1
|
Mitini-Nkhoma SC, Chimbayo ET, Mzinza DT, Mhango DV, Chirambo AP, Mandalasi C, Lakudzala AE, Tembo DL, Jambo KC, Mwandumba HC. Something Old, Something New: Ion Channel Blockers as Potential Anti-Tuberculosis Agents. Front Immunol 2021; 12:665785. [PMID: 34248944 PMCID: PMC8264357 DOI: 10.3389/fimmu.2021.665785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) remains a challenging global health concern and claims more than a million lives every year. We lack an effective vaccine and understanding of what constitutes protective immunity against TB to inform rational vaccine design. Moreover, treatment of TB requires prolonged use of multi-drug regimens and is complicated by problems of compliance and drug resistance. While most Mycobacterium tuberculosis (Mtb) bacilli are quickly killed by the drugs, the prolonged course of treatment is required to clear persistent drug-tolerant subpopulations. Mtb’s differential sensitivity to drugs is, at least in part, determined by the interaction between the bacilli and different host macrophage populations. Therefore, to design better treatment regimens for TB, we need to understand and modulate the heterogeneity and divergent responses that Mtb bacilli exhibit within macrophages. However, developing drugs de-novo is a long and expensive process. An alternative approach to expedite the development of new TB treatments is to repurpose existing drugs that were developed for other therapeutic purposes if they also possess anti-tuberculosis activity. There is growing interest in the use of immune modulators to supplement current anti-TB drugs by enhancing the host’s antimycobacterial responses. Ion channel blocking agents are among the most promising of the host-directed therapeutics. Some ion channel blockers also interfere with the activity of mycobacterial efflux pumps. In this review, we discuss some of the ion channel blockers that have shown promise as potential anti-TB agents.
Collapse
Affiliation(s)
- Steven C Mitini-Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Elizabeth T Chimbayo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - David T Mzinza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David V Mhango
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Aaron P Chirambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Christine Mandalasi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Agness E Lakudzala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Dumizulu L Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Henry C Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
2
|
Crilly NP, Ayeh SK, Karakousis PC. The New Frontier of Host-Directed Therapies for Mycobacterium avium Complex. Front Immunol 2021; 11:623119. [PMID: 33552087 PMCID: PMC7862709 DOI: 10.3389/fimmu.2020.623119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
Mycobacterium avium complex (MAC) is an increasingly important cause of morbidity and mortality, and is responsible for pulmonary infection in patients with underlying lung disease and disseminated disease in patients with AIDS. MAC has evolved various virulence strategies to subvert immune responses and persist in the infected host. Current treatment for MAC is challenging, requiring a combination of multiple antibiotics given over a long time period (for at least 12 months after negative sputum culture conversion). Moreover, even after eradication of infection, many patients are left with residual lung dysfunction. In order to address similar challenges facing the management of patients with tuberculosis, recent attention has focused on the development of novel adjunctive, host-directed therapies (HDTs), with the goal of accelerating the clearance of mycobacteria by immune defenses and reducing or reversing mycobacterial-induced lung damage. In this review, we will summarize the evidence supporting specific adjunctive, HDTs for MAC, with a focus on the repurposing of existing immune-modulatory agents targeting a variety of different cellular pathways. We also highlight areas meriting further investigation.
Collapse
Affiliation(s)
- Nathan P Crilly
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel K Ayeh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
3
|
Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10:611683. [PMID: 33505923 PMCID: PMC7831573 DOI: 10.3389/fcimb.2020.611683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
Development of novel anti-tuberculosis combination regimens that increase efficacy and reduce treatment timelines will improve patient compliance, limit side-effects, reduce costs, and enhance cure rates. Such advancements would significantly improve the global TB burden and reduce drug resistance acquisition. Bioenergetics has received considerable attention in recent years as a fertile area for anti-tuberculosis drug discovery. Targeting the electron transport chain (ETC) and oxidative phosphorylation machinery promises not only to kill growing cells but also metabolically dormant bacilli that are inherently more drug tolerant. Over the last two decades, a broad array of drugs targeting various ETC components have been developed. Here, we provide a focused review of the current state of art of bioenergetic inhibitors of Mtb with an in-depth analysis of the metabolic and bioenergetic disruptions caused by specific target inhibition as well as their synergistic and antagonistic interactions with other drugs. This foundation is then used to explore the reigning theories on the mechanisms of antibiotic-induced cell death and we discuss how bioenergetic inhibitors in particular fail to be adequately described by these models. These discussions lead us to develop a clear roadmap for new lines of investigation to better understand the mechanisms of action of these drugs with complex mechanisms as well as how to leverage that knowledge for the development of novel, rationally-designed combination therapies to cure TB.
Collapse
Affiliation(s)
- Erik J Hasenoehrl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Salie S, Labuschagné A, Walters A, Geyer S, Jardine A, Jacobs M, Hsu NJ. In vitro and in vivo toxicity evaluation of non-neuroleptic phenothiazines, antitubercular drug candidates. Regul Toxicol Pharmacol 2019; 109:104508. [PMID: 31672509 DOI: 10.1016/j.yrtph.2019.104508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
The phenothiazine-derived antipsychotic drugs, such as chlorpromazine and thioridazine, are bactericidal against drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis, but produce undesirable side effects at clinically relevant doses. We have previously modified four novel phenothiazines and maintained their antimycobacterial activity. This study evaluated the pharmacological and toxicity profiles of these novel non-neuroleptic phenothiazines, PTZ3, PTZ4, PTZ31 and PTZ32, for their metabolic stability, kinetic solubility and potential cytotoxic effects in vitro. To further support the safet use of these drug candidates, the in vivo pharmacological and toxicity profiles were assessed in C57BL/6 mice via single or repeated oral gavage. In acute toxicity studies, all four modified phenothiazines showed favourable safety in mice. When treated daily with 100 mg/kg of PTZ3 and PTZ4 for 2 weeks, mice displayed no signs of toxicity. Alternatively, treatment with PTZ31 resulted in 20% mortality with no toxicity evident in biochemical or histological analysis, while exposure to PTZ32 resulted in a 45% survival with increased serum concentrations of uric acid and alkaline phosphatase. The combined non-neuroleptic and antimycobacterial effects of the novel phenothiazines PTZ3, PTZ4, PTZ31 and PTZ32 demonstrated favourable pharmacological and toxicity profiles in this study, highlight the potential of these compounds as suitable anti-tuberculosis drug candidates.
Collapse
Affiliation(s)
- Sumayah Salie
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Antoinette Labuschagné
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Avril Walters
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Sohair Geyer
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Anwar Jardine
- Department of Chemistry, Faculty of Sciences, University of Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa; National Health Laboratory Service, Johannesburg, South Africa; Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa.
| | - Nai-Jen Hsu
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| |
Collapse
|
5
|
Yang CY, Hsu CY, Fang CS, Shiau CW, Chen CS, Chiu HC. Loxapine, an antipsychotic drug, suppresses intracellular multiple-antibiotic-resistant Salmonella enterica serovar Typhimurium in macrophages. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:638-647. [DOI: 10.1016/j.jmii.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/11/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022]
|
6
|
Non-antibiotic adjunctive therapy: A promising approach to fight tuberculosis. Pharmacol Res 2019; 146:104289. [PMID: 31152788 DOI: 10.1016/j.phrs.2019.104289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is currently a clinical and public health problem. There is a concern about the emergence and development of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) species. Additionally, the lack of effective vaccines is another limitation to control the related infections. To overcome these problems various approaches have been pursued such as finding novel drug candidates with a new mechanism of action or repurposing conventional antibiotics. However, these strategies are still far from clinical application. Hence, the use of adjunctive therapy has been suggested for TB. In this paper, we review non-antibiotic adjunctive treatment options for TB. Natural products, vitamins, micronutrients, and trace elementals, as well as non-antibiotic drugs, are examples of agents which have been used as adjunctive therapies. The use of these adjunctive therapies has been shown to improve disease outcomes and reduce the adverse effects of antibiotic drugs. Employing these agents, either alone or in combination with antibiotics, might be considered as a promising approach to control TB infections and achieve better clinical outcomes. However, supportive evidence from randomized controlled trials is still scant and merits further investigations.
Collapse
|
7
|
A Protein Complex from Human Milk Enhances the Activity of Antibiotics and Drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.01846-18. [PMID: 30420480 DOI: 10.1128/aac.01846-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.
Collapse
|
8
|
Metformin Adjunctive Therapy Does Not Improve the Sterilizing Activity of the First-Line Antitubercular Regimen in Mice. Antimicrob Agents Chemother 2017; 61:AAC.00652-17. [PMID: 28559262 DOI: 10.1128/aac.00652-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/20/2017] [Indexed: 11/20/2022] Open
Abstract
Preliminary preclinical and observational studies suggest the potential utility of metformin as an adjunctive, host-directed agent for treatment of tuberculosis (TB). In this study, we sought to investigate the bactericidal and sterilizing activities of human-like exposures of metformin when given in combination with the first-line regimen against chronic tuberculosis in BALB/c mice. Mice receiving metformin adjunctive therapy had similar lung bacillary burdens with control mice during treatment, and the proportion of mice with microbiological relapse was similar between the two groups.
Collapse
|
9
|
Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc Natl Acad Sci U S A 2017; 114:E4832-E4840. [PMID: 28559332 DOI: 10.1073/pnas.1705385114] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encounters stresses during the pathogenesis and treatment of tuberculosis (TB) that can suppress replication of the bacteria and render them phenotypically tolerant to most available drugs. Where studied, the majority of Mtb in the sputum of most untreated subjects with active TB have been found to be nonreplicating by the criterion that they do not grow as colony-forming units (cfus) when plated on agar. However, these cells are viable because they grow when diluted in liquid media. A method for generating such "differentially detectable" (DD) Mtb in vitro would aid studies of the biology and drug susceptibility of this population, but lack of independent confirmation of reported methods has contributed to skepticism about their existence. Here, we identified confounding artifacts that, when avoided, allowed development of a reliable method of producing cultures of ≥90% DD Mtb in starved cells. We then characterized several drugs according to whether they contribute to the generation of DD Mtb or kill them. Of the agents tested, rifamycins led to DD Mtb generation, an effect lacking in a rifampin-resistant strain with a mutation in rpoB, which encodes the canonical rifampin target, the β subunit of RNA polymerase. In contrast, thioridazine did not generate DD Mtb from starved cells but killed those generated by rifampin.
Collapse
|
10
|
Amaral L, Viveiros M. Thioridazine: A Non-Antibiotic Drug Highly Effective, in Combination with First Line Anti-Tuberculosis Drugs, against Any Form of Antibiotic Resistance of Mycobacterium tuberculosis Due to Its Multi-Mechanisms of Action. Antibiotics (Basel) 2017; 6:antibiotics6010003. [PMID: 28098814 PMCID: PMC5372983 DOI: 10.3390/antibiotics6010003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
This review presents the evidence that supports the use of thioridazine (TZ) for the therapy of a pulmonary tuberculosis infection regardless of its antibiotic resistance status. The evidence consists of in vitro and ex vivo assays that demonstrate the activity of TZ against all encountered Mycobacterium tuberculosis (Mtb) regardless of its antibiotic resistance phenotype, as well as in vivo as a therapy for mice infected with multi-drug resistant strains of Mtb, or for human subjects infected with extensively drug resistant (XDR) Mtb. The mechanisms of action by which TZ brings about successful therapeutic outcomes are presented in detail.
Collapse
Affiliation(s)
- Leonard Amaral
- Insititute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal.
- Institute of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Hungary.
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal.
| |
Collapse
|
11
|
Parumasivam T, Chan JGY, Pang A, Quan DH, Triccas JA, Britton WJ, Chan HK. In vitro evaluation of novel inhalable dry powders consisting of thioridazine and rifapentine for rapid tuberculosis treatment. Eur J Pharm Biopharm 2016; 107:205-14. [PMID: 27422209 DOI: 10.1016/j.ejpb.2016.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 02/03/2023]
Abstract
Thioridazine is an orally administered antipsychotic drug with potential for treatment of drug-resistant tuberculosis (TB). However, drug-induced adverse cardiac effects have been reported when thioridazine was used at an efficacious oral dose of 200mg/day to treat TB. Pulmonary delivery of thioridazine could be a rational approach to reduce dose-related side effects while enabling high drug concentrations at the primary site of infection. The present study compares in vitro aerosol performance, storage stability, and in vitro antimicrobial activity and cytotoxicity of two inhalable powders composed of thioridazine and a first-line anti-TB drug, rifapentine. Formulation 1 is a combination of amorphous thioridazine and crystalline rifapentine, while Formulation 2 consisted of both drugs as amorphous forms. Both thioridazine-rifapentine formulations were found suitable for inhalation with a total fine particle fraction (<5μm) of 68-76%. The two powders had similar MIC90 to rifapentine alone, being 0.000625μg/mL and 0.005μg/ml against Mycobacterium tuberculosis H37Ra and M. tuberculosis H37Rv, respectively. In contrast, thioridazine alone had a MIC90 of 12.5μg/mL and 500μg/mL, against M. tuberculosis H37Ra and M. tuberculosis H37Rv, respectively, demonstrating no synergistic anti-TB activity. However, thioridazine and rifapentine in a ratio of 1:3 enhanced the killing of M. tuberculosis H37Ra within the human monocyte-derived macrophages (THP-1) compared to the single drug treatments. Both powders showed an acceptable half maximal inhibitory concentration (IC50) of 31.25μg/mL on both THP-1 and human lung epithelial (A549) cells. However, Formulation 1 showed greater chemical stability than Formulation 2 after three months of storage under low humidity (vacuum) at 20±3°C. In conclusion, we have demonstrated a novel inhalable powder consisted of amorphous thioridazine and crystalline rifapentine (Formulation 1) with a good aerosol performance, potent anti-TB activity and storage stability, which deserves further in vivo investigations.
Collapse
Affiliation(s)
- T Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, 2006 NSW, Australia
| | - J G Y Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, 2006 NSW, Australia; JHL Biotech, Inc., Hsinchu County, Taiwan
| | - A Pang
- Tuberculosis Research Program, Centenary Institute, and The University of Sydney, Sydney 2042, NSW, Australia
| | - D H Quan
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, 2006 NSW, Australia
| | - J A Triccas
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, 2006 NSW, Australia
| | - W J Britton
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, 2006 NSW, Australia; Tuberculosis Research Program, Centenary Institute, and The University of Sydney, Sydney 2042, NSW, Australia
| | - H K Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, 2006 NSW, Australia.
| |
Collapse
|
12
|
de Keijzer J, Mulder A, de Haas PEW, de Ru AH, Heerkens EM, Amaral L, van Soolingen D, van Veelen PA. Thioridazine Alters the Cell-Envelope Permeability of Mycobacterium tuberculosis. J Proteome Res 2016; 15:1776-86. [PMID: 27068340 DOI: 10.1021/acs.jproteome.5b01037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The increasing occurrence of multidrug resistant tuberculosis exerts a major burden on treatment of this infectious disease. Thioridazine, previously used as a neuroleptic, is active against extensively drug resistant tuberculosis when added to other second- and third-line antibiotics. By quantitatively studying the proteome of thioridazine-treated Mycobacterium tuberculosis, we discovered the differential abundance of several proteins that are involved in the maintenance of the cell-envelope permeability barrier. By assessing the accumulation of fluorescent dyes in mycobacterial cells over time, we demonstrate that long-term drug exposure of M. tuberculosis indeed increased the cell-envelope permeability. The results of the current study demonstrate that thioridazine induced an increase in cell-envelope permeability and thereby the enhanced uptake of compounds. These results serve as a novel explanation to the previously reported synergistic effects between thioridazine and other antituberculosis drugs. This new insight in the working mechanism of this antituberculosis compound could open novel perspectives of future drug-administration regimens in combinational therapy.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC) , Leiden, 2300 RC The Netherlands
| | | | | | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC) , Leiden, 2300 RC The Netherlands
| | | | - Leonard Amaral
- Travel Medicine of the CMDT, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa , Lisboa, 1349-008 Portugal
| | - Dick van Soolingen
- Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Centre , Nijmegen, 6500 HB The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC) , Leiden, 2300 RC The Netherlands
| |
Collapse
|
13
|
Dutta NK, Bruiners N, Pinn ML, Zimmerman MD, Prideaux B, Dartois V, Gennaro ML, Karakousis PC. Statin adjunctive therapy shortens the duration of TB treatment in mice. J Antimicrob Chemother 2016; 71:1570-7. [PMID: 26903278 DOI: 10.1093/jac/dkw014] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/11/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The repurposing of existing agents may accelerate TB drug development. Recently, we reported that the lipid-lowering drug simvastatin, when added to the first-line antitubercular regimen, reduces the lung bacillary burden in chronically infected mice. OBJECTIVES We investigated whether the addition of simvastatin to the first-line regimen (isoniazid/rifampicin/pyrazinamide) shortens the duration of curative TB treatment in mice. METHODS Mycobacterium tuberculosis-infected THP-1 cells were exposed to simvastatin to determine the effect of statins on the activity of first-line anti-TB drug activity and intracellular rifampicin concentration. Single-dose and steady-state pharmacokinetic studies guided optimized simvastatin dosing in vivo. BALB/c mice were aerosol-infected with M. tuberculosis H37Rv and drug treatment was initiated 6 weeks post-infection. Separate groups of mice received standard TB treatment with or without simvastatin. Relapse rates were assessed 3 months after discontinuation of each treatment regimen. MALDI-MS imaging was used to image the cholesterol content of mouse lung lesions. RESULTS Simvastatin significantly enhanced the bactericidal activity of first-line drugs against intracellular M. tuberculosis without altering intracellular rifampicin concentrations. Adjunctive treatment with 60 mg/kg simvastatin shortened the time required to achieve culture-negative lungs from 4.5 to 3.5 months. Following 2.5, 3.5 and 4.5 months of treatment, relapse rates were 100%, 50% and 0%, respectively, in the control group and 50% (P = 0.03), 20% and 0%, respectively, in the statin group. Simvastatin did not alter plasma or lung lesion cholesterol levels. CONCLUSIONS Statins are attractive candidates for host-directed, adjunctive TB therapy. Further preclinical studies are needed to define the optimal statin and dosing.
Collapse
Affiliation(s)
- Noton K Dutta
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalie Bruiners
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, NJ, USA
| | - Michael L Pinn
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew D Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, NJ, USA
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, NJ, USA
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, NJ, USA
| | - Maria L Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, NJ, USA
| | - Petros C Karakousis
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
14
|
Chemotherapeutic efficacy of thioridazine as an adjunct drug in a murine model of latent tuberculosis. Tuberculosis (Edinb) 2014; 94:695-700. [DOI: 10.1016/j.tube.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/31/2014] [Indexed: 11/20/2022]
|
15
|
de Knegt GJ, Ten Kate MT, van Soolingen D, Aarnoutse R, Boeree MJ, Bakker-Woudenberg IAJM, de Steenwinkel JEM. Enhancement of in vitro activity of tuberculosis drugs by addition of thioridazine is not reflected by improved in vivo therapeutic efficacy. Tuberculosis (Edinb) 2014; 94:S1472-9792(14)20507-5. [PMID: 25423883 DOI: 10.1016/j.tube.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Assessment of the activity of thioridazine towards Mycobacterium tuberculosis (Mtb), in vitro and in vivo as a single drug and in combination with tuberculosis (TB) drugs. METHODS The in vitro activity of thioridazine as single drug or in combination with TB drugs was assessed in terms of MIC and by use of the time-kill kinetics assay. Various Mtb strains among which the Beijing genotype strain BE-1585 were included. In vivo, mice with TB induced by BE-1585 were treated with a TB drug regimen with thioridazine during 13 weeks. Therapeutic efficacy was assessed by the change in mycobacterial load in the lung, spleen and liver during treatment and 13 weeks post-treatment. RESULTS In vitro, thioridazine showed a concentration-dependent and time-dependent bactericidal activity towards both actively-replicating and slowly-replicating Mtb. Thioridazine at high concentrations could enhance the activity of isoniazid and rifampicin, and in case of isoniazid resulted in elimination of mycobacteria and prevention of isoniazid-resistant mutants. Thioridazine had no added value in combination with moxifloxacin or amikacin. In mice with TB, thioridazine was poorly tolerated, limiting the maximum tolerated dose (MTD). The addition of thioridazine at the MTD to an isoniazid-rifampicin-pyrazinamide regimen for 13 weeks did not result in enhanced therapeutic efficacy. CONCLUSIONS Thioridazine is bactericidal towards Mtb in vitro, irrespective the mycobacterial growth rate and results in enhanced activity of the standard regimen. The in vitro activity of thioridazine in potentiating isoniazid and rifampicin is not reflected by improved therapeutic efficacy in a murine TB-model.
Collapse
Affiliation(s)
- Gerjo J de Knegt
- Erasmus MC, University Medical Centre Rotterdam, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands.
| | - Marian T Ten Kate
- Erasmus MC, University Medical Centre Rotterdam, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands
| | - Dick van Soolingen
- National Institute for Public Health and the Environment (RIVM), National Mycobacteria Reference Laboratory, Bilthoven, The Netherlands
| | - Rob Aarnoutse
- Radboud University Medical Centre, Department of Pharmacy, Nijmegen, The Netherlands
| | - Martin J Boeree
- Radboud University Nijmegen Medical Centre, University Centre for Chronic Diseases Dekkerswald, Nijmegen, The Netherlands
| | - Irma A J M Bakker-Woudenberg
- Erasmus MC, University Medical Centre Rotterdam, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands
| | - Jurriaan E M de Steenwinkel
- Erasmus MC, University Medical Centre Rotterdam, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Dutta NK, Karakousis PC. Thioridazine for treatment of tuberculosis: promises and pitfalls. Tuberculosis (Edinb) 2014; 94:708-11. [PMID: 25293998 DOI: 10.1016/j.tube.2014.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/23/2022]
Abstract
The articles by De Knegt et al. and Singh et al. in a recent issue of this Journal address one of the current debates regarding the potential role of thioridazine in the treatment of tuberculosis. This commentary presents a summary of the available evidence, and, emphasizing the need for further research, asks the question: "How far can we go in repurposing thioridazine?"
Collapse
Affiliation(s)
- Noton K Dutta
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Petros C Karakousis
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|