 protein, the murine homolog of IE2. Together, these observations warrant for further experimentation to obtain proof of concept that BBR could represent an attractive candidate for alternative anti-HCMV therapeutic strategies.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy
| | | | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy.
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy.
| |
Collapse
|
7
|
Andronova VL. [Modern ethiotropic chemotherapy of human cytomegalovirus infection: clinical effectiveness, molecular mechanism of action, drug resistance, new trends and prospects. Part 2.]. Vopr Virusol 2019; 63:250-260. [PMID: 30641020 DOI: 10.18821/0507-4088-2018-63-6-250-260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022]
Abstract
A number of synthetic compounds, such as the nucleoside analog ganciclovir, its L-valine ester (a metabolic precursor of ganciclovir) and pyrophosphate analog foscarnet, are permitted for the treatment of HCMVrelated diseases in the WHO European Region. The viral DNA- polymerase is used by all these drugs as a biotarget. However, the usage of standard anti-CMV therapy is accompanied by severe side effects, as well as the development of drug resistance in the virus, mainly in conditions of immunodefciency. In this review, we focused on viral proteins of interest as new potential targets and their inhibitors, such as the inhibitor of human CMV terminology, lethermovir, which showed great activity in the third phase of clinical trials, inhibitors of viral cyclin-dependent kinase (maribavir, cyclopropavir) and a number of compounds exhibiting anti-HCMV-activity, undergoing only preclinical trials in the experiment. Inclusion of new anti-CMV agents that are active against GСV/PFA/CDV-resistant strains of CMV into standard prophylactic and therapeutic regimens, will allow to increase the effectiveness of anti-CMV therapy, including in cases when standard therapy is ineffective. Areas covered: the international databases such as A MEDLINE, PubMed, eLIBRARY.RU, ClinicalTrials.gov., etc. with the purpose of obtaining information on compounds showing selective action against the human cytomegalovirus, the most promising for the development of drugs.
Collapse
Affiliation(s)
- V L Andronova
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| |
Collapse
|
8
|
Senerovic L, Opsenica D, Moric I, Aleksic I, Spasić M, Vasiljevic B. Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1282:37-69. [PMID: 31515709 DOI: 10.1007/5584_2019_428] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infective diseases have become health threat of a global proportion due to appearance and spread of microorganisms resistant to majority of therapeutics currently used for their treatment. Therefore, there is a constant need for development of new antimicrobial agents, as well as novel therapeutic strategies. Quinolines and quinolones, isolated from plants, animals, and microorganisms, have demonstrated numerous biological activities such as antimicrobial, insecticidal, anti-inflammatory, antiplatelet, and antitumor. For more than two centuries quinoline/quinolone moiety has been used as a scaffold for drug development and even today it represents an inexhaustible inspiration for design and development of novel semi-synthetic or synthetic agents exhibiting broad spectrum of bioactivities. The structural diversity of synthetized compounds provides high and selective activity attained through different mechanisms of action, as well as low toxicity on human cells. This review describes quinoline and quinolone derivatives with antibacterial, antifungal, anti-virulent, antiviral, and anti-parasitic activities with the focus on the last 10 years literature.
Collapse
Affiliation(s)
- Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Dejan Opsenica
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
- Center of excellence in Environmental Chemistry and Engineering, ICTM - University of Belgrade, Belgrade, Serbia
| | - Ivana Moric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marta Spasić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Lin X, Ammosova T, Kumari N, Nekhai S. Protein Phosphatase-1 -targeted Small Molecules, Iron Chelators and Curcumin Analogs as HIV-1 Antivirals. Curr Pharm Des 2018; 23:4122-4132. [PMID: 28677499 DOI: 10.2174/1381612823666170704123620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite efficient suppression of HIV-1 replication, current antiviral drugs are not able to eradicate HIV-1 infection. Permanent HIV-1 suppression or complete eradication requires novel biological approaches and therapeutic strategies. Our previous studies showed that HIV-1 transcription is regulated by host cell protein phosphatase-1. We also showed that HIV-1 transcription is sensitive to the reduction of intracellular iron that affects cell cycle-dependent kinase 2. We developed protein phosphatase 1-targeting small molecules that inhibited HIV-1 transcription. We also found an additional class of protein phosphatase-1-targeting molecules that activated HIV-1 transcription and reported HIV-1 inhibitory iron chelators and novel curcumin analogs that inhibit HIV-1. Here, we review HIV-1 transcription and replication with focus on its regulation by protein phosphatase 1 and cell cycle dependent kinase 2 and describe novel small molecules that can serve as future leads for anti-HIV drug development. RESULTS Our review describes in a non-exhaustive manner studies in which HIV-1 transcription and replication are targeted with small molecules. Previously, published studies show that HIV-1 can be inhibited with protein phosphatase-1-targeting and iron chelating compounds and curcumin analogs. These results are significant in light of the current efforts to eradicate HIV-1 through permanent inhibition. Also, HIV-1 activating compounds can be useful for "kick and kill" therapy in which the virus is reactivated prior to its inhibition by the combination antiretroviral therapy. CONCLUSION The studies described in our review point to protein phosphatase-1 as a new drug target, intracellular iron as subject for iron chelation and novel curcumin analogs that can be developed for novel HIV-1 transcription- targeting therapeutics.
Collapse
Affiliation(s)
- Xionghao Lin
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| | - Tatyana Ammosova
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| | - Namita Kumari
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| | - Sergei Nekhai
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| |
Collapse
|
10
|
Mercorelli B, Luganini A, Celegato M, Palù G, Gribaudo G, Loregian A. Repurposing the clinically approved calcium antagonist manidipine dihydrochloride as a new early inhibitor of human cytomegalovirus targeting the Immediate-Early 2 (IE2) protein. Antiviral Res 2018; 150:130-136. [DOI: 10.1016/j.antiviral.2017.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023]
|
11
|
Majima R, Shindoh K, Yamaguchi T, Inoue N. Characterization of a thienylcarboxamide derivative that inhibits the transactivation functions of cytomegalovirus IE2 and varicella zoster virus IE62. Antiviral Res 2017; 140:142-150. [PMID: 28161581 DOI: 10.1016/j.antiviral.2017.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
Previously we established reporter cell lines for human cytomegalovirus (HCMV) and varicella zoster virus (VZV) and identified several antiviral compounds against these viruses using the reporter cells. In this study, we found that one of the identified anti-HCMV compounds, a thienylcarboxamide derivative (coded as 133G4), was effective against not only HCMV but also VZV. The following findings indicate that 133G4 inhibits the activation of early gene promoters by HCMV IE2 and VZV IE62: i) 133G4 decreased the expression of HCMV early and late genes but not that of HCMV IE1/IE2 in HCMV-infected cells, ii) 133G4 inhibited the activation of several HCMV early gene promoters of transiently-transfected plasmids in HCMV-infected cells, and iii) in transient transfection assays, 133G4 decreased the activation of HCMV (or VZV) early gene promoters by HCMV IE2 (or VZV IE62) in the absence of other viral protein expression. The inhibition of early gene activation was observed in the human and African green monkey cell lines but not in the rodent cell lines, and the compound was not effective against murine CMV. In addition, VZV IE62 activated HCMV early promoters, and 133G4 still inhibited such promoter activation. Therefore, we hypothesized that 133G4 targets a cellular factor used commonly in activation of human herpesvirus promoters and examined whether 133G4 affects the functions of cellular proteins USF1, TBP, Med25 and EAP, the involvement of which in VZV IE62-dependent viral gene activation has been well characterized. Our experimental results using one-hybrid and bimolecular fluorescence complementation assays demonstrated that 133G4 did not inhibit the recruitment of USF1 or TBP to their binding sites, nor inhibited the direct interactions of VZV IE62 with Med25 and EAP. Thus, 133G4 is a unique anti-VZV and -HCMV compound, which warrants further studies to find out its inhibitory mechanism.
Collapse
Affiliation(s)
- Ryuichi Majima
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Shindoh
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Toyofumi Yamaguchi
- Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
12
|
Beelontally R, Wilkie GS, Lau B, Goodmaker CJ, Ho CMK, Swanson CM, Deng X, Wang J, Gray NS, Davison AJ, Strang BL. Identification of compounds with anti-human cytomegalovirus activity that inhibit production of IE2 proteins. Antiviral Res 2016; 138:61-67. [PMID: 27956134 PMCID: PMC5244968 DOI: 10.1016/j.antiviral.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/04/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023]
Abstract
Using a high throughput screening methodology we surveyed a collection of largely uncharacterized validated or suspected kinase inhibitors for anti-human cytomegalovirus (HCMV) activity. From this screen we identified three structurally related 5-aminopyrazine compounds (XMD7-1, -2 and -27) that inhibited HCMV replication in virus yield reduction assays at low micromolar concentrations. Kinase selectivity assays indicated that each compound was a kinase inhibitor capable of inhibiting a range of cellular protein kinases. Western blotting and RNA sequencing demonstrated that treatment of infected cells with XMD7 compounds resulted in a defect in the production of the major HCMV transcriptional transactivator IE2 proteins (IE2-86, IE2-60 and IE2-40) and an overall reduction in transcription from the viral genome. However, production of certain viral proteins was not compromised by treatment with XMD7 compounds. Thus, these novel anti-HCMV compounds likely inhibited transcription from the viral genome and suppressed production of a subset of viral proteins by inhibiting IE2 protein production. High throughput screening identified novel kinase inhibitors that inhibit HCMV protein production. 5-aminopyrazine compounds (XMD7-1, -2 and -27) have anti-HCMV activity. XMD7 compounds inhibited production of HCMV IE2 proteins.
Collapse
Affiliation(s)
- Rooksarr Beelontally
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Charles J Goodmaker
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Catherine M K Ho
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, London, UK
| | - Xianming Deng
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jinhua Wang
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Blair L Strang
- Institute of Infection & Immunity, St George's, University of London, London, UK; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Pignoloni B, Fionda C, Dell'Oste V, Luganini A, Cippitelli M, Zingoni A, Landolfo S, Gribaudo G, Santoni A, Cerboni C. Distinct Roles for Human Cytomegalovirus Immediate Early Proteins IE1 and IE2 in the Transcriptional Regulation of MICA and PVR/CD155 Expression. THE JOURNAL OF IMMUNOLOGY 2016; 197:4066-4078. [PMID: 27733551 DOI: 10.4049/jimmunol.1502527] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
Elimination of virus-infected cells by cytotoxic lymphocytes is triggered by activating receptors, among which NKG2D and DNAM-1/CD226 play an important role. Their ligands, that is, MHC class I-related chain (MIC) A/B and UL16-binding proteins (ULBP)1-6 (NKG2D ligand), Nectin-2/CD112, and poliovirus receptor (PVR)/CD155 (DNAM-1 ligand), are often induced on virus-infected cells, although some viruses, including human CMV (HCMV), can block their expression. In this study, we report that infection of different cell types with laboratory or low-passage HCMV strains upregulated MICA, ULBP3, and PVR, with NKG2D and DNAM-1 playing a role in NK cell-mediated lysis of infected cells. Inhibition of viral DNA replication with phosphonoformic acid did not prevent ligand upregulation, thus indicating that early phases of HCMV infection are involved in ligand increase. Indeed, the major immediate early (IE) proteins IE1 and IE2 stimulated the expression of MICA and PVR, but not ULBP3. IE2 directly activated MICA promoter via its binding to an IE2-responsive element that we identified within the promoter and that is conserved among different alleles of MICA. Both IE proteins were instead required for PVR upregulation via a mechanism independent of IE DNA binding activity. Finally, inhibiting IE protein expression during HCMV infection confirmed their involvement in ligand increase. We also investigated the contribution of the DNA damage response, a pathway activated by HCMV and implicated in ligand regulation. However, silencing of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related protein, and DNA-dependent protein kinase did not influence ligand expression. Overall, these data reveal that MICA and PVR are directly regulated by HCMV IE proteins, and this may be crucial for the onset of an early host antiviral response.
Collapse
Affiliation(s)
- Benedetta Pignoloni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; and
| | - Marco Cippitelli
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; and
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy; .,Mediterranean Neurological Institute-Neuromed, 86077 Pozzilli (Isernia), Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy;
| |
Collapse
|
14
|
Mercorelli B, Luganini A, Nannetti G, Tabarrini O, Palù G, Gribaudo G, Loregian A. Drug Repurposing Approach Identifies Inhibitors of the Prototypic Viral Transcription Factor IE2 that Block Human Cytomegalovirus Replication. Cell Chem Biol 2016; 23:340-51. [DOI: 10.1016/j.chembiol.2015.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/10/2015] [Accepted: 12/04/2015] [Indexed: 11/24/2022]
|