1
|
Jarończyk M, Ostrowski S, Dobrowolski JC. On Integral INICS Aromaticity of Pyridodiazepine Constitutional Isomers and Tautomers. Molecules 2023; 28:5684. [PMID: 37570653 PMCID: PMC10419959 DOI: 10.3390/molecules28155684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The structure, energetics, and aromaticity of c.a. 100 constitutional isomers and tautomers of pyrido[m,n]diazepines (m = 1, 2; n = 2, 3, 4, 5; m ≠ n) were studied at the B3LYP/cc-pVTZ level. The pyrido[1,3]diazepines appear the most, while pyrido[2,4]diazepines are the least stable (ca. 26 kcal/mol). In the pyrido[1,n]diazepine group (n = 2-5), the [1,5] isomers are higher in energy by ca. 4.5 kcal/mol and the [1,4] ones by ca. 7 kcal/mol, and the pyrido[1,2]diazepines are the least stable (ca. 20 kcal/mol). All the most stable pyrido[1,n]diazepines have N-atoms near the ring's junction bond but on opposite sites. The most stable [2,n]-forms are also those with the pyridine ring N6-atom near the junction bond. Surprisingly, for the [1,2]-, [1,3]-, and [1,4]-isomer condensation types of pyridine and diazepine rings, the same N9 > N7 > N6 > N8 stability pattern obeys. The stability remains similar in a water medium simulated with the Polarizable Continuum Model of the solvent and is conserved when calculated using the CAM-B3LYP or BHandHlyp functionals. The ring's aromaticity in the pyridine[m,n]diazepines was established based on the integral INICS index resulting from the NICSzz-scan curves' integration. The integral INICS index is physically justified through its relation to the ringcurrent as demonstrated by Berger, R.J.F., et al. Phys. Chem. Chem. Phys. 2022, 24, 624. The six-membered pyrido rings have negative INICSZZ indices and can be aromatic only if they are not protonated at the N-atom. All protonated pyrido and seven-membered rings exhibit meaningful positive INICSZZ values and can be assigned as antiaromatic. However, some non-protonated pyrido rings also have substantial positive INICSZZ indices and are antiaromatic. A weak linear correlation (R2 = 0.72) between the INICSZZ values of the pyridine I(6) and diazepine I(7) rings exists and is a consequence of the communication between the π-electron systems of the two rings. The juxtaposition of the INICS descriptor of the six- and seven-membered rings and diverse electron density parameters at the Ring Critical Points (RCP) revealed good correlations only with the Electrostatic Potentials from the electrons and nuclei (ESPe and ESPn). The relationships with other RCP parameters like electron density and its Laplacian, total energy, and the Hamiltonian form of kinetic energy density were split into two parts: one nearly constant for the six-membered rings and one linearly correlating for the seven-membered rings. Thus, most of the electron density parameters at the RCP of the six-membered rings of pyridodiazepines practically do not change with the diazepine type and the labile proton position. In contrast, those of the seven-membered rings display aromaticity changes in the antiaromatic diazepine with its ring structural modifications.
Collapse
Affiliation(s)
| | - Sławomir Ostrowski
- Institute of Chemistry and Nuclear Technology, 16 Dorodna Street, 03-195 Warsaw, Poland;
| | - Jan Cz. Dobrowolski
- National Medicines Institute, 30/34 Chełmska Street, 00-725 Warsaw, Poland
- Institute of Chemistry and Nuclear Technology, 16 Dorodna Street, 03-195 Warsaw, Poland;
| |
Collapse
|
2
|
Wang X, Chen C, Shen T, Zhang J. Heterologous expression, purification and biochemical characterization of a glutamate racemase (MurI) from Streptococcus mutans UA159. PeerJ 2019; 7:e8300. [PMID: 31875162 PMCID: PMC6927343 DOI: 10.7717/peerj.8300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background Glutamate racemase (MurI) is a cofactor-independent enzyme that is essential to the bacterial peptidoglycan biosynthesis pathway and has therefore been considered an attractive target for the development of antimicrobial drugs. While in our previous study the essentiality of the murI gene was shown in Streptococcus mutans, the primary aetiologic agent of human dental caries, studies on S. mutans MurI have not yet provided definitive results. This study aimed to produce and characterize the biochemical properties of the MurI from the S. mutans UA159 genome. Methods Structure characterization prediction and multiple sequence alignment were performed by bioinformatic analysis. Recombinant His6-tagged S. mutans MurI was overexpressed in the expression vector pColdII and further purified using a Ni2+ affinity chromatography method. Protein solubility, purity and aggregation state were analyzed by SDS–PAGE, Western blotting, native PAGE and SEC-HPLC. Kinetic parameters were assessed by a circular dichroism (CD) assay. Kinetic constants were calculated based on the curve fit for the Michaelis–Menten equation. The effects of temperature and pH on enzymatic activity were determined by a series of coupled enzyme reaction mixtures. Results The glutamate racemase gene from S. mutans UA159 was amplified by PCR, cloned and expressed in Escherichia coli BL21 (DE3). The 264-amino-acid protein, as a mixture of dimeric and monomeric enzymes, was purified to electrophoretic homogeneity. In the CD assay, S. mutans MurI displayed unique kinetic parameters (Km, d-Glu→l-Glu = 0.3631 ± 0.3205 mM, Vmax, d-Glu→l-Glu = 0.1963 ± 0.0361 mM min−1, kcat, d-Glu→l-Glu = 0.0306 ± 0.0065 s−1, kcat/Km,d-Glu→l-Glu = 0.0844 ± 0.0128 s−1 mM−1, with d-glutamate as substrate; Km, l-Glu→d-Glu = 0.8077 ± 0.5081 mM, Vmax, l-Glu→d-Glu = 0.2421 ± 0.0418 mM min−1, kcat,l-Glu→d-Glu = 0.0378 ± 0.0056 s−1, kcat/Km,l-Glu→d-Glu = 0.0468 ± 0.0176 s−1 mM−1, with l-glutamate as substrate). S. mutans MurI possessed an assay temperature optimum of 37.5 °C and its optimum pH was 8.0. Conclusion The findings of this study provide insight into the structure and biochemical traits of the glutamate racemase in S. mutans and supply a conceivable guideline for employing glutamate racemase in anti-caries drug design.
Collapse
Affiliation(s)
- Xiangzhu Wang
- Department of Operative Dentistry and Endodotics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Chanchan Chen
- Department of Stomatology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Ting Shen
- Department of Operative Dentistry and Endodotics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Jiangying Zhang
- Department of Operative Dentistry and Endodotics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Mackie J, Kumar H, Bearne SL. Changes in quaternary structure cause a kinetic asymmetry of glutamate racemase-catalyzed homocysteic acid racemization. FEBS Lett 2018; 592:3399-3413. [PMID: 30194685 DOI: 10.1002/1873-3468.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 11/07/2022]
Abstract
Glutamate racemases (GR) catalyze the racemization of d- and l-glutamate and are targets for the development of antibiotics. We demonstrate that GR from the periodontal pathogen Fusobacterium nucleatum (FnGR) catalyzes the racemization of d-homocysteic acid (d-HCA), while l-HCA is a poor substrate. This enantioselectivity arises because l-HCA perturbs FnGR's monomer-dimer equilibrium toward inactive monomer. The inhibitory effect of l-HCA may be overcome by increasing the total FnGR concentration or by adding glutamate, but not by blocking access to the active site through site-directed mutagenesis, suggesting that l-HCA binds at an allosteric site. This phenomenon is also exhibited by GR from Bacillus subtilis, suggesting that enantiospecific, "substrate"-induced dissociation of oligomers to form inactive monomers may furnish a new inhibition strategy.
Collapse
Affiliation(s)
- Joanna Mackie
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Himank Kumar
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Stephen L Bearne
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.,Department of Chemistry, Dalhousie University, Halifax, Canada
| |
Collapse
|
4
|
Fleeman RM, Debevec G, Antonen K, Adams JL, Santos RG, Welmaker GS, Houghten RA, Giulianotti MA, Shaw LN. Identification of a Novel Polyamine Scaffold With Potent Efflux Pump Inhibition Activity Toward Multi-Drug Resistant Bacterial Pathogens. Front Microbiol 2018; 9:1301. [PMID: 29963035 PMCID: PMC6010545 DOI: 10.3389/fmicb.2018.01301] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/28/2018] [Indexed: 02/02/2023] Open
Abstract
We have previously reported the use of combinatorial chemistry to identify broad-spectrum antibacterial agents. Herein, we extend our analysis of this technology toward the discovery of anti-resistance molecules, focusing on efflux pump inhibitors. Using high-throughput screening against multi-drug resistant Pseudomonas aeruginosa, we identified a polyamine scaffold that demonstrated strong efflux pump inhibition without possessing antibacterial effects. We determined that these molecules were most effective with an amine functionality at R1 and benzene functionalities at R2 and R3. From a library of 188 compounds, we studied the properties of 5 lead agents in detail, observing a fivefold to eightfold decrease in the 90% effective concentration of tetracycline, chloramphenicol, and aztreonam toward P. aeruginosa isolates. Additionally, we determined that our molecules were not only active toward P. aeruginosa, but toward Acinetobacter baumannii and Staphylococcus aureus as well. The specificity of our molecules to efflux pump inhibition was confirmed using ethidium bromide accumulation assays, and in studies with strains that displayed varying abilities in their efflux potential. When assessing off target effects we observed no disruption of bacterial membrane polarity, no general toxicity toward mammalian cells, and no inhibition of calcium channel activity in human kidney cells. Finally, combination treatment with our lead agents engendered a marked increase in the bactericidal capacity of tetracycline, and significantly decreased viability within P. aeruginosa biofilms. As such, we report a unique polyamine scaffold that has strong potential for the future development of novel and broadly active efflux pump inhibitors targeting multi-drug resistant bacterial infections.
Collapse
Affiliation(s)
- Renee M. Fleeman
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Kirsten Antonen
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Jessie L. Adams
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Radleigh G. Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Gregory S. Welmaker
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
5
|
Debraekeleer A, Remaut H. Future perspective for potentialHelicobacter pylorieradication therapies. Future Microbiol 2018; 13:671-687. [DOI: 10.2217/fmb-2017-0115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ayla Debraekeleer
- Department of Structural & Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Department of Structural & Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
6
|
Schwarzwalder GM, Scott DR, Vanderwal CD. A Synthesis of Exiguaquinol Dessulfate. Chemistry 2016; 22:17953-17957. [PMID: 27673578 PMCID: PMC6028001 DOI: 10.1002/chem.201604506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 12/24/2022]
Abstract
A concise and stereoselective synthesis of exiguaquinol dessulfate is described. Sequential application of a Diels-Alder cycloaddition, a desymmetrizing aldol addition, and a reductive Heck cyclization established most of the architecture of exiguaquinol, and a carefully choreographed introduction of the polar substituents afforded the title compound; unfortunately, naphthoquinol sulfation could not be achieved to deliver exiguaquinol. Our hypothesis regarding the configurational preference of the N-acyl hemiaminal, which was based upon an analysis of internal hydrogen-bonding interactions with polar functional groups, was proven correct. A late-stage intermediate did not demonstrate bactericidal activity against H. pylori cultures.
Collapse
Affiliation(s)
- Gregg M Schwarzwalder
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| | - David R Scott
- Department of Physiology, UC Los Angeles/VA Greater Los Angeles Healthcare System, 11310 Wilshire Blvd, Bldg. 113, Rm. 324, Los Angeles, CA, 90073, USA
| | - Christopher D Vanderwal
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| |
Collapse
|
7
|
Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:6091-9. [PMID: 27480853 PMCID: PMC5038272 DOI: 10.1128/aac.01249-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M. tuberculosis. During our studies on alternative inhibitors of the d-alanine pathway, we discovered that the canonical alanine racemase (Alr) inhibitor β-chloro–d-alanine (BCDA) is a very poor inhibitor of recombinant M. tuberculosis Alr, despite having potent antituberculosis activity. Through a combination of enzymology, microbiology, metabolomics, and proteomics, we show here that BCDA does not inhibit the d-alanine pathway in intact cells, consistent with its poor in vitro activity, and that it is instead a mechanism-based inactivator of glutamate racemase (MurI), an upstream enzyme in the same early stage of PG biosynthesis. This is the first report to our knowledge of inhibition of MurI in M. tuberculosis and thus provides a valuable tool for studying this essential and enigmatic enzyme and a starting point for future MurI-targeted antibacterial development.
Collapse
|
8
|
Fakhar Z, Naiker S, Alves CN, Govender T, Maguire GEM, Lameira J, Lamichhane G, Kruger HG, Honarparvar B. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. J Biomol Struct Dyn 2016; 34:2399-417. [PMID: 26612108 DOI: 10.1080/07391102.2015.1117397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Zeynab Fakhar
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Suhashni Naiker
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Claudio N Alves
- b Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais , Instituto de Ciências Biológicas, Universidade Federal do Pará , CEP 66075-110, Belém , Pará , Brazil
| | - Thavendran Govender
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Glenn E M Maguire
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa.,c School of Chemistry and Physics , University of KwaZulu-Natal , 4001 Durban , South Africa
| | - Jeronimo Lameira
- b Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais , Instituto de Ciências Biológicas, Universidade Federal do Pará , CEP 66075-110, Belém , Pará , Brazil
| | - Gyanu Lamichhane
- d Division of Infectious Diseases, Center for Tuberculosis Research , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Hendrik G Kruger
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Bahareh Honarparvar
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| |
Collapse
|