1
|
Attram HD, Korkor CM, Taylor D, Njoroge M, Chibale K. Antimalarial Imidazopyridines Incorporating an Intramolecular Hydrogen Bonding Motif: Medicinal Chemistry and Mechanistic Studies. ACS Infect Dis 2023; 9:928-942. [PMID: 36946433 PMCID: PMC10111423 DOI: 10.1021/acsinfecdis.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
We previously identified a novel class of antimalarial benzimidazoles incorporating an intramolecular hydrogen bonding motif. The frontrunner of the series, analogue A, showed nanomolar activity against the chloroquine-sensitive NF54 and multi-drug-resistant K1 strains of Plasmodium falciparum (PfNF54 IC50 = 0.079 μM; PfK1 IC50 = 0.335 μM). Here, we describe a cell-based medicinal chemistry structure-activity relationship study using compound A as a basis. This effort led to the identification of novel antimalarial imidazopyridines with activities of <1 μM, favorable cytotoxicity profiles, and good physicochemical properties. Analogue 14 ( PfNF54 IC50 = 0.08 μM; PfK1 IC50 = 0.10 μM) was identified as the frontrunner of the series. Preliminary mode of action studies employing molecular docking, live-cell confocal microscopy, and a cellular heme fractionation assay revealed that 14 does not directly inhibit the conversion of heme to hemozoin, although it could be involved in other processes in the parasite's digestive vacuole.
Collapse
Affiliation(s)
- Henrietta D Attram
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
2
|
Studies of Potency and Efficacy of an Optimized Artemisinin-Quinoline Hybrid against Multiple Stages of the Plasmodium Life Cycle. Pharmaceuticals (Basel) 2021; 14:ph14111129. [PMID: 34832911 PMCID: PMC8620906 DOI: 10.3390/ph14111129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
A recently developed artemisinin-quinoline hybrid, named 163A, has been shown to display potent activity against the asexual blood stage of Plasmodium, the malaria parasite. In this study, we determined its in vitro cytotoxicity to mammalian cells, its potency to suppress P. berghei hepatic infection and to decrease the viability of P. falciparum gametocytes, in addition to determining whether the drug exhibits efficacy of a P. berghei infection in mice. This hybrid compound has a low level of cytotoxicity to mammalian cells and, conversely, a high level of selectivity. It is potent in the prevention of hepatic stage development as well as in killing gametocytes, denoting a potential blockage of malaria transmission. The hybrid presents a potent inhibitory activity for beta-hematin crystal formation, in which subsequent assays revealed that its endoperoxide component undergoes bioactivation by reductive reaction with ferrous heme towards the formation of heme-drug adducts; in parallel, the 7-chloroquinoline component has binding affinity for ferric hemin. Both structural components of the hybrid co-operate to enhance the inhibition of beta-hematin, and this bitopic ligand property is essential for arresting the growth of asexual blood parasites. We demonstrated the in vivo efficacy of the hybrid as an erythrocytic schizonticide agent in comparison to a chloroquine/artemisinin combination therapy. Collectively, the findings suggest that the bitopic property of the hybrid is highly operative on heme detoxification suppression, and this provides compelling evidence for explaining the action of the hybrid on the asexual blood stage. For sporozoite and gametocyte stages, the hybrid conserves the potency typically observed for endoperoxide drugs, and this is possibly achieved due to the redox chemistry of endoperoxide components with ferrous heme.
Collapse
|
3
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
4
|
Dziwornu GA, Coertzen D, Leshabane M, Korkor CM, Cloete CK, Njoroge M, Gibhard L, Lawrence N, Reader J, van der Watt M, Wittlin S, Birkholtz LM, Chibale K. Antimalarial Benzimidazole Derivatives Incorporating Phenolic Mannich Base Side Chains Inhibit Microtubule and Hemozoin Formation: Structure-Activity Relationship and In Vivo Oral Efficacy Studies. J Med Chem 2021; 64:5198-5215. [PMID: 33844521 DOI: 10.1021/acs.jmedchem.1c00354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A novel series of antimalarial benzimidazole derivatives incorporating phenolic Mannich base side chains at the C2 position, which possess dual asexual blood and sexual stage activities, is presented. Structure-activity relationship studies revealed that the 1-benzylbenzimidazole analogues possessed submicromolar asexual blood and sexual stage activities in contrast to the 1H-benzimidazole analogues, which were only active against asexual blood stage (ABS) parasites. Further, the former demonstrated microtubule inhibitory activity in ABS parasites but more significantly in stage II/III gametocytes. In addition to being bona fide inhibitors of hemozoin formation, the 1H-benzimidazole analogues also showed inhibitory effects on microtubules. In vivo efficacy studies in Plasmodium berghei-infected mice revealed that the frontrunner compound 41 exhibited high efficacy (98% reduction in parasitemia) when dosed orally at 4 × 50 mg/kg. Generally, the compounds were noncytotoxic to mammalian cells.
Collapse
Affiliation(s)
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Meta Leshabane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Cleavon K Cloete
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4002, Switzerland.,University of Basel, Basel 4003, Switzerland
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
5
|
Wang W, Yao J, Chen Z, Sun Y, Shi Y, Wei Y, Zhou H, Yu Y, Li S, Duan L. Methnaridine is an orally bioavailable, fast-killing and long-acting antimalarial agent that cures Plasmodium infections in mice. Br J Pharmacol 2020; 177:5569-5579. [PMID: 32959888 DOI: 10.1111/bph.15268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Malaria is one of the deadliest diseases in the world. Novel chemotherapeutic agents are urgently required to combat the widespread Plasmodium resistance to frontline drugs. Here, we report the discovery of a novel benzonaphthyridine antimalarial, methnaridine, which was identified using a structural optimization strategy. EXPERIMENTAL APPROACH An integrated pharmacological approach was used to evaluate the antimalarial profile of methnaridine. The pharmacokinetic properties of methnaridine were investigated along with the associated safety profile. Host immune response patterns were also analysed. KEY RESULTS Methnaridine exhibited potent antimalarial activity against P. falciparum (3D7: IC50 = 0.0066 μM; Dd2: IC50 = 0.0056 μM). In P. berghei-infected mice, oral administration effectively suppressed parasitemia (ED50 = 0.52 mg·kg-1 ·day-1 ) and cured the established infection (CD50 = 10.13 mg·kg-1 ·day-1 ). These results are equivalent to or better than those of other antimalarial agents in clinical use. Notably, a four-dose oral regimen at a dosage of 25 mg·kg-1 achieved a complete cure of P. berghei infection in mice. Methnaridine exhibited a rapid parasiticidal profile (PCT99 = 36.0 h) and showed no cross-resistance to chloroquine. Pharmacokinetic studies revealed that methnaridine is readily absorbed, long-lasting and slowly cleared. The safety profile of methnaridine is also satisfactory (maximum tolerated dose = 1,125 mg·kg-1 ). In addition, following methnaridine treatment, infection-induced Th1 immune response was almost fully alleviated in mice. CONCLUSION AND IMPLICATIONS Methnaridine is an orally bioavailable, fast-acting and long-lasting agent with excellent antimalarial properties. Our study highlights the potential of methnaridine for clinical development as a promising antimalarial candidate.
Collapse
Affiliation(s)
- Weisi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Junmin Yao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiming Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuqing Shi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yufen Wei
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Hejun Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Yingfang Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Liping Duan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| |
Collapse
|
6
|
Parkinson CJ, Birrell GW, Chavchich M, Mackenzie D, Haynes RK, de Kock C, Richardson DR, Edstein MD. Development of pyridyl thiosemicarbazones as highly potent agents for the treatment of malaria after oral administration. J Antimicrob Chemother 2019; 74:2965-2973. [DOI: 10.1093/jac/dkz290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023] Open
Abstract
AbstractObjectivesDrug resistance exists to all current and investigational antimalarial drug classes. Consequently, we have set out to develop chemically and mechanistically discrete antimalarials. Here we report on the development of thiosemicarbazone (TSC) antimalarials, with TSC3 as the most advanced lead.MethodsThiosemicarbazones were generated through simple condensation reactions of thiosemicarbazides and ketones. TSC3 was selected and tested for in vitro antimalarial activities against MDR Plasmodium falciparum lines using the [3H]hypoxanthine growth assay, in vitro cytotoxicity against mammalian cell lines using the alamarBlue fluorescence cell viability assay, in vivo potency in the mouse–Plasmodium berghei model and blood exposure in mice measured by LC-MS for pharmacokinetic analysis.ResultsTSC3 showed potent in vitro activity against atovaquone-, dihydroartemisinin-, chloroquine- and mefloquine-resistant P. falciparum lines (EC50 <15 nM). The selectivity index (EC50 cells/EC50Pf W2 line) of TSC3 was >500 in two of three mammalian cell lines. In P. berghei-infected mice, TSC3 showed potent activity in the Peters 4 day suppression test (ED50 1.2 mg/kg/day) and was as potent as artesunate and chloroquine in the curative modified Thompson test. A single oral dose of TSC3 at 16 mg/kg in healthy mice achieved a mean maximum blood concentration of 1883 ng/mL at 1 h after dosing and an elimination half-life of 48.7 h in groups of five mice.ConclusionsTSC3 shows promise as a persistent, potent and orally effective antimalarial. This, coupled with the extremely low cost of synthesis, suggests that the further development of antimalarial thiosemicarbazones is clearly warranted.
Collapse
Affiliation(s)
| | - Geoffrey W Birrell
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Marina Chavchich
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Donna Mackenzie
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Richard K Haynes
- Centre for Excellence in Pharmaceutical Discovery, North-West University, Potchefstroom, South Africa
| | - Carmen de Kock
- Division of Pharmacology, University of Cape Town, Observatory, South Africa
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Michael D Edstein
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| |
Collapse
|
7
|
Chacko P, Shivashankar K. Synthesis of aminomethylphenol derivatives via magnetic nano
$$\hbox {Fe}_{3}\hbox {O}_{4}$$
Fe
3
O
4
catalyzed one pot Petasis borono-Mannich reaction. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1560-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
de Lange C, Coertzen D, Smit FJ, Wentzel JF, Wong HN, Birkholtz LM, Haynes RK, N'Da DD. Synthesis, antimalarial activities and cytotoxicities of amino-artemisinin-1,2-disubstituted ferrocene hybrids. Bioorg Med Chem Lett 2018; 28:3161-3163. [PMID: 30174153 DOI: 10.1016/j.bmcl.2018.08.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
Artemisinin-ferrocene conjugates incorporating a 1,2-disubstituted ferrocene analogous to that embedded in ferroquine but attached via a piperazine linker to C10 of the artemisinin were prepared from the piperazine artemisinin derivative, and activities were evaluated against asexual blood stages of chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf). The most active was the morpholino derivative 5 with IC50 of 0.86 nM against Pf K1 and 1.4 nM against Pf W2. The resistance indices were superior to those of current clinical artemisinins. Notably, the compounds were active against Pf NF54 early and late blood stage gametocytes - these exerted >86% inhibition at 1 µM against both stages; they are thus appreciably more active than methylene blue (∼57% inhibition at 1 µM) against late stage gametocytes. The data portends transmission blocking activity. Cytotoxicity was determined against human embryonic kidney cells (Hek293), while human malignant melanoma cells (A375) were used to assess their antitumor activity.
Collapse
Affiliation(s)
- Christo de Lange
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria 0002, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Johannes F Wentzel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria 0002, South Africa
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
9
|
Characterization of the Preclinical Pharmacology of the New 2-Aminomethylphenol, JPC-3210, for Malaria Treatment and Prevention. Antimicrob Agents Chemother 2018; 62:AAC.01335-17. [PMID: 29311093 DOI: 10.1128/aac.01335-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
The new 2-aminomethylphenol, JPC-3210, has potent in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, low cytotoxicity, and high in vivo efficacy against murine malaria. Here we report on the pharmacokinetics of JPC-3210 in mice and monkeys and the results of in vitro screening assays, including the inhibition of cytochrome P450 (CYP450) isozymes. In mice, JPC-3210 was rapidly absorbed and had an extensive tissue distribution, with a brain tissue-to-plasma concentration ratio of about 5.4. JPC-3210 had a lengthy plasma elimination half-life of about 4.5 days in mice and 11.8 days in monkeys. JPC-3210 exhibited linear single-oral-dose pharmacokinetics across the dose range of 5 to 40 mg/kg of body weight with high oral bioavailability (∼86%) in mice. Systemic blood exposure of JPC-3210 was 16.6% higher in P. berghei-infected mice than in healthy mice. In vitro studies with mice and human hepatocytes revealed little metabolism and the high metabolic stability of JPC-3210. The abundance of human metabolites from oxidation and glucuronidation was 2.0% and 2.5%, respectively. CYP450 studies in human liver microsomes showed JPC-3210 to be an inhibitor of CYP2D6 and, to a lesser extent, CYP3A4 isozymes, suggesting the possibility of a metabolic drug-drug interaction with drugs that are metabolized by these isozymes. In vitro studies showed that JPC-3210 is highly protein bound to human plasma (97%). These desirable pharmacological findings of a lengthy blood elimination half-life, high oral bioavailability, and low metabolism as well as high in vivo potency have led the Medicines for Malaria Venture to select JPC-3210 (MMV892646) for further advanced preclinical development.
Collapse
|
10
|
Synthesis, in vitro antimalarial activities and cytotoxicities of amino-artemisinin-ferrocene derivatives. Bioorg Med Chem Lett 2017; 28:289-292. [PMID: 29317166 DOI: 10.1016/j.bmcl.2017.12.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 11/22/2022]
Abstract
Novel derivatives bearing a ferrocene attached via a piperazine linker to C-10 of the artemisinin nucleus were prepared from dihydroartemisinin and screened against chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf) parasites. The overall aim is to imprint oxidant (from the artemisinin) and redox (from the ferrocene) activities. In a preliminary assessment, these compounds were shown to possess activities in the low nM range with the most active being compound 6 with IC50 values of 2.79 nM against Pf K1 and 3.2 nM against Pf W2. Overall the resistance indices indicate that the compounds have a low potential for cross resistance. Cytotoxicities were determined with Hek293 human embryonic kidney cells and activities against proliferating cells were assessed against A375 human malignant melanoma cells. The selectivity indices of the amino-artemisinin ferrocene derivatives indicate there is overall an appreciably higher selectivity towards the malaria parasite than mammalian cells.
Collapse
|
11
|
Armistead JS, Adams JH. Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. Trends Parasitol 2017; 34:114-126. [PMID: 29153587 DOI: 10.1016/j.pt.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Malaria prevalence has declined in the past 10 years, especially outside of sub-Saharan Africa. However, the proportion of cases due to Plasmodium vivax is increasing, accounting for up to 90-100% of the malaria burden in endemic regions. Nonetheless, investments in malaria research and control still prioritize Plasmodium falciparum while largely neglecting P. vivax. Specific biological features of P. vivax, particularly invasion of reticulocytes, occurrence of dormant liver forms of the parasite, and the potential for transmission of sexual-stage parasites prior to onset of clinical illness, promote its persistence and hinder development of research tools and interventions. This review discusses recent advances in P. vivax research, current knowledge of its unique biology, and proposes priorities for P. vivax research and control efforts.
Collapse
Affiliation(s)
- Jennifer S Armistead
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Persistence and immunogenicity of chemically attenuated blood stage Plasmodium falciparum in Aotus monkeys. Int J Parasitol 2016; 46:581-91. [PMID: 27238088 DOI: 10.1016/j.ijpara.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/24/2022]
Abstract
Malaria is a disease caused by a protozoan of the Plasmodium genus and results in 0.5-0.7million deaths per year. Increasing drug resistance of the parasite and insecticide resistance of mosquitoes necessitate alternative control measures. Numerous vaccine candidates have been identified but none have been able to induce robust, long-lived protection when evaluated in malaria endemic regions. Rodent studies have demonstrated that chemically attenuated blood stage parasites can persist at sub-patent levels and induce homologous and heterologous protection against malaria. Parasite-specific cellular responses were detected, with protection dependent on CD4+ T cells. To investigate this vaccine approach for Plasmodium falciparum, we characterised the persistence and immunogenicity of chemically attenuated P. falciparum FVO strain parasites (CAPs) in non-splenectomised Aotus nancymaae monkeys following administration of a single dose. Control monkeys received either normal red blood cells or wild-type parasites followed by drug treatment. Chemical attenuation was performed using tafuramycin A, which irreversibly binds to DNA. CAPs were detected in the peripheral blood for up to 2days following inoculation as determined by thick blood smears, and for up to 8days as determined by quantitative PCR. Parasite-specific IgG was not detected in monkeys that received CAPs; however, in vitro parasite-specific T cell proliferation was observed. Following challenge, the CAP monkeys developed an infection; however, one CAP monkey and the infection and drug-cure monkeys showed partial or complete resistance. These experiments lay the groundwork for further assessment of CAPs as a potential vaccine against malaria.
Collapse
|
13
|
Lead Selection of a New Aminomethylphenol, JPC-3210, for Malaria Treatment and Prevention. Antimicrob Agents Chemother 2016; 60:3115-8. [PMID: 26856849 DOI: 10.1128/aac.03066-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 11/20/2022] Open
Abstract
Structure-activity relationship studies of trifluoromethyl-substituted pyridine and pyrimidine analogues of 2-aminomethylphenols (JPC-2997, JPC-3186, and JPC-3210) were conducted for preclinical development for malaria treatment and/or prevention. Of these compounds, JPC-3210 [4-(tert-butyl)-2-((tert-butylamino)methyl)-6-(5-fluoro-6-(trifluoromethyl)pyridin-3-yl)phenol] was selected as the lead compound due to superior in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, lower in vitro cytotoxicity in mammalian cell lines, longer plasma elimination half-life, and greater in vivo efficacy against murine malaria.
Collapse
|
14
|
McCallum F, Harris I, van Breda K, De SL, Stanisic DI, Good MF, Jacobus DP, Edstein MD. Evaluation of the 2-Aminomethylphenol JPC-2997 in Aotus Monkeys Infected with Plasmodium falciparum. Antimicrob Agents Chemother 2015; 60:1948-9. [PMID: 26666945 PMCID: PMC4775991 DOI: 10.1128/aac.02799-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Fiona McCallum
- Department of Drug Evaluation, Australian Army Malaria Institute, Enoggera, Brisbane, Queensland, Australia
| | - Ivor Harris
- Department of Drug Evaluation, Australian Army Malaria Institute, Enoggera, Brisbane, Queensland, Australia
| | - Karin van Breda
- Department of Drug Evaluation, Australian Army Malaria Institute, Enoggera, Brisbane, Queensland, Australia
| | - Sai Lata De
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Danielle I Stanisic
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | | | - Michael D Edstein
- Department of Drug Evaluation, Australian Army Malaria Institute, Enoggera, Brisbane, Queensland, Australia
| |
Collapse
|