1
|
Abou Mourad Ferreira M, Candeias Dos Santos L, Schmidt Castellani LG, Negrelli Brunetti M, Palaci M. Application of BactTiter-Glo ATP bioluminescence assay for Mycobacterium tuberculosis detection. Diagn Microbiol Infect Dis 2024; 109:116275. [PMID: 38537505 DOI: 10.1016/j.diagmicrobio.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a global health threat, necessitating faster and more accessible diagnostic methods. This study investigates critical parameters in the application of a commercial ATP bioluminescence assay for the detection of MTB. METHOD Our objective was to optimize the ATP bioluminescence protocol using BacTiter-Glo™ for MTB, investigating the impact of varying volumes of MTB suspension and reagent on assay sensitivity, evaluating ATP extraction methods, establishing calibration curves, and elucidating strain-specific responses to antimicrobial agents. RESULTS ATP extraction methods showed no significant improvement over controls. Calibration curves revealed a linear correlation between relative light units (RLU) and colony-forming units (CFU/mL), establishing low detection limits. Antimicrobial testing demonstrated strain-specific responses aligning with susceptibility and resistance patterns. CONCLUSION Our findings contribute to refining ATP bioluminescence protocols for enhanced MTB detection and susceptibility testing. Further refinements and validation efforts are warranted, holding promise for more efficient diagnostic platforms in the future.
Collapse
Affiliation(s)
- Mariana Abou Mourad Ferreira
- Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde (Health Sciences Center), Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil.
| | - Laura Candeias Dos Santos
- Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde (Health Sciences Center), Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| | - Luiz Guilherme Schmidt Castellani
- Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde (Health Sciences Center), Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| | - Manuela Negrelli Brunetti
- Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde (Health Sciences Center), Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| | - Moisés Palaci
- Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde (Health Sciences Center), Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| |
Collapse
|
2
|
Noriega S, Cardoso-Ortiz J, López-Luna A, Cuevas-Flores MDR, Flores De La Torre JA. The Diverse Biological Activity of Recently Synthesized Nitro Compounds. Pharmaceuticals (Basel) 2022; 15:717. [PMID: 35745635 PMCID: PMC9230682 DOI: 10.3390/ph15060717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
The search for new and efficient pharmaceuticals is a constant struggle for medicinal chemists. New substances are needed in order to treat different pathologies affecting the health of humans and animals, and these new compounds should be safe, effective and have the fewest side effects possible. Some functional groups are known for having biological activity; in this matter, the nitro group (NO2) is an efficient scaffold when synthesizing new bioactive molecules. Nitro compounds display a wide spectrum of activities that include antineoplastic, antibiotic, antihypertensive, antiparasitic, tranquilizers and even herbicides, among many others. Most nitro molecules exhibit antimicrobial activity, and several of the compounds mentioned in this review may be further studied as lead compounds for the treatment of H. pylori, P. aeruginosa, M. tuberculosis and S. mutans infections, among others. The NO2 moiety triggers redox reactions within cells causing toxicity and the posterior death of microorganisms, not only bacteria but also multicellular organisms such as parasites. The same effect may be present in humans as well, so the nitro groups can be considered both a pharmacophore and a toxicophore at the same time. The role of the nitro group itself also has a deep effect on the polarity and electronic properties of the resulting molecules, and hence favors interactions with some amino acids in proteins. For these reasons, it is fundamental to analyze the recently synthesized nitro molecules that show any potential activity in order to develop new pharmacological treatments that enhance human health.
Collapse
Affiliation(s)
| | - Jaime Cardoso-Ortiz
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (S.N.); (A.L.-L.); (M.D.R.C.-F.); (J.A.F.D.L.T.)
| | | | | | | |
Collapse
|
3
|
Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238:114454. [PMID: 35597009 DOI: 10.1016/j.ejmech.2022.114454] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Tuberculosis, a disease of poverty is a communicable infection with a reasonably high mortality rate worldwide. 10 Million new cases of TB were reported with approx 1.4 million deaths in the year 2019. Due to the growing number of drug-sensitive and drug-resistant tuberculosis cases, there is a vital need to develop new and effective candidates useful to combat this deadly disease. Despite tremendous efforts to identify a mechanism-based novel antitubercular agent, only a few have entered into clinical trials in the last six decades. In recent years, triazoles have been well explored as the most valuable scaffolds in drug discovery and development. Triazole framework possesses favorable properties like hydrogen bonding, moderate dipole moment, enhanced water solubility, and also the ability to bind effectively with biomolecular targets of M. tuberculosis and therefore this scaffold displayed excellent potency against TB. This review is an endeavor to summarize an up-to-date innovation of triazole-appended hybrids during the last 10 years having potential in vitro and in vivo antitubercular activity with structure activity relationship analysis. This review may help medicinal chemists to explore the triazole scaffolds for the rational design of potent drug candidates having better efficacy, improved selectivity and minimal toxicity so that these hybrid NCEs can effectively be explored as potential lead to fight against M. tuberculosis.
Collapse
|
4
|
Scarim CB, Pavan FR. Recent advancement in drug development of nitro(NO 2 )-heterocyclic compounds as lead scaffolds for the treatment of Mycobacterium tuberculosis. Drug Dev Res 2022; 83:842-858. [PMID: 35106801 DOI: 10.1002/ddr.21921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/26/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
Tuberculosis (TB) is an infectious disease caused predominantly by Mycobacterium tuberculosis (Mtb). It was responsible for approximately 1.4 million deaths worldwide in 2019. The lack of new drugs to treat drug-resistant strains is a principal factor for the slow rise in TB infections. Our aim is to aid the development of new TB treatments by describing improvements (last decade, 2011-2021) to nitro(NO2 )-based compounds that have shown activity or pharmacological properties (e.g., anti-proliferative, anti-kinetoplastid) against Mtb. For all compounds, we have included final correlations of minimum inhibitory concentrations against Mtb (H37 Rv).
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Department of Cell and Molecular Biology, University of Mississippi Medical Center (UMMC), Jackson, Mississippi, USA
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
5
|
Scarim CB, Pavan FR. An overview of sulfonamide-based conjugates: Recent advances for tuberculosis treatment. Drug Dev Res 2022; 83:567-577. [PMID: 35040503 DOI: 10.1002/ddr.21913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
In 2019, tuberculosis (TB) caused approximately 1.4 million deaths around the world. TB is an infectious respiratory disease mainly caused by Mycobacterium tuberculosis. The lack of new drugs to treat drug-resistant strains is a principal factor for the continuous slow rise in TB infections. Sulfonamides are active moieties in various drugs used against several sicknesses, including TB. Our aim is to aid the development of new TB treatments and drugs by describing recent improvements (2011-2021) to sulfonamide-based compounds.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Department of Cell and Molecular Biology, University of Mississippi Medical Center (UMMC), Jackson, Mississippi, USA
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
6
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
7
|
Talha A, Mourhly A, Tachallait H, Driowya M, El Hamidi A, Arshad S, Karrouchi K, Arsalane S, Bougrin K. One-pot four-component tandem synthesis of novel sulfonamide-1, 2, 3-triazoles catalyzed by reusable copper (II)-adsorbed on mesoporous silica under ultrasound irradiation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Beteck RM, Jordaan A, Seldon R, Laming D, Hoppe HC, Warner DF, Khanye SD. Easy-To-Access Quinolone Derivatives Exhibiting Antibacterial and Anti-Parasitic Activities. Molecules 2021; 26:molecules26041141. [PMID: 33672753 PMCID: PMC7931078 DOI: 10.3390/molecules26041141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24–31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4–20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.
Collapse
Affiliation(s)
- Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa;
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
| | - Heinrich C. Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda 6140, South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - Setshaba D. Khanye
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| |
Collapse
|
9
|
Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 2020; 205:112652. [PMID: 32771798 PMCID: PMC7384432 DOI: 10.1016/j.ejmech.2020.112652] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
The present review aims to summarize the pharmacological profile of 1,2,4-triazole, one of the emerging privileged scaffold, as antifungal, antibacterial, anticancer, anticonvulsant, antituberculosis, antiviral, antiparasitic, analgesic and anti-inflammatory agents, etc. along with structure-activity relationship. The comprehensive compilation of work carried out in the last decade on 1,2,4-triazole nucleus will provide inevitable scope for researchers for the advancement of novel potential drug candidates having better efficacy and selectivity.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India; CSIR-National Institute of Science Technology and Development Studies, New Delhi, India.
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India.
| |
Collapse
|
10
|
Mukherjee G, Mukherjee K, Das R, Mandal RS, Roy I, Mukhopadhyay B, Sil AK. Allyl piperidine-1-carbodiothioate and benzyl 1H-imidazole 1 carbodithioate: two potential agents to combat against mycobacteria. J Appl Microbiol 2020; 130:786-796. [PMID: 32615006 DOI: 10.1111/jam.14762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/23/2020] [Accepted: 06/24/2020] [Indexed: 11/27/2022]
Abstract
AIMS The emergence of multidrug resistant strains of Mycobacterium tuberculosis has made tuberculosis more difficult to manage clinically. With the aim of obtaining new and effective anti-mycobacterial agent(s), this study investigated the anti-mycobacterial activity of several imidazole and piperidine derivatives. METHODS AND RESULTS Towards obtaining new anti-mycobacterial agents, Mycobacterium smegmatis cells were treated with different compounds for their growth inhibitory activity. Among these, benzyl 1H-imidazole-1-carbodithioate and allyl piperidine-1-carbodiothioate exhibited better inhibition than the others. Thereafter, anti-biofilm property of these two was examined by treating M. smegmatis with these agents before and after the formation of biofilm. The result showed that both the compounds at their sublethal dose inhibited the formation of biofilm as well as dispersed preformed biofilm. Consistently, they augmented the activity of isoniazid or rifampicin against biofilm-encapsulated cells. MTT assay was performed to examine the toxic effects of this combinatorial therapy on different cell lines. Results exhibited a low cytotoxicity for this combinatorial treatment. The activity of these two was also verified against dormant mycobacterial cells and was found to be effective. CONCLUSION The present study identified two compounds that exhibited anti-mycobacterial activities against both planktonic and dormant cells. These two also exhibited anti-biofilm activity at their sublethal dose and augmented the activity of isoniazid and rifampicin against biofilm encapsulated cells. SIGNIFICANCE AND IMPACT OF THE STUDY The current study provides two new agents that have the potential to be used in anti-mycobacterial therapy and may help in public health management.
Collapse
Affiliation(s)
- G Mukherjee
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal, India
| | - K Mukherjee
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal, India
| | - R Das
- Department of Chemical Science, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal, India
| | - R S Mandal
- National Institute of Cholera and Enteric Diseases, Biomedical Informatics Centre, Kolkata, West Bengal, India
| | - I Roy
- Clinical Microbiology, Calcutta Medical Research Institute, Kolkata, West Bengal, India
| | - B Mukhopadhyay
- Department of Chemical Science, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal, India
| | - A K Sil
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Zhang J, Ba Y, Wang S, Yang H, Hou X, Xu Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur J Med Chem 2019; 179:376-388. [PMID: 31260891 DOI: 10.1016/j.ejmech.2019.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022]
Abstract
Infections especially tuberculosis caused by various bacteria including mycobacteria result in millions of lives every year, but the control of bacterial infections is challenged by the limitation of effective pharmaceuticals against drug-resistant pathogens. Nitroimidazoles belong to a group of nitroheterocyclic compounds that have broad-spectrum activity against a series of organisms such as mycobacteria, anaerobic Gram-positive and Gram-negative bacteria, and some of them have already been used in clinics or under clinical trials for the treatment of infectious diseases. In this review, we made an overview of the recent advances in nitroimidazole-containing compounds with antibacterial and antitubercular activity in the recent 20 years.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Su Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Xuehui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, 450046, Zhengzhou, PR China.
| | - Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| |
Collapse
|
12
|
Analysis of tuberculosis disease through Raman spectroscopy and machine learning. Photodiagnosis Photodyn Ther 2018; 24:286-291. [DOI: 10.1016/j.pdpdt.2018.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022]
|
13
|
Abstract
The nitro group is considered to be a versatile and unique functional group in medicinal chemistry. Despite a long history of use in therapeutics, the nitro group has toxicity issues and is often categorized as a structural alert or a toxicophore, and evidence related to drugs containing nitro groups is rather contradictory. In general, drugs containing nitro groups have been extensively associated with mutagenicity and genotoxicity. In this context, efforts toward the structure-mutagenicity or structure-genotoxicity relationships have been undertaken. The current Perspective covers various aspects of agents that contain nitro groups, their bioreductive activation mechanisms, their toxicities, and approaches to combat their toxicity issues. In addition, recent advances in the field of anticancer, antitubercular and antiparasitic agents containing nitro groups, along with a patent survey on hypoxia-activated prodrugs containing nitro groups, are also covered.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| |
Collapse
|
14
|
Skočibušić M, Odžak R, Ramić A, Smolić T, Hrenar T, Primožič I. Novel Imidazole Aldoximes with Broad-Spectrum Antimicrobial Potency against Multidrug Resistant Gram-Negative Bacteria. Molecules 2018; 23:molecules23051212. [PMID: 29783685 PMCID: PMC6100315 DOI: 10.3390/molecules23051212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022] Open
Abstract
In the search for a new class of potential antimicrobial agents, five novel N-substituted imidazole 2-aldoximes and their six quaternary salts were evaluated. The antimicrobial activity was assessed against a panel of representative Gram-positive and Gram-negative bacteria, including multidrug resistant bacteria. All compounds demonstrated potent in vitro activity against the tested microorganisms, with MIC values ranging from 6.25 to 50.0 μg/mL. Among the tested compounds, two quaternary compounds (N-but-3-enyl- and meta- (10) or para- N-chlorobenzyl (11) imidazolium 2-aldoximes) displayed the most potent and broad-spectrum activity against both Gram-positive and Gram-negative bacterial strains. The broth microdilution assay was also used to investigate the antiresistance efficacy of the both most active compounds against a set of Enterobacteriaceae isolates carried a multiple extended-spectrum β-lactamases (ESBLs) in comparison to eight clinically relevant antibiotics. N-but-3-enyl-N-meta-chlorobenzyl imidazolium 2-aldoxime was found to possess promising antiresistance efficacy against a wide range of β-lactamases producing strains (MIC 2.0 to 16.0 μg/mL). Best results for that compound were obtained against Escherichia coli and Enterobacter cloacae producing multiple β-lactamases form A and C molecular classes, which were 32- and 128-fold more potent than ceftazidime and cefotaxime, respectively. To visualize the results, principal component analysis was used as an additional classification tool. The mixture of ceftazidime and compound 10 (3 μg:2 μg) showed a strong activity and lower the necessary amount (up to 40-fold) of 10 against five of ESBL-producing isolates (MIC ≤ 1 µg/mL).
Collapse
Affiliation(s)
- Mirjana Skočibušić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, HR-21 000 Split, Croatia.
| | - Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, HR-21 000 Split, Croatia.
| | - Alma Ramić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10 000 Zagreb, Croatia.
| | - Tomislav Smolić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10 000 Zagreb, Croatia.
| | - Tomica Hrenar
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10 000 Zagreb, Croatia.
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10 000 Zagreb, Croatia.
| |
Collapse
|
15
|
Fan YL, Jin XH, Huang ZP, Yu HF, Zeng ZG, Gao T, Feng LS. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 2018; 150:347-365. [PMID: 29544148 DOI: 10.1016/j.ejmech.2018.03.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Tuberculosis still remains one of the most common, communicable, and leading deadliest diseases known to mankind throughout the world. Drug-resistance in Mycobacterium tuberculosis which threatens to worsen the global tuberculosis epidemic has caused great concern in recent years. To overcome the resistance, the development of new drugs with novel mechanisms of actions is of great importance. Imidazole-containing derivatives endow with various biological properties, and some of them demonstrated excellent anti-tubercular activity. As the most emblematic example, 4-nitroimidazole delamanid has already received approval for treatment of multidrug-resistant tuberculosis infected patients. Thus, imidazole-containing derivatives have caused great interests in discovery of new anti-tubercular agents. Numerous of imidazole-containing derivatives were synthesized and screened for their in vitro and in vivo anti-mycobacterial activities against both drug-sensitive and drug-resistant Mycobacterium tuberculosis pathogens. This review aims to outline the recent advances of imidazole-containing derivatives as anti-tubercular agents, and summarize the structure-activity relationship of these derivatives. The enriched structure-activity relationship may pave the way for the further rational development of imidazole-containing derivatives as anti-tubercular agents.
Collapse
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Xiao-Hong Jin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhong-Ping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China.
| | - Hai-Feng Yu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Tao Gao
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China
| |
Collapse
|
16
|
Papadopoulou MV, Bloomer WD, Rosenzweig HS. The antitubercular activity of various nitro(triazole/imidazole)-based compounds. Bioorg Med Chem 2017; 25:6039-6048. [DOI: 10.1016/j.bmc.2017.09.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 02/04/2023]
|
17
|
Kumar V, Patel S, Jain R. New structural classes of antituberculosis agents. Med Res Rev 2017; 38:684-740. [DOI: 10.1002/med.21454] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Vajinder Kumar
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
- Present address: Department of Chemistry; Akal University; Talwandi Sabo Punjab 151 302 India
| | - Sanjay Patel
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| |
Collapse
|
18
|
Fernandes GFDS, Man Chin C, Dos Santos JL. Advances in Drug Discovery of New Antitubercular Multidrug-Resistant Compounds. Pharmaceuticals (Basel) 2017; 10:ph10020051. [PMID: 28587160 PMCID: PMC5490408 DOI: 10.3390/ph10020051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), a disease caused mainly by the Mycobacterium tuberculosis (Mtb), is according to the World Health Organization (WHO) the infectious disease responsible for the highest number of deaths worldwide. The increased number of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains, and the ineffectiveness of the current treatment against latent tuberculosis are challenges to be overcome in the coming years. The scenario of drug discovery becomes alarming when it is considered that the number of new drugs does not increase proportionally to the emergence of drug resistance. In this review, we will demonstrate the current advances in antitubercular drug discovery, focusing on the research of compounds with potent antituberculosis activity against MDR-TB strains. Herein, active compounds against MDR-TB with minimum inhibitory concentrations (MICs) less than 11 µM and low toxicity published in the last 4 years in the databases PubMed, Web of Science and Scopus will be presented and discussed.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| |
Collapse
|
19
|
Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis. Bioorg Med Chem Lett 2016. [PMID: 27025343 DOI: 10.1016/j.bmcl.2016.03.066.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twenty-four quinoxaline derivatives were evaluated for their antimycobacterial activity using BacTiter-Glo microbial cell viability assay. Five compounds showed MIC values <3.1 μM and IC50 values<1.5 μM in primary screening and therefore, they were moved on for further evaluation. Compounds 21 and 18 stand out, showing MIC values of 1.6 μM and IC50 values of 0.5 and 1.0 μM, respectively. Both compounds were the most potent against three evaluated drug-resistant strains. Moreover, they exhibited intracellular activity in infected macrophages, considering log-reduction and cellular viability. In addition, compounds 16 and 21 were potent against non-replicating Mycobacterium tuberculosis and compound 21 was bactericidal. Therefore, quinoxaline derivatives could be considered for making further advances in the future development of antimycobacterial agents.
Collapse
|
20
|
Santivañez-Veliz M, Pérez-Silanes S, Torres E, Moreno-Viguri E. Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis. Bioorg Med Chem Lett 2016; 26:2188-93. [PMID: 27025343 DOI: 10.1016/j.bmcl.2016.03.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Twenty-four quinoxaline derivatives were evaluated for their antimycobacterial activity using BacTiter-Glo microbial cell viability assay. Five compounds showed MIC values <3.1 μM and IC50 values<1.5 μM in primary screening and therefore, they were moved on for further evaluation. Compounds 21 and 18 stand out, showing MIC values of 1.6 μM and IC50 values of 0.5 and 1.0 μM, respectively. Both compounds were the most potent against three evaluated drug-resistant strains. Moreover, they exhibited intracellular activity in infected macrophages, considering log-reduction and cellular viability. In addition, compounds 16 and 21 were potent against non-replicating Mycobacterium tuberculosis and compound 21 was bactericidal. Therefore, quinoxaline derivatives could be considered for making further advances in the future development of antimycobacterial agents.
Collapse
Affiliation(s)
- Mery Santivañez-Veliz
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea s/n, 31008 Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea s/n, E-31008 Pamplona, Spain
| | - Silvia Pérez-Silanes
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea s/n, 31008 Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea s/n, E-31008 Pamplona, Spain
| | - Enrique Torres
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea s/n, 31008 Pamplona, Spain
| | - Elsa Moreno-Viguri
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea s/n, 31008 Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea s/n, E-31008 Pamplona, Spain.
| |
Collapse
|
21
|
Deepa I, Kumar SN, Sreerag RS, Nath VS, Mohandas C. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria. Front Microbiol 2015; 6:876. [PMID: 26379651 PMCID: PMC4548193 DOI: 10.3389/fmicb.2015.00876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023] Open
Abstract
Skin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present investigation ethyl acetate extract of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antibacterial property and was further purified by silica gel column chromatography to get three different cyclic dipeptides (CDPs). Based on the spectral data and Marfey's analyses, the CDPs were identified as cyclo(D-Leu-D-Arg) (1), cyclo(L-Trp-L-Arg) (2), and cyclo(D-Trp-D-Arg) (3), respectively. Three CDPs were active against all the 10 wound associated bacteria tested. The significant antibacterial activity was recorded by CDP 3, and highest activity of 0.5 μg/ml was recorded against Staphylococcus aureus and Pseudomonas aeruginosa. The synergistic antibacterial activities of CDPs and ampicillin were assessed using the checkerboard microdilution method. The results of the current study recorded that the combined effects of CDPs and ampicillin principally recorded synergistic activity. Interestingly, the combination of CDPs and ampicillin also recorded enhanced inhibition of biofilm formation by bacteria. Moreover, CDPs significantly stimulate the production of IL-10 and IL-4 (anti-inflammatory cytokines) by human peripheral blood mononuclear cells. CDPs do not make any significant effect on the production of pro-inflammatory cytokines like TNF-α. The three CDPs have been studied for their effect on intracellular S. aureus in murine macrophages (J774) using 24 h exposure to 0.5X, 1X, and 2X MIC concentrations. Significant decrease in intracellular S. aureus burden was recorded by CDPs. CDPs also recorded no cytotoxicity toward FS normal fibroblast, VERO, and L231 normal lung epithelial cell lines. Antimicrobial activity of the arginine containing CDPs against the wound associated bacteria is reported here for the first. Moreover, this is also the first report on the production of CDPs by Achromobacter sp. Finally, we conclude that the Achromobacter sp. is an incredibly promising source of natural bioactive secondary metabolites especially against wound pathogenic bacteria that may receive significant benefit in the field of human medicine in near future as topical agents.
Collapse
Affiliation(s)
- Indira Deepa
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| | - Sasidharan N Kumar
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| | - Ravikumar S Sreerag
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| | - Vishnu S Nath
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| | - Chellapan Mohandas
- Division of Crop Protection, Central Tuber Crops Research Institute Thiruvananthapuram, India
| |
Collapse
|
22
|
Ajani OO, Familoni OB, Aderohunmu DV, Ogunniran KO, Adekoya JA, Olanrewaju IO. Comparative Study of the Antibacterial Activity of N, N-Diethylamido Substituted p-Toluenesulfonamides to their α-Toluenesulfonamide Counterparts. Pak J Biol Sci 2015; 18:166-72. [PMID: 26506646 DOI: 10.3923/pjbs.2015.166.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|