1
|
He J, Lu X, Yuan C, Zheng Y, Chen F, Luo J, Ma K, Yang F, Wang P, Zhou D, Wang L, Yin Z. Genetic Characteristics of Novel Inc pSE5381-aadB Plasmids, Integrative and Mobilizable Elements, and Integrative and Conjugative Elements in Pseudomonas aeruginosa. Infect Drug Resist 2024; 17:2053-2068. [PMID: 38813527 PMCID: PMC11135338 DOI: 10.2147/idr.s462670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
Purpose Pseudomonas aeruginosa is a common causative bacteria in nosocomial infections. This study aims to describe the structure and evolutionary characteristics of mobile genetic elements (MGEs) carrying antibiotic resistance genes (ARGs) from P. aeruginosa and to conduct bioinformatics and comparative genomic analysis to provide a deeper understanding of the genetic characteristics and diversity of MGEs in P. aeruginosa. Methods Fifteen clinical isolates of P. aeruginosa from China were collected and sequenced in this study, and 15 novel MGEs were identified. Together with four MGEs from GenBank, a total of 19 MGEs were used to perform detailed modular structure dissection and sequence comparison. Then, the biological experiments were carried out to verify the biological characteristics of these isolates and MEGs. Results The novel MGEs identified in this study displayed diversification in modular structures, which showed complex mosaic natures. The seven types of 19 MGEs included in this study were divided into three groups: i) novel MGEs (firstly identified in this study): four IncpSE5381-aadB plasmids and three Tn7495-related integrative and mobilizable elements (IMEs); ii) newly defined MGEs (firstly designated in this study, but with previously determined sequences): four Tn7665-related IMEs; iii) novel transposons with reference prototypes identified in this study: two Tn6417-related integrative and conjugative elements (ICEs), two IS-based transposition units, two Tn501-related unit transposons, two Tn1403-related unit transposons. At least 36 ARGs involved in resistance to 11 different classes of antimicrobials and heavy metals were identified. Additionally, three novel blaOXA variants were identified. Antimicrobial susceptibility testing showed that these variants were resistant to some β-lactamase antibiotics and blaOXA-1204 was additionally resistant to cephalosporins. Conclusion The continuous evolution of ARG-carrying MGEs during transmission, leading to the emergence of novel MGEs or ARGs, which facilitates the spread of antibiotic resistance in P. aeruginosa and enhances the diversity of transmission modes of bacterial resistance.
Collapse
Affiliation(s)
- Jiaqi He
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, 475000, People’s Republic of China
| | - Xiuhui Lu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Chenchen Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, 475000, People’s Republic of China
| | - Yali Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Jing Luo
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Kejiao Ma
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Fan Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Li Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, 475000, People’s Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| |
Collapse
|
2
|
Urbanowicz P, Izdebski R, Biedrzycka M, Gniadkowski M. VIM-type metallo-β-lactamase (MBL)-encoding genomic islands in Pseudomonas spp. in Poland: predominance of clc-like integrative and conjugative elements (ICEs). J Antimicrob Chemother 2024; 79:1030-1037. [PMID: 38488311 DOI: 10.1093/jac/dkae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/23/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES To characterize VIM-type metallo-β-lactamase (MBL)-encoding genomic islands (GIs) in Pseudomonas aeruginosa and P. putida group isolates from Polish hospitals from 2001-2015/16. METHODS Twelve P. aeruginosa and 20 P. putida group isolates producing VIM-like MBLs were selected from a large collection of these based on epidemiological and typing data. The organisms represented all major epidemic genotypes of these species spread in Poland with chromosomally located blaVIM gene-carrying integrons. The previously determined short-read sequences were complemented by long-read sequencing in this study. The comparative structural analysis of the GIs used a variety of bioinformatic tools. RESULTS Thirty different GIs with blaVIM integrons were identified in the 32 isolates, of which 24 GIs from 26 isolates were integrative and conjugative elements (ICEs) of the clc family. These in turn were dominated by 21 variants of the GI2/ICE6441 subfamily with a total of 19 VIM integrons, each inserted in the same position within the ICE's Tn21-like transposon Tn4380. The three other ICEs formed a novel ICE6705 subfamily, lacking Tn4380 and having different VIM integrons located in another site of the elements. The remaining six non-ICE GIs represented miscellaneous structures. The presence of various integrons in the same ICE sublineage, and of the same integron in different GIs, indicated circulation and recombination of the integron-carrying genetic platforms across Pseudomonas species/genotypes. CONCLUSIONS Despite the general diversity of the blaVIM-carrying GIs in Pseudomonas spp. in Poland, a clear predominance of broadly spread and rapidly evolving clc-type ICEs was documented, confirming their significant role in antimicrobial resistance epidemiology.
Collapse
Affiliation(s)
- P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - M Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| |
Collapse
|
3
|
Chen F, Wang P, Yin Z, Yang H, Hu L, Yu T, Jing Y, Guan J, Wu J, Zhou D. VIM-encoding Inc pSTY plasmids and chromosome-borne integrative and mobilizable elements (IMEs) and integrative and conjugative elements (ICEs) in Pseudomonas. Ann Clin Microbiol Antimicrob 2022; 21:10. [PMID: 35264204 PMCID: PMC8905914 DOI: 10.1186/s12941-022-00502-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The carbapenem-resistance genes blaVIM are widely disseminated in Pseudomonas, and frequently harbored within class 1 integrons that reside within various mobile genetic elements (MGEs). However, there are few reports on detailed genetic dissection of blaVIM-carrying MGEs in Pseudomonas. METHODS This study presented the complete sequences of five blaVIM-2/-4-carrying MGEs, including two plasmids, two chromosomal integrative and mobilizable elements (IMEs), and one chromosomal integrative and conjugative element (ICE) from five different Pseudomonas isolates. RESULTS The two plasmids were assigned to a novel incompatibility (Inc) group IncpSTY, which included only seven available plasmids with determined complete sequences and could be further divided into three subgroups IncpSTY-1/2/3. A detailed sequence comparison was then applied to a collection of 15 MGEs belonging to four different groups: three representative IncpSTY plasmids, two Tn6916-related IMEs, two Tn6918-related IMEs, and eight Tn6417-related ICEs and ten of these 15 MGEs were first time identified. At least 22 genes involving resistance to seven different categories of antibiotics and heavy metals were identified within these 15 MGEs, and most of these resistance genes were located within the accessory modules integrated as exogenous DNA regions into these MGEs. Especially, eleven of these 15 MGEs carried the blaVIM genes, which were located within 11 different concise class 1 integrons. CONCLUSION These blaVIM-carrying integrons were further integrated into the above plasmids, IMEs/ICEs with intercellular mobility. These MGEs could transfer between Pseudomonas isolates, which resulted in the accumulation and spread of blaVIM among Pseudomonas and thus was helpful for the bacteria to survival from the stress of antibiotics. Data presented here provided a deeper insight into the genetic diversification and evolution of VIM-encoding MGEs in Pseudomonas.
Collapse
Affiliation(s)
- Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.,Guangzhou Medical University, Guangzhou, 511436, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ting Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiayao Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiahong Wu
- Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China. .,Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Girlich D, Bonnin RA, Proust A, Naas T, Dortet L. Undetectable Production of the VIM-1 Carbapenemase in an Atlantibacter hermannii Clinical Isolate. Front Microbiol 2021; 12:741972. [PMID: 34987484 PMCID: PMC8721206 DOI: 10.3389/fmicb.2021.741972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The differential expression of VIM-1 in Atlantibacter hermannii WEB-2 and Enterobacter hormaechei ssp. hoffmannii WEB-1 clinical isolates from a rectal swab of a hospitalized patient in France was investigated. A. hermannii WEB-2 was resistant to all β-lactams except carbapenems. It produced ESBL SHV-12, but the Carba NP test failed to detect any carbapenemase activity despite the production of VIM-1. Conversely, E. hormaechei WEB-1, previously recovered from the same patient, was positive for the detection of carbapenemase activity. The blaVIM–1 gene was located on a plasmid and embedded within class 1 integron. Both plasmids were of the same IncA incompatibility group and conferred the same resistance pattern when electroporated in Escherichia coli TOP10 or Enterobacter cloacae CIP7933. Quantitative RT-PCR experiments indicated a weaker replication of pWEB-2 in A. hermannii as compared to E. hormaechei. An isogenic mutant of A. hermannii WEB-2 selected after sequential passages with increased concentrations of imipenem possessed higher MICs for carbapenems and cephalosporins including cefiderocol, higher levels of the blaVIM–1 gene transcripts, and detectable carbapenemase activity using the Carba NP test. Assessment of read coverage demonstrated that a duplication of the region surrounding blaVIM–1 gene occurred in the A. hermannii mutant with detectable carbapenemase activity. The lack of detection of the VIM-1 carbapenemase activity in A. hermannii WEB-2 isolate was likely due to a weak replication of the IncA plasmid harboring the blaVIM–1 gene. Imipenem as selective pressure led to a duplication of this gene on the plasmid and to the restoration of a significant carbapenem-hydrolyzing phenotype.
Collapse
Affiliation(s)
- Delphine Girlich
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Rémy A. Bonnin
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Alexis Proust
- Department of Hormonal Biochemistry, Hôpital de Bicêtre, Assistance Publique—Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- *Correspondence: Laurent Dortet,
| |
Collapse
|
5
|
Characterization of blaKPC-2-Carrying Plasmid pR31-KPC from a Pseudomonas aeruginosa Strain Isolated in China. Antibiotics (Basel) 2021; 10:antibiotics10101234. [PMID: 34680814 PMCID: PMC8532800 DOI: 10.3390/antibiotics10101234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to characterize a 29-kb blaKPC-2-carrying plasmid, pR31-KPC, from a multidrug resistant strain of Pseudomonas aeruginosa isolated from the sputum of an elderly patient with multiple chronic conditions in China. The backbone of pR31-KPC is closely related to four other blaKPC-2-carrying plasmids, YLH6_p3, p1011-KPC2, p14057A, and pP23-KPC, none of which have been assigned to any of the known incompatibility groups. Two accessory modules, the IS26-blaKPC-2-IS26 unit and IS26-ΔTn6376-IS26 region, separated by a 5.9-kb backbone region, were identified in pR31-KPC, which was also shown to carry the unique resistance marker blaKPC-2. A comparative study of the above five plasmids showed that p1011-KPC2 may be the most complete plasmid of this group to be reported, while pR31-KPC is the smallest plasmid having lost most of its conjugative region. Regions between the iterons and orf207 in the backbone may be hot spots for the acquisition of exogenous resistance entities. The accessory regions of these plasmids have all undergone several biological events when compared with Tn6296. The further transfer of blaKPC-2 in these plasmids may be initiated by either the Tn3 family or IS26-associated transposition or homologous recombination. The data presented here will contribute to a deeper understanding of blaKPC-2 carrying plasmids in Pseudomonas.
Collapse
|
6
|
Rajabal V, Taner F, Sanlidag T, Suer K, Guler E, Sayan M, Petrovski S. Genetic characterisation of antibiotic resistance transposons Tn6608 and Tn6609 isolated from clinical Pseudomonas strains in Cyprus. J Glob Antimicrob Resist 2021; 26:330-334. [PMID: 34363995 DOI: 10.1016/j.jgar.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Antibiotic therapy for Pseudomonas infections is becoming increasingly difficult. In this study, the transposons from two multidrug-resistant (MDR) clinical Pseudomonas strains containing related transposons responsible for giving rise to resistance determinants were characterised. METHODS Two MDR clinical Pseudomonas isolates were obtained from a medical facility in Cyprus. The strains were identified as Pseudomonas putida C54 and Pseudomonas aeruginosa C69. DNA was extracted from both strains and was sequenced. Transposons were identified, annotated and compared with DNA sequences in GenBank. RESULTS Two related nested transposons, here named Tn6608 (from P. putida C54) and Tn6609 (from P. aeruginosa C69), were characterised. The transposons are built on an ancestral Tn1403 base element (here named Tn1403A) that contains only the transposition module (tnpA and tnpR) and the associated cargo gene module (orfA, orfB, orfC and orfD) flanked by a 38-bp inverted repeat. The nested transposons identified in this study have evolved via acquisition of multiple transposons, adding multiple resistance genes to an ancestral transposon that originally lacked any resistance determinants. CONCLUSION Transposons related to Tn6608 and Tn6609 have evolved and are globally disseminated. Of particular interest is that most of these nested transposons are located within the same site in a genomic island, providing alternative avenues for dissemination.
Collapse
Affiliation(s)
- Vaheesan Rajabal
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ferdiye Taner
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia; Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Nicosia, Cyprus
| | - Tamer Sanlidag
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | - Kaya Suer
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Emrah Guler
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Murat Sayan
- DESAM Research Institute, Near East University, Nicosia, Cyprus; Faculty of Medicine, Clinical Laboratory, PCR Unit, Kocaeli University, Kocaeli, Turkey
| | - Steve Petrovski
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
7
|
Li Z, Cai Z, Cai Z, Zhang Y, Fu T, Jin Y, Cheng Z, Jin S, Wu W, Yang L, Bai F. Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. J Antimicrob Chemother 2021; 75:1443-1452. [PMID: 32129854 DOI: 10.1093/jac/dkaa063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES A group of ST664 XDR Pseudomonas aeruginosa strains have been isolated from a burn clinic. Here we decipher their resistomes and likely mechanisms of resistance acquisition. METHODS The complete nucleotide sequences of representative isolates were determined, by PacBio and Illumina MiSeq sequencing, and analysed for antimicrobial resistance (AMR) genes as well as sequence variations. S1-PFGE was used to determine the sizes and numbers of plasmids harboured by the isolates. Purified plasmid DNA was further sequenced by PacBio technology, closed manually and annotated by RAST. The mobility of plasmids was determined by conjugation assays. RESULTS The XDR P. aeruginosa ST664 clone carries 11 AMR genes, including a blaKPC-2 gene that confers resistance to carbapenems. Most of the ST664 isolates carry three coexisting plasmids. blaKPC-2 and a cluster of three AMR genes (aadB-cmlA1-sul1) are encoded on a 475 kb megaplasmid pNK546a, which codes for an IncP-3-like replication and partitioning mechanism, but has lost the conjugative transfer system. Interestingly, however, pNK546a is mobilizable and can be transferred to P. aeruginosa PAO1 with the help of a co-residing IncP-7 conjugative plasmid. The blaKPC-2 gene is carried by an IS6100-ISKpn27-blaKPC-2-ΔISKpn6-Tn1403 mobile element, which might be brought into the ST664 clone by another co-resident IncP-1α plasmid, which is inclined to be lost. Moreover, pNK546a harbours multiple heavy metal (mercury, tellurite and silver) resistance modules. CONCLUSIONS To the best of our knowledge, pNK546a is the first fully sequenced blaKPC-2-carrying megaplasmid from P. aeruginosa. These results give new insights into bacterial adaptation and evolution during nosocomial infections.
Collapse
Affiliation(s)
- Zhenpeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Zeqiong Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanhong Zhang
- Affiliated Hospital of Nankai University, Tianjin, China
| | - Tongtong Fu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
10
|
Di Pilato V, Antonelli A, Giani T, Henrici De Angelis L, Rossolini GM, Pollini S. Identification of a Novel Plasmid Lineage Associated With the Dissemination of Metallo-β-Lactamase Genes Among Pseudomonads. Front Microbiol 2019; 10:1504. [PMID: 31312195 PMCID: PMC6614342 DOI: 10.3389/fmicb.2019.01504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022] Open
Abstract
Acquisition of metallo-β-lactamases (MBLs) represents one of most relevant resistance mechanisms to all β-lactams, including carbapenems, ceftolozane and available β-lactamase inhibitors, in Pseudomonas spp. VIM-type enzymes are the most common acquired MBLs in Pseudomonas aeruginosa and, to a lesser extent, in other Pseudomonas species. Little is known about the acquisition dynamics of these determinants, that are usually carried on integrons embedded into chromosomal mobile genetic elements. To date, few MBL-encoding plasmids have been described in Pseudomonas spp., and their diversity and role in the dissemination of these MBLs remains largely unknown. Here we report on the genetic features of the VIM-1-encoding plasmid pMOS94 from P. mosselii AM/94, the earliest known VIM-1-producing strain, and of related elements involved in dissemination of MBL. Results of plasmid DNA sequencing showed that pMOS94 had a modular organization, consisting of backbone modules associated with replication, transfer and antibiotic resistance. Plasmid pMOS94, although not typable according to the PBRT scheme, was classifiable either in MOBF11 or MPFT plasmid families. The resistance region included the class I integron In70, carrying bla V IM-1, in turn embedded in a defective Tn402-like transposon. Comparison with pMOS94-like elements led to the identification of a defined plasmid lineage circulating in different Pseudomonas spp. of clinical and environmental origin and spreading different MBL-encoding genes, including bla IMP-63, bla BIM, and bla V IM-type determinants. Genetic analysis revealed that this plasmid lineage likely shared a common ancestor and had evolved through the acquisition and recombination of different mobile elements, including the MBL-encoding transposons. Our findings provide new insights about the genetic diversity of MBL-encoding plasmids circulating among Pseudomonas spp., potentially useful for molecular epidemiology purposes, and revealed the existence and persistence of a successful plasmid lineage over a wide spatio-temporal interval, spanning over five different countries among two continents and over 20-years.
Collapse
Affiliation(s)
- Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | | | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
11
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1279] [Impact Index Per Article: 182.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Shi L, Liang Q, Feng J, Zhan Z, Zhao Y, Yang W, Yang H, Chen Y, Huang M, Tong Y, Li X, Yin Z, Wang J, Zhou D. Coexistence of two novel resistance plasmids, bla KPC-2-carrying p14057A and tetA(A) -carrying p14057B, in Pseudomonas aeruginosa. Virulence 2017; 9:306-311. [PMID: 28891735 PMCID: PMC6205034 DOI: 10.1080/21505594.2017.1372082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Lining Shi
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Quanhui Liang
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China.,c Department of Clinical Laboratory , the First People's Hospital of Foshan , Foshan , China
| | - Jiao Feng
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Zhe Zhan
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yachao Zhao
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Wenhui Yang
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Huiying Yang
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yong Chen
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Mei Huang
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Yigang Tong
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Xiaojun Li
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Zhe Yin
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Jinglin Wang
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Dongsheng Zhou
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| |
Collapse
|
14
|
pSY153-MDR, a p12969-DIM-related mega plasmid carrying blaIMP-45 and armA, from clinical Pseudomonas putida. Oncotarget 2017; 8:68439-68447. [PMID: 28978128 PMCID: PMC5620268 DOI: 10.18632/oncotarget.19496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/30/2017] [Indexed: 11/30/2022] Open
Abstract
This work characterized mega plasmid pSY153-MDR, carrying blaIMP-45 and armA, from a multidrug-resistant (MDR) Pseudomonas putida isolate from the urine of a cerebral infarction patient in China. The backbone of pSY153-MDR was closely related to Pseudomonas plasmids p12969-DIM, pOZ176, pBM413, pTTS12, and pRBL16, and could not be assigned to any of the known incompatibility groups. The accessory modules of pSY153-MDR were composed of 10 individual insertion sequence elements and two different MDR regions, and differed dramatically from the above plasmids. Fifteen non-redundant resistance markers were identified to be involved in resistance to at least eight distinct classes of antibiotics. All of these resistance genes were associated with mobile elements, and were embedded within the two MDR regions. blaIMP-45 and armA coexisted in a Tn1403–Tn1548 region, which was generated from homologous recombination of Tn1403- and Tn1548-like transposons. The second copy of armA was a component of the ISCR28–armA–∆ISCR28 structure, representing a novel armA vehicle. This vehicle was located within In48, which was related to In363 and In1058. Data presented here provide a deeper insight into the evolutionary history of SY153, especially in regard to how it became extensively drug-resistant.
Collapse
|
15
|
Roy Chowdhury P, Scott MJ, Djordjevic SP. Genomic islands 1 and 2 carry multiple antibiotic resistance genes in Pseudomonas aeruginosa ST235, ST253, ST111 and ST175 and are globally dispersed. J Antimicrob Chemother 2016; 72:620-622. [PMID: 27999026 DOI: 10.1093/jac/dkw471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Piklu Roy Chowdhury
- The ithree institute, University of Technology Sydney, Faculty of Science, PO Box 123 Broadway, NSW 2007, Australia .,Department of Primary Industries, Elizabeth Macarthur Agriculture Institute, PMB 4008, Camden, NSW 2567, Australia
| | - Martin J Scott
- The ithree institute, University of Technology Sydney, Faculty of Science, PO Box 123 Broadway, NSW 2007, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology Sydney, Faculty of Science, PO Box 123 Broadway, NSW 2007, Australia
| |
Collapse
|
16
|
Roy Chowdhury P, Scott M, Worden P, Huntington P, Hudson B, Karagiannis T, Charles IG, Djordjevic SP. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa. Open Biol 2016; 6:rsob.150175. [PMID: 26962050 PMCID: PMC4821235 DOI: 10.1098/rsob.150175] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS_PA1, RNS_PA46 and RNS_PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. GI1 disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5–aacA4–gcuE15–aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa.
Collapse
Affiliation(s)
- Piklu Roy Chowdhury
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Department of Primary Industries, Elizabeth Macarthur Agriculture Institute, PMB 4008, Camden, New South Wales 2567, Australia
| | - Martin Scott
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Paul Worden
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Peter Huntington
- Pathology North, The Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - Bernard Hudson
- Pathology North, The Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - Thomas Karagiannis
- SEALS Department of Microbiology, Level 4, Campus Centre Prince of Wales Hospital, Baker Street, Randwick, New South Wales 2031, Australia
| | - Ian G Charles
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Steven P Djordjevic
- The ithree institute, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| |
Collapse
|
17
|
Sun F, Zhou D, Wang Q, Feng J, Feng W, Luo W, Liu Y, Qiu X, Yin Z, Xia P. Genetic characterization of a novel blaDIM-2-carrying megaplasmid p12969-DIM from clinical Pseudomonas putida. J Antimicrob Chemother 2015; 71:909-12. [PMID: 26679251 DOI: 10.1093/jac/dkv426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/10/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To characterize a blaDIM-2-carrying 409 kb megaplasmid p12969-DIM of Pseudomonas putida 12969 from a patient with pneumonia in China. METHODS The complete nucleotide sequence of p12969-DIM was determined with a paired-end library and a mate-pair library using next-generation sequencing technology. RESULTS blaDIM-2, a close blaDIM-1 variant, was identified in p12969-DIM. DIM-2 differs from DIM-1 by two amino acid substitutions Ser119Leu and Ser209Pro. The p12969-DIM backbone is highly similar to pOZ176, but the IncP-2-type stability/replication/conjugal transfer system in the pOZ176 backbone is absent from p12969-DIM. The p12969-DIM accessory regions, a 45.7 kb MDR and a novel insertion sequence, ISPpu23, are almost entirely distinct from pOZ176. The MDR region contains a novel Tn21-subgroup transposon Tn6286 inserted with two class 1 integrons, In1225 and In1226; a Tn5503-family transposon-like element inserted with a strAB locus; and a novel Tn21-subgroup transposon-like element inserted with a class 1 integron, In1224. The three integrons carry blaDIM-2 as well as a number of additional genes conferring resistance to quinolones, aminoglycosides, chloramphenicol, florfenicol, trimethoprim, streptomycin, quaternary ammonium compounds and sulphonamides. p12969-DIM has two distinct replication/stability systems, repA/parAB-parB2 of an unknown incompatibility group in the backbone and repABC/mazFE of the IncQ2 group in the MDR region. CONCLUSIONS The MDR region of p12969-DIM harbours many resistance genes as well as a second replication/stability system. This article is the first report of a fully sequenced blaDIM-carrying plasmid.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qian Wang
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yao Liu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xuewen Qiu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|