1
|
Vautrin M, Tombette F, Icard V, Leoz M, Trabaud MA, Ouziel A, Panetta L, Lemée V, Plantier JC, Moisan A. First evidence of a mother-to-child transmission of an HIV-1/MO intergroup recombinant form. Clin Microbiol Infect 2024; 30:691-693. [PMID: 38387501 DOI: 10.1016/j.cmi.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Manon Vautrin
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, F-76000 Rouen, France
| | - Fabienne Tombette
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference Center of HIV, F-76000 Rouen, France
| | - Vinca Icard
- Virology Department, Institut des Agents Infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| | - Marie Leoz
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, F-76000 Rouen, France
| | - Mary-Anne Trabaud
- Virology Department, Institut des Agents Infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| | - Antoine Ouziel
- Department of Pediatric Emergency & Pediatric Intensive Care, Hôpital Femme-Mère Enfant, Hospices Civils de Lyon, 69677 Bron cedex, France
| | - Luc Panetta
- Department of Pediatric Emergency & Pediatric Intensive Care, Hôpital Femme-Mère Enfant, Hospices Civils de Lyon, 69677 Bron cedex, France
| | - Véronique Lemée
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference Center of HIV, F-76000 Rouen, France
| | - Jean-Christophe Plantier
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference Center of HIV, F-76000 Rouen, France.
| | - Alice Moisan
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference Center of HIV, F-76000 Rouen, France
| |
Collapse
|
2
|
Semengue ENJ, Armenia D, Inzaule S, Santoro MM, Dambaya B, Takou D, Teto G, Nka AD, Yagai B, Fabeni L, Chenwi C, Angong Beloumou G, Djupsa Ndjeyep SC, Colizzi V, Perno CF, Ceccherini-Silberstein F, Fokam J. Baseline integrase drug resistance mutations and conserved regions across HIV-1 clades in Cameroon: implications for transition to dolutegravir in resource-limited settings. J Antimicrob Chemother 2021; 76:1277-1285. [PMID: 33501504 DOI: 10.1093/jac/dkab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Transition to dolutegravir-based regimens in resource-limited settings (RLS) requires prior understanding of HIV-1 integrase variants and conserved regions. Therefore, we evaluated integrase drug resistance mutations (DRMs) and conserved regions amongst integrase strand transfer inhibitor (INSTI)-naive patients harbouring diverse HIV-1 clades in Cameroon. METHODS A cross-sectional study was conducted amongst 918 INSTI-naive patients from Cameroon (89 ART-naive and 829 ART-experienced patients). HIV-1 sequences were interpreted regarding INSTI-DRMs using the Stanford HIVdb v8.9-1 and the 2019 IAS-USA list. Amino acid positions with <1% variability were considered as highly conserved. Subtyping was performed by phylogeny. RESULTS Overall prevalence (95% CI) of INSTI-DRMs was 0.8% (0.4-1.7), with 0.0% (0.0-4.0) amongst ART-naive versus 0.9% (0.5-1.9) amongst ART-experienced patients; P = 0.44. Accessory mutations (95% CI) were found in 33.8% (30.9-37.0), with 38.2% (28.1-49.1) amongst ART-naive versus 33.4% (30.4-36.7) amongst ART-experienced patients; P = 0.21. Of 288 HIV-1 integrase amino acid positions, 58.3% were highly conserved across subtypes in the following major regions: V75-G82, E85-P90, H114-G118, K127-W132, E138-G149, Q168-L172, T174-V180, W235-A239 and L241-D253. Wide genetic diversity was found (37 clades), including groups M (92.3%), N (1.4%), O (6.2%) and P (0.1%). Amongst group M, CRF02_AG was predominant (47.4%), with a significantly higher frequency (95% CI) of accessory mutations compared with non-AG [41.4% (36.8-46.0) versus 27.1% (23.3-31.2) respectively; P < 0.001]. CONCLUSIONS The low baseline of INSTI-DRMs (<1%) in Cameroon suggests effectiveness of dolutegravir-based regimens. In spite of high conservation across clades, the variability of accessory mutations between major circulating strains underscores the need for monitoring the selection of INSTI-DRMs while scaling up dolutegravir-based regimens in RLS.
Collapse
Affiliation(s)
- Ezechiel Ngoufack Jagni Semengue
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Daniele Armenia
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Seth Inzaule
- Department of Global Health, Academic Medical Center of the University of Amsterdam and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Béatrice Dambaya
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Désiré Takou
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Georges Teto
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Alex Durand Nka
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Bouba Yagai
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Lavinia Fabeni
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Collins Chenwi
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Grâce Angong Beloumou
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Sandrine Claire Djupsa Ndjeyep
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Vittorio Colizzi
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Carlo-Federico Perno
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | | | - Joseph Fokam
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.,National HIV Drug Resistance Working Group, Ministry of Public Health, Cameroon.,Faculty of Health Sciences, University of Buea, Buea, Cameroon
| |
Collapse
|
3
|
Structural Comparison of Diverse HIV-1 Subtypes using Molecular Modelling and Docking Analyses of Integrase Inhibitors. Viruses 2020; 12:v12090936. [PMID: 32858802 PMCID: PMC7552036 DOI: 10.3390/v12090936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
The process of viral integration into the host genome is an essential step of the HIV-1 life cycle. The viral integrase (IN) enzyme catalyzes integration. IN is an ideal therapeutic enzyme targeted by several drugs; raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG), and bictegravir (BIC) having been approved by the USA Food and Drug Administration (FDA). Due to high HIV-1 diversity, it is not well understood how specific naturally occurring polymorphisms (NOPs) in IN may affect the structure/function and binding affinity of integrase strand transfer inhibitors (INSTIs). We applied computational methods of molecular modelling and docking to analyze the effect of NOPs on the full-length IN structure and INSTI binding. We identified 13 NOPs within the Cameroonian-derived CRF02_AG IN sequences and further identified 17 NOPs within HIV-1C South African sequences. The NOPs in the IN structures did not show any differences in INSTI binding affinity. However, linear regression analysis revealed a positive correlation between the Ki and EC50 values for DTG and BIC as strong inhibitors of HIV-1 IN subtypes. All INSTIs are clinically effective against diverse HIV-1 strains from INSTI treatment-naïve populations. This study supports the use of second-generation INSTIs such as DTG and BIC as part of first-line combination antiretroviral therapy (cART) regimens, due to a stronger genetic barrier to the emergence of drug resistance.
Collapse
|
4
|
Virological response to integrase strand transfer inhibitor-based antiretroviral combinations in HIV-1 group O-infected patients. AIDS 2019; 33:1327-1333. [PMID: 30950879 DOI: 10.1097/qad.0000000000002215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: Although integrase strand transfer inhibitors (INSTIs) are widely used in HIV-1 group M (HIV-1/M) infections, little is known about their efficacy against genetically divergent HIV-1 group O (HIV-1/O) strains. Previous phenotypic works have demonstrated the variable susceptibility of HIV-1/O strains, depending on INSTI drugs. Clinical data are very limited and obtained from a few patients. OBJECTIVES To investigate the virological success rate of an INSTI-based combination of antiretroviral therapy (cART) in a large population of HIV-1/O-infected patients, and to describe resistance-associated mutations (RAM) at virological failure. METHODS The virological response of 39 patients receiving INSTI-based cART during their follow-up was analysed i) at the last point of the first INSTI initiation and ii) at their most recent visit. RAM analysis was performed at virological failures. Resistance interpretation was based on the French National Agency of Research on AIDS and viral hepatitis (ANRS) rules. RESULTS Virological success at both time points of analysis was high, with more than 87% of the patients with undetectable plasma viral load. Among the six patients with virological failure, three selected RAM described for HIV-1/M resistance, and two had already RAM, before INSTI initiation. CONCLUSION Our results show that HIV-1/O infected patients receiving INSTI-based cART presented a high rate of virological success whatever their previous lines; we have also shown that resistance rules for HIV-1/M could be considered when failure occurs. These data are of importance especially in the context of WHO recommendations for a wider use of this class.
Collapse
|
5
|
Alessandri-Gradt E, Collin G, Tourneroche A, Bertine M, Leoz M, Charpentier C, Unal G, Descamps D, Plantier JC. HIV-1 non-group M phenotypic susceptibility to integrase strand transfer inhibitors. J Antimicrob Chemother 2018; 72:2431-2437. [PMID: 28859447 DOI: 10.1093/jac/dkx190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/23/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives To determine natural phenotypic susceptibility of non-group M HIV-1 to integrase strand transfer inhibitors (INSTIs) in a large panel of 39 clinical strains from groups O, N and P and to identify genotypic polymorphisms according to susceptibility levels. Methods Susceptibility to raltegravir, elvitegravir and dolutegravir was evaluated in 36 HIV-1/O, 2 HIV-1/N and 1 HIV-1/P strains plus an HIV-1/M reference strain. IC50 values were determined after 3 days, and fold changes (FCs) were calculated relative to the HIV-1/M strain. Genotypic polymorphism was determined by amplification of codons 19-263 of the integrase; the natural occurrence of resistance-associated mutations was analysed using the main resistance algorithms and the IAS-USA list. VESPA analysis of the strain sequences was used to determine a signature pattern associated with higher FC. Results Similar IC50 results were observed for the three drugs. Based on the value for the HIV-1/M reference strain, the data showed FC values <2.5 for raltegravir and dolutegravir, whereas the distribution for elvitegravir was heterogeneous, with FC > 10 for six strains (15%). Analysis of the non-M integrase sequences showed a high level of polymorphism without a major genotypic impact; it also revealed mutations that may be associated with the highest FC values obtained for elvitegravir. Conclusions Our phenotypic data showed that non-M strains are globally susceptible to the three currently used INSTIs, but the impact of the high FC values observed for some strains with elvitegravir needs to be explored. Clinical data are now needed to confirm these phenotypic results.
Collapse
Affiliation(s)
- E Alessandri-Gradt
- Normandie Univ., UNIROUEN, EA2656, GRAM, CHU de Rouen, Laboratoire de Virologie associé au CNR du VIH, F-76000 Rouen, France
| | - G Collin
- IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France.,IAME, UMR 1137, INSERM, F-75018 Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, F-75018 Paris, France
| | - A Tourneroche
- Normandie Univ., UNIROUEN, EA2656, GRAM, CHU de Rouen, Laboratoire de Virologie associé au CNR du VIH, F-76000 Rouen, France
| | - M Bertine
- IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France.,IAME, UMR 1137, INSERM, F-75018 Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, F-75018 Paris, France
| | - M Leoz
- Normandie Univ., UNIROUEN, EA2656, GRAM, CHU de Rouen, Laboratoire de Virologie associé au CNR du VIH, F-76000 Rouen, France
| | - C Charpentier
- IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France.,IAME, UMR 1137, INSERM, F-75018 Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, F-75018 Paris, France
| | - G Unal
- Normandie Univ., UNIROUEN, EA2656, GRAM, CHU de Rouen, Laboratoire de Virologie associé au CNR du VIH, F-76000 Rouen, France
| | - D Descamps
- IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France.,IAME, UMR 1137, INSERM, F-75018 Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, F-75018 Paris, France
| | - J C Plantier
- Normandie Univ., UNIROUEN, EA2656, GRAM, CHU de Rouen, Laboratoire de Virologie associé au CNR du VIH, F-76000 Rouen, France
| |
Collapse
|
6
|
Tebit DM, Patel H, Ratcliff A, Alessandri E, Liu J, Carpenter C, Plantier JC, Arts EJ. HIV-1 Group O Genotypes and Phenotypes: Relationship to Fitness and Susceptibility to Antiretroviral Drugs. AIDS Res Hum Retroviruses 2016; 32:676-88. [PMID: 26861573 DOI: 10.1089/aid.2015.0318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite only 30,000 group O HIV-1 infections, a similar genetic diversity is observed among the O subgroups H (head) and T (tail) (previously described as subtypes A, B) as in the 9 group M subtypes (A-K). Group O isolates bearing a cysteine at reverse transcriptase (RT) position 181, predominantly the H strains are intrinsically resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, their susceptibility to newer antiretroviral drugs such as etravirine, maraviroc, raltegravir (RAL), and elvitegravir (EVG) remains relatively unknown. We tested a large collection of HIV-1 group O strains for their susceptibility to four classes of antiretroviral drugs namely nucleoside RT, non-nucleoside RT, integrase, and entry inhibitors knowing in advance the intrinsic resistance to NNRTIs. Drug target regions were sequenced to determine various polymorphisms and were phylogenetically analyzed. Replication kinetics and fitness assays were performed in U87-CD4(+)CCR5 and CXCR4 cells and peripheral blood mononuclear cells. With all antiretroviral drugs, group O HIV-1 showed higher variability in IC50 values than group M HIV-1. The mean IC50 values for entry and nucleoside reverse transcriptase inhibitor (NRTI) were similar for group O and M HIV-1 isolates. Despite similar susceptibility to maraviroc, the various phenotypic algorithms failed to predict CXCR4 usage based on the V3 Env sequences of group O HIV-1 isolates. Decreased sensitivity of group O HIV-1 to integrase or NNRTIs had no relation to replicative fitness. Group O HIV-1 isolates were 10-fold less sensitive to EVG inhibition than group M HIV-1. These findings suggest that in regions where HIV-1 group O is endemic, first line treatment regimens combining two NRTIs with RAL may provide more sustained virologic responses than the standard regimens involving an NNRTI or protease inhibitors.
Collapse
Affiliation(s)
- Denis M. Tebit
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Hamish Patel
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Annette Ratcliff
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | | | - Joseph Liu
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Crystal Carpenter
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | | | - Eric J. Arts
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Abstract
BACKGROUND HIV-1 group O (HIV-O) is a rare variant that is characterized by a high number of natural polymorphisms in the integrase coding region that may impact on susceptibility to integrase strand transfer inhibitors (INSTIs) and on the emergence of resistance substitutions. We previously reported that HIV-O is more susceptible to RAL than HIV-1 group M (HIV-M). METHODS The aim of this study was to assess pathways of resistance to INSTIs in group 0 variants. Accordingly, we selected for resistance to each of raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG) in cord blood mononuclear cells using HIV group O subtypes A and B, an HIV-O divergent isolate, and HIV-1 group M (subtype B, which served as a reference). Site-directed mutagenesis was performed on the pCOM2.5 HIV group 0 infectious clone to ascertain the impact of INSTI resistance substitutions at positions Q148R, N155H, and R263K within integrase on susceptibility to INSTIs and infectiousness. RESULTS Cell culture selections of group O variants yielded similar patterns of resistance to RAL, EVG, and DTG as observed for subtype B. In the DTG selections, subtype B yielded S153Y, whereas a natural S153A polymorphism sometimes led to A153V in group O. The pCMO2.5/Q148R and pCMO2.5/N155H variants displayed far higher levels of resistance to DTG (>1000 FC) than was seen for group M viruses. CONCLUSIONS HIV-O harboring Q148R and N155H shows higher resistance to DTG compared with HIV-M subtype B.
Collapse
|