1
|
Whole-genome sequencing of presumptive MDR-TB isolates from a tertiary healthcare setting in Mumbai. J Glob Antimicrob Resist 2022; 31:256-262. [PMID: 36272707 DOI: 10.1016/j.jgar.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Whole-genome sequencing (WGS) of Mycobacterium tuberculosis (MTB), proven to be a better alternative when compared with the combined sensitivity and specificity of all other modalities for diagnosis of tuberculosis (TB), aids epidemiological surveillance investigations by combining the current research with diagnostics. This study was conducted to identify and resolve operational challenges in performing WGS-based drug resistance testing (DRT) for MTB in a TB culture and drug susceptibility testing (DST) laboratory. Three critical, non-redundant steps for WGS-based DRT were tested: viz. DNA extraction, high-throughput paired-end next-generation sequencing (NGS), and genomic analysis pipeline for automated reporting of WGS-based DRT. METHODS DNA was extracted from 100 liquid culture isolates on a mycobacterial growth indicator tube (MGIT) using DNEASY Ultraclean Microbial Kit (Qiagen, USA) as per the manufacturer's instructions. Illumina paired-end sequencing was performed. All analysis steps were automated using custom python scripts, requiring no intervention. Variant calling was performed as per the World Health Organization (WHO) technical guide. RESULTS The number of cultures resistant to rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin was 89, 88, 35, 67, and 73, respectively. Resistance to amikacin, kanamycin, and capreomycin was found in 15, 17, and 15 cultures, respectively. Seventy cultures were resistant to fluoroquinolones, four were resistant to ethionamide, and 12 were resistant to linezolid. Six cultures were resistant to only one of the 18 drugs tested. Seventy-five cultures were resistant to more than three anti-TB drugs. One culture was resistant to 13 of the 18 anti-TB drugs tested for this study. The maximum number of variants were observed in the rpoB gene (n = 93, 93%), wherein the Ser450Leu was the predominant mutation (n = 68, 73%). Ser315Thr was the most common variant (n = 86, 97%) that encoded resistance to isoniazid. The Lys43Arg variant encodes resistance to streptomycin and was the third most predominant variant (n = 65, 89%). In addition to the high levels of resistance observed in the dataset, we also observed a high proportion of Beijing strains (n = 63, 63%). CONCLUSION Compared with results from routine diagnostics based on the 'Guidelines on Programmatic Management of Drug-Resistant TB (PMDT) in India', none of the samples had DST available for all 18 drugs. This represents a gap in PMDT guidelines. The WGS-DRT must be considered as the primary DST method after a sample is flagged rifampicin-resistant by cartridge-based nucleic acid amplification testing (CBNAAT). With several research studies currently underway globally to identify novel variants associated with drug resistance and classifiy their minimum inhibitory coefficients, WGS-DRT presents a scalable technology that updates analytical pipelines, relegating the need for changing microbiological protocols.
Collapse
|
2
|
Korry BJ, Lee SYE, Chakrabarti AK, Choi AH, Ganser C, Machan JT, Belenky P. Genotoxic Agents Produce Stressor-Specific Spectra of Spectinomycin Resistance Mutations Based on Mechanism of Action and Selection in Bacillus subtilis. Antimicrob Agents Chemother 2021; 65:e0089121. [PMID: 34339280 PMCID: PMC8448107 DOI: 10.1128/aac.00891-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Mutagenesis is integral for bacterial evolution and the development of antibiotic resistance. Environmental toxins and stressors are known to elevate the rate of mutagenesis through direct DNA toxicity, known as stress-associated mutagenesis, or via a more general stress-induced process that relies on intrinsic bacterial pathways. Here, we characterize the spectra of mutations induced by an array of different stressors using high-throughput sequencing to profile thousands of spectinomycin-resistant colonies of Bacillus subtilis. We found 69 unique mutations in the rpsE and rpsB genes, and that each stressor leads to a unique and specific spectrum of antibiotic-resistance mutations. While some mutations clearly reflected the DNA damage mechanism of the stress, others were likely the result of a more general stress-induced mechanism. To determine the relative fitness of these mutants under a range of antibiotic selection pressures, we used multistrain competitive fitness experiments and found an additional landscape of fitness and resistance. The data presented here support the idea that the environment in which the selection is applied (mutagenic stressors that are present), as well as changes in local drug concentration, can significantly alter the path to spectinomycin resistance in B. subtilis.
Collapse
Affiliation(s)
- Benjamin J. Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Stella Ye Eun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Amit K. Chakrabarti
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Ashley H. Choi
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Collin Ganser
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jason T. Machan
- Department of Orthopedics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Early detection of MDR Mycobacterium tuberculosis mutations in Pakistan. Sci Rep 2021; 11:16736. [PMID: 34408186 PMCID: PMC8373971 DOI: 10.1038/s41598-021-96116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
The result of improper treatment has led to the rise of Multidrug-resistant (MDR) strains. This concern still exists in Pakistan. In order to save energy, time and resources an early detection of resistant cases is imperative. Thus, a treated group of 100 isolates and a control group of 56 untreated isolates were studied. PCR and gene sequencing showed mutations at codon 531 and 513 in the rpoB gene. 12% of cases showed a double mutation in the rpoB gene. katG gene showed mutations at codon 315 and 299. 28.6% of the control group cases were positive for MDR whereas 100% of the treated group were positive for MDR. This study explores the significantly increasing ratio of MDR-TB among Pakistani population. This study provides prevalent MDR mutations among Pakistanis and suggests developing such molecular assays that are time and cost effective. Importance: Pakistan is a developing country and has fourth highest incidence rate of MDR-TB. The treatment of MDR-TB is the use of second line drugs that has severe side effects as well as it requires long time span. One of the strategies to control the spread of MDR-TB is to decipher the aberrations at molecular level in order to formulate potent drugs that can treat the patients within short span of time. Determining the mutation profile of MDR in Pakistani populations will open new horizons for the improvement of drug treatment regimens to make it more effective or for the development of novel potent drugs and vaccines to better treat the drug-resistant TB. Moreover, this study will be help in disease control program.
Collapse
|
4
|
Characterization of genetic diversity and clonal complexes by whole genome sequencing of Mycobacterium tuberculosis isolates from Jalisco, Mexico. Tuberculosis (Edinb) 2021; 129:102106. [PMID: 34218194 DOI: 10.1016/j.tube.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Whole genome sequencing (WGS) analysis in tuberculosis allows the prediction of drug-resistant phenotypes, identification of lineages, and to better understanding of the epidemiology and transmission chains. Nevertheless the procedure has been scarcely assessed in Mexico, in this work we analyze by WGS isolates of Mycobacterium tuberculosis circulating in Jalisco, Mexico. Lineage and phylogenetic characterization, drug resistant prediction, "in silico" spoligotyping determination, were provided by WGS in 32 M. tuberculosis clinical isolates. Lineage 4 (L4), with 28 isolates (87%) and eleven sublineages was dominant. Forty SNPs and INDELs were found in genes related to first-, and second-line drugs. Eleven isolates were sensitive, seven (22%) were predicted to be resistant to isoniazid, two resistant to rifampicin (6%) and two (6%) were multidrug-resistant tuberuclosis. Spoligotyping shows that SIT 53 (19%) and SIT 119 (16%) were dominant. Four clonal transmission complexes were found. This is the first molecular epidemiological description of TB isolates circulating in western Mexico, achieved through WGS. L4 was dominant and included a high diversity of sublineages. It was possible to track the transmission route of two clonal complexes. The WGS demonstrated to be of great utility and with further implications for clinical and epidemiological study of TB in the region.
Collapse
|
5
|
Maruri F, Guo Y, Blackman A, van der Heijden YF, Rebeiro PF, Sterling TR. Resistance-Conferring Mutations on Whole-Genome Sequencing of Fluoroquinolone-resistant and -Susceptible Mycobacterium tuberculosis Isolates: A Proposed Threshold for Identifying Resistance. Clin Infect Dis 2021; 72:1910-1918. [PMID: 32348473 PMCID: PMC8315129 DOI: 10.1093/cid/ciaa496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fluoroquinolone resistance in Mycobacterium tuberculosis (Mtb) is conferred by DNA gyrase mutations, but not all fluoroquinolone-resistant Mtb isolates have mutations detected. The optimal allele frequency threshold to identify resistance-conferring mutations by whole-genome sequencing is unknown. METHODS Phenotypically ofloxacin-resistant and lineage-matched ofloxacin-susceptible Mtb isolates underwent whole-genome sequencing at an average coverage depth of 868 reads. Polymorphisms within the quinolone-resistance-determining region (QRDR) of gyrA and gyrB were identified. The allele frequency threshold using the Genome Analysis Toolkit pipeline was ~8%; allele-level data identified the predominant variant allele frequency and mutational burden (ie, sum of all variant allele frequencies in the QRDR) in gyrA, gyrB, and gyrA + gyrB for each isolate. Receiver operating characteristic (ROC) curves assessed the optimal measure of allele frequency and potential thresholds for identifying phenotypically resistant isolates. RESULTS Of 42 ofloxacin-resistant Mtb isolates, area under the ROC curve (AUC) was highest for predominant variant allele frequency, so that measure was used to evaluate optimal mutation detection thresholds. AUCs for 8%, 2.5%, and 0.8% thresholds were 0.8452, 0.9286, and 0.9069, respectively. Sensitivity and specificity were 69% and 100% for 8%, 86% and 100% for 2.5%, 91% and 91% for 0.8%. The sensitivity of the 2.5% and 0.8% thresholds were significantly higher than the 8% threshold (P = .016 and .004, respectively) but not significantly different between one another (P = .5). CONCLUSIONS A predominant mutation allele frequency threshold of 2.5% had the highest AUC for detecting DNA gyrase mutations that confer ofloxacin resistance, and was therefore the optimal threshold.
Collapse
Affiliation(s)
- Fernanda Maruri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yuri F van der Heijden
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- The Aurum Institute, Johannesburg, South Africa
| | - Peter F Rebeiro
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Kabir S, Tahir Z, Mukhtar N, Sohail M, Saqalein M, Rehman A. Fluoroquinolone resistance and mutational profile of gyrA in pulmonary MDR tuberculosis patients. BMC Pulm Med 2020; 20:138. [PMID: 32393213 PMCID: PMC7216623 DOI: 10.1186/s12890-020-1172-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fluoroquinolones (FQs) are potential drugs that inhibit DNA synthesis and are used in the treatment of multidrug-resistant tuberculosis (TB) and short-term anti-TB regimens. In recent years, a high proportion of FQ resistance has been observed in Mycobacterium tuberculosis isolates. The development of FQ resistance in multidrug-resistant TB negatively impacts patient treatment outcome and is a serious threat to control of TB. METHODS The study included a total of 562 samples from patients with pulmonary TB that had been on anti-tuberculosis therapy. MTBDRsl assays were performed for the molecular detection of mutations. Sequence analysis was performed for the characterization and mutational profiling of FQ-resistant isolates. RESULTS FQ resistance was observed in 104 samples (18.5%), most of which were previously treated and treatment failure cases. A total of 102 isolates had mutations in DNA gyrase subunit A (gyrA), while mutations in gyrB were observed in only two isolates. Mutational analysis revealed that the mutations mostly alter codons 94 (replacing aspartic acid with glycine, D94G) and 90 (replacing alanine with valine, A90V). In MDR and treatment failure cases, resistance to FQs was most commonly associated with the D94G mutation. In contract, a high proportion of A90V mutations were observed in isolates that were newly diagnosed. CONCLUSION The findings suggest that genotypic assays for FQ resistance should be carried out at the time of initial diagnosis, before starting treatment, in order to rule out mutations that impact the potential use of FQs in treatment and to control drug resistance.
Collapse
Affiliation(s)
- Saba Kabir
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, New Campus Lahore, Lahore, 54590, Pakistan
| | | | - Nadia Mukhtar
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Sohail
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, New Campus Lahore, Lahore, 54590, Pakistan
| | | | - Abdul Rehman
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, New Campus Lahore, Lahore, 54590, Pakistan.
| |
Collapse
|
7
|
Evaluation of GenoType MTBDRplus for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Karachi, Pakistan. PLoS One 2019; 14:e0221485. [PMID: 31425565 PMCID: PMC6699735 DOI: 10.1371/journal.pone.0221485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/07/2019] [Indexed: 12/03/2022] Open
Abstract
Objective To compare the diagnostic performance of the GenoType MRBDRplus assay with the gold standard phenotypic drug susceptibility testing in the detection of drug resistance among culture isolates obtained from patients in Karachi, Pakistan. Design Mycobacterium tuberculosis isolates were obtained from 96 consecutive tuberculosis patients found to have resistance to isoniazid from two health centers in Karachi (January-November 2017). Isolates were tested for drug resistance against rifampin and isoniazid using the MTBDRplus assay. Results were compared with conventional drug-susceptibility testing and the frequency of specific mutations were reported. Results The MTBDRplus assay had a sensitivity for rifampin resistance of 98.8% (95% CI: 93.4–100) and for isoniazid resistance of 90.6% (95% CI: 83.0–95.6). The MTBDRplus assay showed mutations in rpoB in 81 of the 96 (84.4%) isolates. Of the 87 isolates showing resistance to isoniazid via the MTBDRplus assay, 71 (74.0%) isolates had mutations in the katG gene only, 15 (15.6%) isolates had mutations in the inhA promoter region, and 1 (1.0%) showed mutations in both genes. Conclusion The GenoType MTBDRplus assay in Pakistan can identify subgroups at high-risk of having isolates with mutations in the katG and/or inhA genes. Understanding the local burden of these mutations have implications for local diagnostic and treatment guidelines.
Collapse
|
8
|
Huang Z, Du J, Deng Z, Luo Q, Xiong G, Wang Y, Zhang X, Li J. Multicentre laboratory validation of the nitrate reductase assay using liquid medium for the rapid detection of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis. Tuberculosis (Edinb) 2018; 113:242-248. [PMID: 30514509 DOI: 10.1016/j.tube.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/22/2018] [Accepted: 11/01/2018] [Indexed: 11/27/2022]
Abstract
To perform a multicentre study evaluating the performance of the nitrate reductase assay (NRA) using liquid medium for the detection of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis and to establish the MICs and critical concentrations of rifampicin, isoniazid, ofloxacin, amikacin, kanamycin and capreomycin. The study was carried out in three phases. Phase I determined the MIC of each drug. Phase II established the critical concentration of each drug. Phase III validated critical concentrations for the six drugs tested by the NRA using liquid medium compared with the agar proportion method or MGIT 960 system at each site. The critical concentrations for the six drugs used in the NRA are as follows: rifampicin, 1 mg/L; isoniazid, 0.2 mg/L; ofloxacin, 2 mg/L; amikacin, 2 mg/L; kanamycin, 5 mg/L; capreomycin, 2.5 mg/L. Phase III: Excellent agreement was obtained for all drugs tested at the majority of sites. The accuracy was 97%-100% for rifampicin, 96.8%-99.2% for isoniazid, 98%-100% for ofloxacin, 96.8%-98.5% for amikacin, 96.4%-99.5% for kanamycin and 96.8%-100% for capreomycin. Results for NRA using liquid medium were obtained in a median time of 7 days. NRA performed in liquid medium offers a rapid, economical and feasible method for detection of M. tuberculosis resistance to first- and second-line drugs in resource-limited settings.
Collapse
Affiliation(s)
- Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinghui Du
- Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of TCM, Tianjin, China
| | - Zhen Deng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guoliang Xiong
- Province Tuberculosis Reference Laboratory, Jiangxi Chest Hospital, Nanchang, Jiangxi, China
| | - Yaoxing Wang
- Clinical Microbiology Laboratory, Baoshan Branch, Shanghai First People's Hospital, Shanghai, China
| | - Xi Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Javed H, Bakuła Z, Pleń M, Hashmi HJ, Tahir Z, Jamil N, Jagielski T. Evaluation of Genotype MTBDR plus and MTBDR sl Assays for Rapid Detection of Drug Resistance in Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in Pakistan. Front Microbiol 2018; 9:2265. [PMID: 30319577 PMCID: PMC6169422 DOI: 10.3389/fmicb.2018.02265] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Pakistan ranks 5th among the world's highest tuberculosis (TB) burden countries alongside the 6th among countries with the highest burden of drug-resistant TB, including multi-drug resistant (MDR)-TB. Methods for rapid and reliable drug susceptibility testing (DST) are prerequisite for the prompt institution of effective anti-TB treatment. The aim of this study was to evaluate the efficiency of Genotype MTBDRplus and MTBDRsl assays for the detection of MDR and (pre-) extensively drug-resistant (XDR-TB) isolates in Pakistan. The study included 47 pre-XDR and 6 XDR-TB isolates, recovered from 53 patients from Pakistan. Conventional DST was performed using the standard 1% proportion method on the Löwenstein-Jensen medium. For molecular determination of drug resistance, GenoType MTBDRplus and GenoType MTBDRsl assays (Hain Lifescience, Germany) were used. To evaluate discrepancies between conventional and molecular DST results, mutation profiling was performed by amplifying and sequencing seven genetic loci, i.e., katG, inhA, and mabA-inhA promoter, rpoB, gyrA, embB, rrs. The sensitivity of Genotype MTBDRplus was 71.7% for isoniazid (INH) and 79.2% for rifampicin (RIF). Sequence analysis revealed non-synonymous mutations in 93.3 and 27.3% of isolates phenotypically resistant to INH and RIF, respectively, albeit susceptible when tested by GenoType MTBDRplus. GenoType MTBDRsl had a sensitivity of 73.6, 64.7, 20, 25, and 100% for the detection of fluoroquinolones, ethambutol, kanamycin, amikacin, and capreomycin resistance, respectively. Upon sequencing, mutations were detected in 20, 77.8%, and all isolates phenotypically resistant to aminoglycosides, ethambutol, and fluoroquinolones, respectively, yet declared as susceptible with GenoType MTBDRsl. Low sensitivities seriously impede the large-scale application of the Genotype MTBDRplus and MTBDRsl assays. Unless further optimized, the currently available line-probe assays should rather be auxiliary to the conventional, phenotype-based methods in the detection of MDR- and XDR-TB in Pakistan.
Collapse
Affiliation(s)
- Hasnain Javed
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Zofia Bakuła
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Małgorzata Pleń
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Hafiza Jawairia Hashmi
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | | | - Nazia Jamil
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Tomasz Jagielski
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Genetics and roadblocks of drug resistant tuberculosis. INFECTION GENETICS AND EVOLUTION 2018; 72:113-130. [PMID: 30261266 DOI: 10.1016/j.meegid.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
Considering the extensive evolutionary history of Mycobacterium tuberculosis, anti-Tuberculosis (TB) drug therapy exerts a recent selective pressure. However, in a microorganism devoid of horizontal gene transfer and with a strictly clonal populational structure such as M. tuberculosis the usual, but not sole, path to overcome drug susceptibility is through de novo mutations on a relatively strict set of genes. The possible allelic diversity that can be associated with drug resistance through several mechanisms such as target alteration or target overexpression, will dictate how these genes can become associated with drug resistance. The success demonstrated by this pathogenic microbe in this latter process and its ability to spread is currently one of the major obstacles to an effective TB elimination. This article reviews the action mechanism of the more important anti-TB drugs, including bedaquiline and delamanid, along with new findings on specific resistance mechanisms. With the development, validation and endorsement of new in vitro molecular tests for drug resistance, knowledge on these resistance mechanisms and microevolutionary dynamics leading to the emergence and fixation of drug resistance mutations within the host is highly important. Additionally, the fitness toll imposed by resistance development is also herein discussed together with known compensatory mechanisms. By elucidating the possible mechanisms that enable one strain to reacquire the original fitness levels, it will be theoretically possible to make more informed decisions and develop novel strategies that can force M. tuberculosis microevolutionary trajectory down through a path of decreasing fitness levels.
Collapse
|
11
|
Gamngoen R, Putim C, Salee P, Phunpae P, Butr-Indr B. A comparison of Rv0559c and Rv0560c expression in drug-resistant Mycobacterium tuberculosis in response to first-line antituberculosis drugs. Tuberculosis (Edinb) 2017. [PMID: 29523329 DOI: 10.1016/j.tube.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug resistance to Mycobacterium tuberculosis is a major health problem worldwide. Mycobacterium tuberculosis can progress to be mono-drug resistant or multi-drug resistant by improper treatment. The chemical stress of M. tuberculosis was performed in this study. Rv0559c is an unknown secreted protein. Rv0560c is a putative benzoquinone methyltransferase of M. tuberculosis cell. Rv0559c gene is located downstream of Rv0560c gene. Both genes respond to salicylate stress. Drug susceptible, isoniazid resistant, rifampicin resistant and multi-drug resistant phenotypes of M. tuberculosis clinical isolates were used to determine the expression of Rv0559c and Rv0560c by qRT-PCR. In all of mycobacteria strains there was up-regulation in both genes when stressed with isoniazid. This study determined the expression of both genes, which may play important roles in the drug resistance mechanism of mycobacteria.
Collapse
Affiliation(s)
- Ratikorn Gamngoen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chanyanuch Putim
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Parichat Salee
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
12
|
Varghese B, Al-Hajoj S. First Insight Into the Fluoroquinolone and Aminoglycoside Resistance of Multidrug-Resistant Mycobacterium tuberculosis in Saudi Arabia. Am J Trop Med Hyg 2017; 96:1066-1070. [PMID: 28500800 DOI: 10.4269/ajtmh.16-0579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractIn Saudi Arabia, there were no nationwide screening studies conducted so far to determine the aminoglycoside and fluoroquinolone resistance among multidrug-resistant tuberculosis (MDR-TB) isolates. Therefore, as the first attempt in the country, a retrospective analysis has been conducted on a nationwide collection of 2,956 M. tuberculosis clinical isolates screened with phenotypic drug susceptibility testing to define MDR-TB. Enrolled MDR-TB isolates were subjected to second-line drug susceptibility testing, detection of mutations conferring resistance to aminoglycosides and fluoroquinolone, followed by 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeat typing and spoligotyping. Overall, 83 isolates were identified as MDR-TB, and 13 (15.7%) isolates showed resistance to second-line drugs. Moxifloxacin (low level) showed higher resistant rates (10.8%) followed by ofloxacin (7.2%), capreomycin (3.6%), kanamycin (3.6%), and amikacin (2.4%). Overall fluoroquinolone resistance was 12%, whereas aminoglycoside resistance was 7.2%. Predominant mutations conferring resistance to fluoroquinolone were found in gyrA A90V and D94G, whereas aminoglycoside resistance was observed only with rrs gene A1401G mutation. The corresponding strain lineages predominated with Indo-Oceanic and East-African Indian origin. Interestingly, none of the isolates with second-line drug resistance was defined as extensively drug-resistant TB (XDR-TB). Surprisingly, many isolates (50.6%) were panresistant to first-line drugs. Saudi Arabia faces considerable burden of fluoroquinolone- and aminoglycoside-resistant MDR-TB. Higher incidence of panresistant MDR-TB reveals a threat for the emergence of XDR-TB strains in the near future.
Collapse
Affiliation(s)
- Bright Varghese
- Mycobacteriology Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sahal Al-Hajoj
- Mycobacteriology Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Pérez-García F, Ruiz-Serrano MJ, López Roa P, Acosta F, Pérez-Lago L, García-De-Viedma D, Bouza E. Diagnostic performance of Anyplex II MTB/MDR/XDR for detection of resistance to first and second line drugs in Mycobacterium tuberculosis. J Microbiol Methods 2017; 139:74-78. [PMID: 28511895 DOI: 10.1016/j.mimet.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Genotypic methods have considerably improved the diagnosis of multidrug-resistant (MDR) tuberculosis. One of these tests is Anyplex II MTB/MDR/XDR (Anyplex). Our aim was to evaluate the diagnostic performance of this multiplex PCR. METHODS We conducted our study on 47 MDR tuberculosis and 14 pan-susceptible strains. We evaluated the ability of Anyplex to detect resistance mutations in rpoB (rifampin [RIF]), katG and inhA (isoniazid [INH]), gyrA (fluoroquinolones [FLQ]), and rrs and eis (aminoglycosides [AMG]). We used the agar proportion method as gold standard. We also studied concordance with GenoType MTBDRplus (first line drugs) and MTBDRsl (second line drugs). DNA sequencing was applied to clarify discrepancies. RESULTS All pan-susceptible strains were susceptible by Anyplex. Sensitivity and specificity of Anyplex for detection of resistance mutations were 97.9% and 100%, respectively, for RIF, 91.5% and 100% for INH, 80% and 100% for FLQ, and 50% and 99.7% for AMG. Concordance with GenoType was perfect for RIF, INH, and FLQ (kappa score, k=1.0) and moderate for AMG (k=0.48). Sensitivity and specificity for detection of MDR tuberculosis were 89.4% and 100%, respectively. DNA sequencing of the phenotypically resistant strains considered as susceptible by Anyplex, confirmed no mutations in the corresponding genes. CONCLUSIONS Anyplex is a reliable assay for the detection of MDR tuberculosis and shows excellent concordance with GenoType. Anyplex reduces the time to diagnosis of MDR tuberculosis strains, as it is recommended by current guidelines on control of tuberculosis.
Collapse
Affiliation(s)
- F Pérez-García
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - M J Ruiz-Serrano
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Biomédica Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias (CB06/06/0058), Madrid, Spain
| | - P López Roa
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Fermín Acosta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Biomédica Gregorio Marañón, Madrid, Spain
| | - Laura Pérez-Lago
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Biomédica Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias (CB06/06/0058), Madrid, Spain
| | - D García-De-Viedma
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Biomédica Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias (CB06/06/0058), Madrid, Spain
| | - E Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Biomédica Gregorio Marañón, Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid, Spain; CIBER Enfermedades Respiratorias (CB06/06/0058), Madrid, Spain
| |
Collapse
|
14
|
Phenotypic and Genotypic Analysis of Multidrug-Resistant Mycobacterium tuberculosis Isolates from Sudanese Patients. Tuberc Res Treat 2017; 2017:8340746. [PMID: 28197340 PMCID: PMC5286464 DOI: 10.1155/2017/8340746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/07/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022] Open
Abstract
Background. Currently, mutations in rpoB, KatG, and rrs genes and inhA promoter were considered to be involved in conferring resistance to rifampicin, isoniazid, and streptomycin in Mycobacterium tuberculosis (MTB). Objective. The aims of this study were to detect the prevalence of first-line tuberculosis (TB) drug resistance among a group of previously treated and newly detected TB patients, to determine the association between prevalence of multidrug resistance (MDR) and demographic information (age and sex), to explain genes correlated with MDR Mycobacterium tuberculosis, and to characterize MTB via 16S ribosomal RNA (16S rRNA) analysis. Methods. A hundred MTB isolates from Sudanese pulmonary TB patients were included in the study. The proportional method of drug susceptibility test was carried out on Löwenstein-Jensen media. Multiplex PCR of rpoB and KatG genes and inhA promoter was conducted; then rrs genes were amplified by conventional PCR and were sequenced. The sequences of the PCR product were compared with known rrs gene sequences in the GenBank database by multiple sequence alignment tools. Result. The prevalence of MDR was 14.7% among old cases and 5.3% among newly diagnosed cases. Conclusion. Mutations in rrs could be considered as a diagnostic marker.
Collapse
|
15
|
Juarez-Eusebio DM, Munro-Rojas D, Muñiz-Salazar R, Laniado-Laborín R, Martinez-Guarneros JA, Flores-López CA, Zenteno-Cuevas R. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from high prevalence tuberculosis states in Mexico. INFECTION GENETICS AND EVOLUTION 2016; 55:384-391. [PMID: 27637930 DOI: 10.1016/j.meegid.2016.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/20/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Mexico is one of the most important contributors of multidrug resistance tuberculosis (MDR-TB) in Latin-America, however little is known about the molecular characteristics of these strains. For this reason, the objective of this work was to determine the genotype and characterize polymorphisms in genes associated with resistance to rifampicin, isoniazid, and second-line drugs in isolates from two regions of Mexico with high prevalence of drug resistant tuberculosis. Clinical isolates from individuals with confirmed MDR-TB were genotyped using MIRU-VNTR 12 loci. To characterize the polymorphisms in genes associated with resistance to rifampicin, isoniazid and second-line drugs; rpoB, katG, inhA, rrs, eis, gyrA, gyrB and tlyA were sequenced. 22 (41%) of the 54 MDR-TB isolates recovered were from the state of Baja California, while 32 (59%) were from Veracruz. The results show the katGS315T mutation was observed in 20% (11/54) of the isolates, while rpoBS315L was present in 33% (18/54). rrs had three polymorphisms (T1239C, ntA1401C and ntA1401G), gyrB presented no modifications, whereas gyrA showed five (S95T, F60Y, A90V, S91P and P124A), eis two (G-10A and A431G) and tlyA one (insertion at codon 67). Only 20% (11/54) of isolates were confirmed as MDR-TB by sequencing, and no mutations at any of the genes sequenced were observed in 43% (23/54) of the strains. Two isolates were recognized with the proper set of mutations like pre-XDR and one was XDR-TB. Eighteen isolates were classified as orphans and the remaining thirty-six were distributed in fourteen lineages, the most frequent were S (11%), Haarlem (9%), Ghana (9%) and LAM (7%). Out of the fourteen clusters identified, seven included unknown genotypes and nine had lineages. This is one of the most detailed analyses of genotypic characteristics and mutations associated with drug resistance to first and second-line drugs in MDR-TB isolates from Mexico. An important genetic variability and significant discrepancy between phenotypic tests and polymorphisms was observed. Our results set the need to screen additional loci as well as implement a molecular epidemiological surveillance system of MDR-TB in the country.
Collapse
Affiliation(s)
- Dulce Maria Juarez-Eusebio
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial Animas, CP 91190 Jalapa, Veracruz, Mexico
| | - Daniela Munro-Rojas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial Animas, CP 91190 Jalapa, Veracruz, Mexico; Instituto de Ciencias de Salud, Universidad Veracruzana, Veracruz, Mexico
| | - Raquel Muñiz-Salazar
- Laboratorio de Epidemiología y Ecología y Molecular, Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico
| | - Rafael Laniado-Laborín
- Clínica de Tuberculosis, Hospital General de Tijuana, ISESALUD, Tijuana, Baja California, Mexico; Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Baja California, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico
| | - Jose Armando Martinez-Guarneros
- Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico; Departamento de Mycobacterias, Instituto Nacional de Diagnóstico y Referencia Epidemiológica, Mexico
| | - Carlos A Flores-López
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial Animas, CP 91190 Jalapa, Veracruz, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico.
| |
Collapse
|
16
|
Bang D, Andersen SR, Vasiliauskienė E, Rasmussen EM. Performance of the GenoType MTBDRplus assay (v2.0) and a new extended GenoType MTBDRsl assay (v2.0) for the molecular detection of multi- and extensively drug-resistant Mycobacterium tuberculosis on isolates primarily from Lithuania. Diagn Microbiol Infect Dis 2016; 86:377-381. [PMID: 27641092 DOI: 10.1016/j.diagmicrobio.2016.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/07/2016] [Accepted: 08/28/2016] [Indexed: 11/15/2022]
Abstract
The emergence of extensively drug-resistant tuberculosis (XDR-TB) hampers infection control. To assess the performance of an extended rapid novel molecular analysis for the detection of resistance conferring mutations to fluoroquinolones (gyrA, gyrB genes) and aminoglycosides/cyclic peptides (16S rRNA rrs gene, eis promotor region) compared to phenotypic susceptibility and sequencing, 43 multidrug-resistant (MDR) and 10 susceptible clinical isolates were analyzed. Results were compared to a previous version. Molecular rifampin (rpoB gene) and isoniazid (katG gene, inhA promotor region) resistance was also analyzed. XDR-TB was confirmed in 13 (30%) MDR isolates. Molecular resistance was detected in 91% ofloxacin-, 83% aminoglycoside/cyclic peptide- and 100% kanamycin-resistant isolates. In conclusion, the novel assay is a useful supplement to phenotypic susceptibility testing in determining the presence of XDR-TB. Molecular kanamycin resistance detection was immensely improved compared to the previous version. Aminoglycoside/cyclic peptide susceptible isolates revealed eis promotor region resistance in 29%, reflecting low-level kanamycin susceptibility challenges.
Collapse
Affiliation(s)
- Didi Bang
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark; Microbiological Diagnostics & Virology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Siri Rytcher Andersen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Edita Vasiliauskienė
- Infectious Diseases and Tuberculosis Hospital, Vilnius University Hospital Santariskiu Klinikos, Lithuania; Department of Physiology, Biochemistry & Laboratory Medicine, Faculty of Medicine, Vilnius University, Lithuania
| | - Erik Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| |
Collapse
|
17
|
Sequence Analysis of Fluoroquinolone Resistance-Associated Genes gyrA and gyrB in Clinical Mycobacterium tuberculosis Isolates from Patients Suspected of Having Multidrug-Resistant Tuberculosis in New Delhi, India. J Clin Microbiol 2016; 54:2298-305. [PMID: 27335153 DOI: 10.1128/jcm.00670-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolones (FQs) are broad-spectrum antibiotics recommended for the treatment of multidrug-resistant tuberculosis (MDR-TB) patients. FQ resistance, caused by mutations in the gyrA and gyrB genes of Mycobacterium tuberculosis, is increasingly reported worldwide; however, information on mutations occurring in strains from the Indian subcontinent is scarce. Hence, in this study, we aimed to characterize mutations in the gyrA and gyrB genes of acid-fast bacillus (AFB) smear-positive sediments or of M. tuberculosis isolates from AFB smear-negative samples from patients in India suspected of having MDR-TB. A total of 152 samples from patients suspected of having MDR-TB were included in the study. One hundred forty-six strains detected in these samples were characterized by sequencing of the gyrA and gyrB genes. The extracted DNA was subjected to successive amplifications using a nested PCR protocol, followed by sequencing. A total of 27 mutations were observed in the gyrA genes of 25 strains, while no mutations were observed in the gyrB genes. The most common mutations occurred at amino acid position 94 (13/27 [48.1%]); of these, the D94G mutation was the most prevalent. The gyrA mutations were significantly associated with patients with rifampin (RIF)-resistant TB. Heterozygosity was seen in 4/27 (14.8%) mutations, suggesting the occurrence of mixed populations with different antimicrobial susceptibilities. A high rate of FQ-resistant mutations (17.1%) was obtained among the isolates of TB patients suspected of having MDR-TB. These observations emphasize the need for accurate and rapid molecular tests for the detection of FQ-resistant mutations at the time of MDR-TB diagnosis.
Collapse
|
18
|
Chen Y, Zhao B, Liu HC, Sun Q, Zhao XQ, Liu ZG, Wan KL, Zhao LL. Prevalence of mutations conferring resistance among multi- and extensively drug-resistant Mycobacterium tuberculosis isolates in China. J Antibiot (Tokyo) 2015; 69:149-52. [PMID: 26486879 DOI: 10.1038/ja.2015.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 11/09/2022]
Abstract
To identify the mutations in multi- and extensively drug-resistant tuberculosis isolates and to evaluate the use of molecular markers of resistance, we analyzed 257 multi- and extensively drug-resistant isolates and 64 pan-sensitive isolates from 23 provinces in China. Seven loci associated with drug resistance, including rpoB for rifampin (RIF), katG, inhA and oxyR-ahpC for isoniazid (INH), gyrA and gyrB for ofloxacin (OFX), and rrs for kanmycin (KAN), were examined by DNA sequencing. Compared with the phenotypic data, the sensitivity and specificity for DNA sequencing were 91.1% and 98.4% for RIF, 80.2% and 98.4% for INH, 72.2% and 98.3% for OFX and 40% and 98.2% for KAN, respectively. The most common mutations found in RIF, INH, OFX and KAN resistance were Ser531Leu (48.2%) in rpoB, Ser315Thr (49.8%) in katG, C(-15)T (10.5%) in inhA, Asp94Gly (20.3%), Asp94Ala (12.7%) and Ala90Val (21.5%) in gyrA, and A1401G (40%) in rrs. This molecular information will be helpful to establish new molecular biology-based methods for diagnosing multi- and extensively drug-resistant tuberculosis in China.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai-can Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Pathogenic Biology Institute, University of South China, Hunan Province, China
| | - Xiu-qin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhi-guang Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang-lin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-li Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
19
|
Bakuła Z, Napiórkowska A, Kamiński M, Augustynowicz-Kopeć E, Zwolska Z, Bielecki J, Jagielski T. Second-line anti-tuberculosis drug resistance and its genetic determinants in multidrug-resistant Mycobacterium tuberculosis clinical isolates. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 49:439-44. [PMID: 26117528 DOI: 10.1016/j.jmii.2015.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/17/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mutations in several genetic loci have been implicated in the development of resistance to second-line anti-tuberculosis (TB) drugs (SLDs). The purpose of this study was to investigate the prevalence of resistance to SLDs and its association with specific mutations in multidrug-resistant (MDR) Mycobacterium tuberculosis clinical isolates. MATERIALS AND METHODS The study included 46 MDR-TB isolates. Mutation profiling was performed by amplifying and sequencing the following six genes: gyrA/gyrB, rrs, tlyA, and ethA/ethR, in which mutations are implicated in resistance of tubercle bacilli to ofloxacin (OFX), amikacin (AMK), capreomycin, and ethionamide (ETH), respectively. RESULTS Of the strains analyzed, 14 (30.4%) showed resistance to at least one of the four SLDs tested. Mutations in the gyrA gene occurred in 34 (73.9%) strains, with the most common amino acid change being Ser95Thr. The Asp94Asn and Ala90Val substitutions in the gyrA were present exclusively in OFX-resistant strains, yet represented only 40% of all OFX-resistant strains. The only mutation in the gyrB gene was substitution Ser447Phe, detected in one OFX-resistant isolate. None of the AMK-resistant strains carried a mutation in the rrs gene. Mutations in the ethA/ethR loci were found in one ETH-resistant and 11 ETH-susceptible strains. CONCLUSIONS The results of this study challenge the usefulness of sequence analyses of tested genes (except gyrA) for the prediction of SLD resistance patterns and highlight the need for searching other genetic loci for detection of mutations conferring resistance to SLDs in M. tuberculosis.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Agnieszka Napiórkowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Michał Kamiński
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Zofia Zwolska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Jacek Bielecki
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Tomasz Jagielski
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.
| |
Collapse
|
20
|
Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic review. PLoS One 2015; 10:e0120470. [PMID: 25816236 PMCID: PMC4376704 DOI: 10.1371/journal.pone.0120470] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The detection of mutations in the gyrA and gyrB genes in the Mycobacterium tuberculosis genome that have been demonstrated to confer phenotypic resistance to fluoroquinolones is the most promising technology for rapid diagnosis of fluoroquinolone resistance. METHODS In order to characterize the diversity and frequency of gyrA and gyrB mutations and to describe the global distribution of these mutations, we conducted a systematic review, from May 1996 to April 2013, of all published studies evaluating Mycobacterium tuberculosis mutations associated with resistance to fluoroquinolones. The overall goal of the study was to determine the potential utility and reliability of these mutations as diagnostic markers to detect phenotypic fluoroquinolone resistance in Mycobacterium tuberculosis and to describe their geographic distribution. RESULTS Forty-six studies, covering four continents and 18 countries, provided mutation data for 3,846 unique clinical isolates with phenotypic resistance profiles to fluoroquinolones. The gyrA mutations occurring most frequently in fluoroquinolone-resistant isolates, ranged from 21-32% for D94G and 13-20% for A90V, by drug. Eighty seven percent of all strains that were phenotypically resistant to moxifloxacin and 83% of ofloxacin resistant isolates contained mutations in gyrA. Additionally we found that 83% and 80% of moxifloxacin and ofloxacin resistant strains respectively, were observed to have mutations in the gyrA codons interrogated by the existing MTBDRsl line probe assay. In China and Russia, 83% and 84% of fluoroquinolone resistant strains respectively, were observed to have gyrA mutations in the gene regions covered by the MTBDRsl assay. CONCLUSIONS Molecular diagnostics, specifically the Genotype MTBDRsl assay, focusing on codons 88-94 should have moderate to high sensitivity in most countries. While we did observe geographic differences in the frequencies of single gyrA mutations across countries, molecular diagnostics based on detection of all gyrA mutations demonstrated to confer resistance should have broad and global utility.
Collapse
|
21
|
Yuen CM, Rodriguez CA, Keshavjee S, Becerra MC. Map the gap: missing children with drug-resistant tuberculosis. Public Health Action 2015; 5:45-58. [PMID: 26400601 PMCID: PMC4525371 DOI: 10.5588/pha.14.0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/08/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The lack of published information about children with multidrug-resistant tuberculosis (MDR-TB) is an obstacle to efforts to advocate for better diagnostics and treatment. OBJECTIVE To describe the lack of recognition in the published literature of MDR-TB and extensively drug-resistant TB (XDR-TB) in children. DESIGN We conducted a systematic search of the literature published in countries that reported any MDR- or XDR-TB case by 2012 to identify MDR- or XDR-TB cases in adults and in children. RESULTS Of 184 countries and territories that reported any case of MDR-TB during 2005-2012, we identified adult MDR-TB cases in the published literature in 143 (78%) countries and pediatric MDR-TB cases in 78 (42%) countries. Of the 92 countries that reported any case of XDR-TB, we identified adult XDR-TB cases in the published literature in 55 (60%) countries and pediatric XDR-TB cases for 9 (10%) countries. CONCLUSION The absence of publications documenting child MDR- and XDR-TB cases in settings where MDR- and XDR-TB in adults have been reported indicates both exclusion of childhood disease from the public discourse on drug-resistant TB and likely underdetection of sick children. Our results highlight a large-scale lack of awareness about children with MDR- and XDR-TB.
Collapse
Affiliation(s)
- C. M. Yuen
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - S. Keshavjee
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Partners In Health, Boston, Massachusetts, USA
| | - M. C. Becerra
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Partners In Health, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan. PLoS One 2015; 10:e0117771. [PMID: 25719196 PMCID: PMC4342168 DOI: 10.1371/journal.pone.0117771] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.
Collapse
|
23
|
Perryman AL, Yu W, Wang X, Ekins S, Forli S, Li SG, Freundlich JS, Tonge PJ, Olson AJ. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. J Chem Inf Model 2015; 55:645-59. [PMID: 25636146 DOI: 10.1021/ci500672v] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isoniazid (INH) is usually administered to treat latent Mycobacterium tuberculosis (Mtb) infections and is used in combination therapy to treat active tuberculosis (TB). Unfortunately, resistance to this drug is hampering its clinical effectiveness. INH is a prodrug that must be activated by Mtb catalase-peroxidase (KatG) before it can inhibit InhA (Mtb enoyl-acyl-carrier-protein reductase). Isoniazid-resistant cases of TB found in clinical settings usually involve mutations in or deletion of katG, which abrogate INH activation. Compounds that inhibit InhA without requiring prior activation by KatG would not be affected by this resistance mechanism and hence would display continued potency against these drug-resistant isolates of Mtb. Virtual screening experiments versus InhA in the GO Fight Against Malaria (GO FAM) project were designed to discover new scaffolds that display base-stacking interactions with the NAD cofactor. GO FAM experiments included targets from other pathogens, including Mtb, when they had structural similarity to a malaria target. Eight of the 16 soluble compounds identified by docking against InhA plus visual inspection were modest inhibitors and did not require prior activation by KatG. The best two inhibitors discovered are both fragment-sized compounds and displayed Ki values of 54 and 59 μM, respectively. Importantly, the novel inhibitors discovered have low structural similarity to known InhA inhibitors and thus help expand the number of chemotypes on which future medicinal chemistry efforts can be focused. These new fragment hits could eventually help advance the fight against INH-resistant Mtb strains, which pose a significant global health threat.
Collapse
Affiliation(s)
- Alexander L Perryman
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | - Sean Ekins
- ⊥Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States.,#Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Stefano Forli
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | | | - Arthur J Olson
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
24
|
Kanji A, Hasan Z, Ali A, McNerney R, Mallard K, Coll F, Hill-Cawthorne G, Nair M, Clark TG, Zaver A, Jafri S, Hasan R. Characterization of genomic variations in SNPs of PE_PGRS genes reveals deletions and insertions in extensively drug resistant (XDR) M. tuberculosis strains from Pakistan. Int J Mycobacteriol 2015; 4:73-9. [PMID: 26655202 DOI: 10.1016/j.ijmyco.2014.11.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/02/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (MTB) PE_PGRS genes belong to the PE multigene family. Although the function of PE_PGRS genes is unknown, it is hypothesized that the PE_PGRS genes may be associated with antigenic variability in MTB. MATERIAL AND METHODS Whole genome sequencing analysis was performed on (n=37) extensively drug-resistant (XDR) MTB strains from Pakistan, which included Lineage 1 (East African Indian, n=2); Other lineage 1 (n=3); Lineage 3 (Central Asian, n=24); Other lineage 3 (n=4); Lineage 4 (X3, n=1) and T group (n=3) MTB strains. RESULTS There were 107 SNPs identified from the analysis of 42 PE_PGRS genes; of these, 13 were non-synonymous SNPs (nsSNPs). The nsSNPs identified in PE_PGRS genes - 6, 9 and 10 - were common in all EAI, CAS, Other lineages (1 and 3), T1 and X3. Deletions (DELs) in PE_PGRS genes - 3 and 19 - were observed in 17 (80.9%) CAS1 and 6 (85.7%) in Other lineages (1 and 3) XDR MTB strains, while DELs in the PE_PGRS49 were observed in all CAS1, CAS, CAS2 and Other lineages (1 and 3) XDR MTB strains. All CAS, EAI and Other lineages (1 and 3) strains showed insertions (INS) in PE_PGRS6 gene, while INS in the PE_PGRS genes 19 and 33 were observed in 20 (95.2%) CAS1, all CAS, CAS2, EAI and Other lineages (1 and 3) XDR MTB strains. CONCLUSION Genetic diversity in PE_PGRS genes contributes to antigenic variability and may result in increased immunogenicity of strains. This is the first study identifying variations in nsSNPs and INDELs in the PE_PGRS genes of XDR-TB strains from Pakistan. It highlights common genetic variations which may contribute to persistence.
Collapse
Affiliation(s)
| | | | - Asho Ali
- Aga Khan University, Karachi, Pakistan
| | - Ruth McNerney
- London School of Hygiene and Tropical Medicine (LSHTM), United Kingdom
| | - Kim Mallard
- London School of Hygiene and Tropical Medicine (LSHTM), United Kingdom
| | - Francesc Coll
- London School of Hygiene and Tropical Medicine (LSHTM), United Kingdom
| | - Grant Hill-Cawthorne
- Pathogen Genomics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Sydney Emerging Infections and Biosecurity Institute and School of Public Health, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Mridul Nair
- Pathogen Genomics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Taane G Clark
- London School of Hygiene and Tropical Medicine (LSHTM), United Kingdom
| | | | | | | |
Collapse
|
25
|
Zhao LL, Sun Q, Zeng CY, Chen Y, Zhao B, Liu HC, Xia Q, Zhao XQ, Jiao WW, Li GL, Wan KL. Molecular characterisation of extensively drug-resistant Mycobacterium tuberculosis isolates in China. Int J Antimicrob Agents 2014; 45:137-43. [PMID: 25465521 DOI: 10.1016/j.ijantimicag.2014.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 11/18/2022]
Abstract
The emergence of extensively drug-resistant tuberculosis (XDR-TB) in China is a great threat to TB control. To determine the molecular characterisation of XDR-TB isolates from China and the correlations between specific drug resistance-associated mutations and different genotype strains, 58 XDR-TB isolates were sequenced in eight drug loci, including katG, inhA, oxyR-ahpC intergenic region, rpoB, eis, rrs, gyrA and gyrB, and were genotyped using spoligotyping and analysis of the noise transfer function region. Compared with the phenotypic data, the sensitivities and specificities for DNA sequencing were 87.9% and 100.0% for isoniazid (INH), 91.4% and 98.3% for rifampicin (RIF), 60.4% and 100.0% for kanamycin (KAN) and 81.0% and 100.0% for ofloxacin (OFX), respectively. A combination of eight drug loci predicted XDR-TB phenotypes with 53.4% sensitivity (31/58 isolates) and 100.0% specificity. The most frequent mutations among these XDR-TB isolates were katG315 and inhA-15 (for INH), 531, 526 and 516 in rpoB (for RIF), rrs1401 and eis-10 (for KAN) and 94, 90 and 91 in gyrA (for OFX). Also, among these XDR-TB isolates, 44 (75.9%) were identified as Beijing genotype strain, of which 31 (70.5%) belonged to the modern Beijing sublineage. inhA-8, rpoB526 and rpoB531 mutations demonstrated significant statistical associations with ancient and modern Beijing family sublineage (P<0.05). However, Beijing and non-Beijing genotypes showed no association with specific resistance-conferring mutations. These results will be helpful in designing new molecular biology-based techniques to diagnose XDR-TB in China.
Collapse
Affiliation(s)
- Li-li Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, PO Box 5, Changping, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Qing Sun
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, PO Box 5, Changping, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Pathogenic Biology Institute, University of South China, Hengyang 421001, Hunan Province, China
| | - Chun-yan Zeng
- Hulunbeier People's Hospital, Hulunbeier 021000, China
| | - Yan Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, PO Box 5, Changping, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Pathogenic Biology Institute, University of South China, Hengyang 421001, Hunan Province, China
| | - Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai-can Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, PO Box 5, Changping, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Qiang Xia
- Zhejiang Prevention and Treatment Center of Tuberculosis, Zhejiang TCM & WM Hospital, Hangzhou 310003, China
| | - Xiu-qin Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, PO Box 5, Changping, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Wei-wei Jiao
- Public Central Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, China
| | - Gui-lian Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, PO Box 5, Changping, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Kang-lin Wan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, PO Box 5, Changping, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.
| |
Collapse
|
26
|
Khosravi AD, Goodarzi H, Alavi SM, Akhond MR. Application of Deletion- Targeted Multiplex PCR technique for detection of Mycobacterium tuberculosis Beijing strains in samples from tuberculosis patients. IRANIAN JOURNAL OF MICROBIOLOGY 2014; 6:330-4. [PMID: 25848523 PMCID: PMC4385573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Molecular epidemiological studies have shown that certain genotypes of Mycobacterium tuberculosis (MTB) are over-represented in limited geographical regions, suggesting of evolution of certain genotypes with increasing virulence and pathogenicity. Beijing strain of MTB was initially described by its potential to cause outbreaks worldwide and its association with drug resistance. Due to tuberculosis (TB)-related mortality which is associated with Beijing genotype, this study was designed with the aim to detect the MTB Beijing genotype in the region of study. MATERIALS AND METHODS A total of 170 clinical isolates of MTB were collected from the TB reference laboratory of Khuzestan province, Iran, over one year period from February 2010 to February 2011. Phenotypic tests were used for preliminary detection of MTB. Culture positive MTB isolates were confirmed by multiplex PCR based on IS6110 gene with subsequent screening for resistance to isoniazid (INH), and rifampin (RIF) by PCR using relevant primers. Three set of primers were used to differentiate Beijing from non-Beijing strains by using Deletion- Targeted Multiplex (DTM) PCR. RESULTS From 160 PCR-confirmed MTB isolates, 18 (11.25%) showed mutation in katG gene related to INH resistance and 20 (12.5%), associated with mutation in rpoB gene related to RIF resistance, and 8 (5%) were detected as Beijing strain using multiplex PCR. The majority of detected Beijing strains (6/8[75%]) comprised mutation in katG gene with the prevalent mutation specifically in codon 315. In 4 Beijing strains (2.5%), mutation in rpoB gene were also detected. CONCLUSION Using DTM- PCR, the rate of Beijing strains in the region of study was determined as 5%. Although for detection of MTB antimicrobial resistance, it is advised to use a combination of conventional antimicrobial susceptibility testing and molecular techniques, however for time saving, it seems that DTM-PCR, is a simple technique for use in areas of the world where Beijing strains are highly prevalent.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Goodarzi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Hamed Goodarzi, PhD, Address: Dept. of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98 61 33330074, Fax: +98 61 33332036,
| | - Seyed Mohammad Alavi
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Akhond
- Department of Statistics, Mathematical Science and Computer Faculty, Shahid Chamran University, Ahvaz, Iran
| |
Collapse
|
27
|
Dymova MA, Cherednichenko AG, Alkhovik OI, Khrapov EA, Petrenko TI, Filipenko ML. Characterization of extensively drug-resistant Mycobacterium tuberculosis isolates circulating in Siberia. BMC Infect Dis 2014; 14:478. [PMID: 25186134 PMCID: PMC4161839 DOI: 10.1186/1471-2334-14-478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 08/29/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis compromises effective control of tuberculosis (TB) in Siberia. Early identification of drug-resistant isolates is, therefore, crucial for effective treatment of this disease. The aim of this study was to conduct drug susceptibility testing and identify mutations in drug resistance genes in clinical isolates of M. tuberculosis from some TB patients presenting for treatment in Siberia. METHODS Thirty randomly selected clinical isolates of M. tuberculosis were obtained from the Novosibirsk Research Institute of Tuberculosis, Russia. Isolates were screened for drug resistance and characterized by variable number of tandem repeats (VNTR)-typing using 15 standard and four additional loci. Deligotyping on multiple large sequences was performed using 10 loci. RESULTS Twenty-nine of the isolates were assigned XDR status. Twenty-eight isolates belonged to the M. tuberculosis Beijing family, from which 11 isolates were considered the M11 type (39%), two the M2 type (7%), and one the M33 type (3%). Seventeen isolates (60.7%) from this family exhibited unique genetic patterns. The remaining two isolates belonged to the Latino-American Mediterranean family. Gene sequences (rpoB, katG, rrs, rpsL, tlyA, gidB, gyrA, gyrB) were analyzed to identify mutations that confer resistance to rifampicin, isoniazid, amikacin, kanamycin, capreomycin, and ofloxacin. The most common mutations among the XDR isolates were S531L in RpoB, S315T in KatG, various codon 94 mutations in gyrA, A90V in GyrA, K43R in RpsL, and 1401 A → G in rrs; these confer resistance to rifampicin, isoniazid, ofloxacin, streptomycin and kanamycin/capreomycin, respectively. There was high congruence between the two typing methods (VNTR typing and deligotyping) and RD105, RD149, RD152, RD181, and RD207 regions of difference were absent from the 28 Beijing family isolates. CONCLUSIONS Deligotyping can be used for rapid and reliable screening of M. tuberculosis isolates, followed by more in-depth genotyping. Identification of Beijing family isolates with extensive drug resistance confirms that such strains have epidemiological importance in Siberia. Rapid detection of mutations that lead to drug resistance should facilitate selection of effective drug therapies, and the development of early prevention strategies to combat this infection.
Collapse
Affiliation(s)
- Maya A Dymova
- />Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of The Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
- />Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Andrey G Cherednichenko
- />Ministry of Public Health and Social Development of The Russian Federation (NRIT), Novosibirsk Research Institute of Tuberculosis, Novosibirsk, Russia
| | - Olga I Alkhovik
- />Ministry of Public Health and Social Development of The Russian Federation (NRIT), Novosibirsk Research Institute of Tuberculosis, Novosibirsk, Russia
| | - Eugeny A Khrapov
- />Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of The Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Tatjana I Petrenko
- />Ministry of Public Health and Social Development of The Russian Federation (NRIT), Novosibirsk Research Institute of Tuberculosis, Novosibirsk, Russia
| | - Maxim L Filipenko
- />Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of The Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
- />Novosibirsk State University (NSU), Novosibirsk, Russia
| |
Collapse
|
28
|
Qazi O, Rahman H, Tahir Z, Qasim M, Khan S, Ahmad Anjum A, Yaqub T, Tayyab M, Ali N, Firyal S. Mutation pattern in rifampicin resistance determining region of rpoB gene in multidrug-resistant Mycobacterium tuberculosis isolates from Pakistan. Int J Mycobacteriol 2014; 3:173-7. [DOI: 10.1016/j.ijmyco.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022] Open
|
29
|
Huang Z, Li G, Chen J, Li W, Xu X, Luo Q, Xiong G, Sun J, Li J. Evaluation of MODS assay for rapid detection of Mycobacterium tuberculosis resistance to second-line drugs in a tertiary care tuberculosis hospital in China. Tuberculosis (Edinb) 2014; 94:506-10. [DOI: 10.1016/j.tube.2014.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/30/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
|
30
|
Molecular characteristics of MDR Mycobacterium tuberculosis strains isolated in Fujian, China. Tuberculosis (Edinb) 2014; 94:159-61. [DOI: 10.1016/j.tube.2013.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/07/2013] [Accepted: 03/23/2013] [Indexed: 11/23/2022]
|
31
|
Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from China. Antimicrob Agents Chemother 2014; 58:1997-2005. [PMID: 24419342 DOI: 10.1128/aac.01792-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the molecular characterization of multidrug-resistant tuberculosis (MDR-TB) isolates from China and the association of specific mutations conferring drug resistance with strains of different genotypes, we performed spoligotyping and sequenced nine loci (katG, inhA, the oxyR-ahpC intergenic region, rpoB, tlyA, eis, rrs, gyrA, and gyrB) for 128 MDR-TB isolates. Our results showed that 108 isolates (84.4%) were Beijing family strains, 64 (59.3%) of which were identified as modern Beijing strains. Compared with the phenotypic data, the sensitivity and specificity of DNA sequencing were 89.1% and 100.0%, respectively, for isoniazid (INH) resistance, 93.8% and 100.0% for rifampin (RIF) resistance, 60.0% and 99.4% for capreomycin (CAP) resistance, 84.6% and 99.4% for kanamycin (KAN) resistance, and 90.0% and 100.0% for ofloxacin (OFX) resistance. The most prevalent mutations among the MDR-TB isolates were katG315, inhA15, rpoB531, -526, and -516, rrs1401, eis-10, and gyrA94, -90, and -91. Furthermore, there was no association between specific resistance-conferring mutations and the strain genotype. These findings will be helpful for the establishment of rapid molecular diagnostic methods to be implemented in China.
Collapse
|
32
|
Tseng ST, Tai CH, Li CR, Lin CF, Shi ZY. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 48:249-55. [PMID: 24184004 DOI: 10.1016/j.jmii.2013.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/12/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND/PURPOSE The isoniazid (INH) resistance of Mycobacterium tuberculosis is caused by mutations in the katG and inhA genes encoding for catalase-peroxidase and inhA, respectively. Sequences of the katG and inhA gene of 70 isolates were analyzed to identify the mutations and to compare the mutations with their related susceptibilities. METHODS Sequences of the katG and inhA genes and the resistance profiles were analyzed for the 70 M. tuberculosis isolates, collected from nine hospitals in Taiwan during the period from 1999 to 2011. RESULTS Fifteen alleles were identified in the katG gene and two alleles were identified in the inhA gene. Among the 15 alleles identified in the katG gene, 14 alleles were found in isolates resistant to isoniazid, while only three alleles were found in isolates susceptible to isoniazid. The mutations of the katG gene and their frequencies of 41 INH-resistant isolates were Arg463Leu (51%), Ser315Thr (29%), Ser315Asn (9.8%), and other loci (22%). The sensitivity and specificity of the Ser315Thr mutation for the detection of INH-resistant isolates were 29% and 100%, respectively. The frequency of inhA gene mutation was low (2.44%) in the 41 INH-resistant isolates. CONCLUSION The diverse alleles of the katG gene associated with INH resistance are present in the M. tuberculosis isolates in Taiwan. These data may be applied to develop new probes for various alleles associated with INH resistance in order to increase the sensitivity for the detection of genetically diverse M. tuberculosis isolates in different geographic areas. The diversity of mutations can also provide information for investigating the evolutional lineages of M. tuberculosis isolates.
Collapse
Affiliation(s)
- Shu-Ting Tseng
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Hsi Tai
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Ru Li
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-Fu Lin
- Microbiology Section of the Medical Laboratory, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Zhi-Yuan Shi
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
33
|
Peñuelas-Urquides K, González-Escalante L, Villarreal-Treviño L, Silva-Ramírez B, Gutiérrez-Fuentes DJ, Mojica-Espinosa R, Rangel-Escareño C, Uribe-Figueroa L, Molina-Salinas GM, Dávila-Velderrain J, Castorena-Torres F, Bermúdez de León M, Said-Fernández S. Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis. Curr Microbiol 2013; 67:362-71. [PMID: 23649743 DOI: 10.1007/s00284-013-0376-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/28/2013] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.
Collapse
Affiliation(s)
- K Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle 2 de abril 501, Col. Independencia, 64720, Monterrey, Nuevo León, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fasih N, Rafiq Y, Jabeen K, Hasan R. High isoniazid resistance rates in rifampicin susceptible Mycobacterium tuberculosis pulmonary isolates from Pakistan. PLoS One 2012; 7:e50551. [PMID: 23226311 PMCID: PMC3511527 DOI: 10.1371/journal.pone.0050551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/25/2012] [Indexed: 11/29/2022] Open
Abstract
Background Rapid new diagnostic methods (including Xpert MTB/RIF assay) use rifampicin resistance as a surrogate marker for multidrug resistant tuberculosis. Patients infected with rifampicin susceptible strains are prescribed first line anti-tuberculosis therapy. The roll out of such methods raises a concern that strains with resistance to other first line anti-tuberculosis drugs including isoniazid will be missed and inappropriate treatment given. To evaluate implications of using such methods review of resistance data from high burden settings such as ours is essential. Objective To determine resistance to first line anti-tuberculosis drugs amongst rifampicin susceptible pulmonary Mycobacterium tuberculosis (MTB) isolates from Pakistan. Materials and Methods Data of pulmonary Mycobacterium tuberculosis strains isolated in Aga Khan University Hospital (AKUH) laboratory (2009–2011) was retrospectively analyzed. Antimicrobial susceptibility profile of rifampicin susceptible isolates was evaluated for resistance to isoniazid, pyrazinamide, ethambutol, and streptomycin. Results Pulmonary specimens submitted to AKUH from 2009 to 2011 yielded 7738 strains of Mycobacterium tuberculosis. These included 54% (n 4183) rifampicin susceptible and 46% (n: 3555) rifampicin resistant strains. Analysis of rifampicin susceptible strains showed resistance to at least one of the first line drugs in 27% (n:1133) of isolates. Overall isoniazid resistance was 15.5% (n: 649), with an isoniazid mono-resistance rate of 4% (n: 174). Combined resistance to isoniazid, pyrazinamide, and ethambutol was noted in 1% (n: 40), while resistance to isoniazid, pyrazinamide, ethambutol, and streptomycin was observed in 1.7% (n: 70) of strains. Conclusions Our data suggests that techniques (including Xpert MTB/RIF assay) relying on rifampicin susceptibility as an indicator for initiating first line therapy will not detect patients infected with MTB strains resistant to other first line drugs (including isoniazid). The roll out of these techniques must therefore be accompanied by strict monitoring ensuring early resistance detection to increase chances of improved patient outcomes.
Collapse
Affiliation(s)
- Naima Fasih
- Department of Pathology and Microbiology, Aga Khan University Hospital, Karachi, Pakistan
| | | | | | | |
Collapse
|
35
|
Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal. Tuberculosis (Edinb) 2012; 93:84-8. [PMID: 23146281 DOI: 10.1016/j.tube.2012.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 11/21/2022]
Abstract
The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global control of TB. Although molecular characterization of drug resistance-associated mutations in multidrug-resistant isolates in Nepal has been made, mutations in XDR isolates and their genotypes have not been reported previously. In this study, we identified and characterized 13 XDR Mycobacterium tuberculosis isolates from clinical isolates in Nepal. The most prevalent mutations involved in rifampicin, isoniazid, ofloxacin, and kanamycin/capreomycin resistance were Ser531Leu in rpoB gene (92.3%), Ser315Thr in katG gene (92.3%), Asp94Gly in gyrA gene (53.9%) and A1400G in rrs gene (61.5%), respectively. Spoligotyping and multilocus sequence typing revealed that 69% belonged to Beijing family, especially modern types. Further typing with 26-loci variable number of tandem repeats suggested the current spread of XDR M. tuberculosis. Our result highlights the need to reinforce the TB policy in Nepal with regard to control and detection strategies.
Collapse
|