1
|
Rodriguez-Arguello J, Lienhard K, De Grood J, Geransar R, Somayaji R, Khan D, Conly J, Ho C, Parsons L. The Use of Silver Oxynitrate Wound Dressings in the Treatment of Chronic Wounds: A Feasibility Pilot Study. Adv Skin Wound Care 2024; 37:197-202. [PMID: 38353651 DOI: 10.1097/asw.0000000000000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To evaluate the feasibility and effectiveness of a silver oxynitrate (Ag 7 NO 11 ) dressing on wound healing in patients with stalled chronic wounds. METHODS A prospective pilot study was conducted to determine the feasibility and effect of using silver oxynitrate dressings within an outpatient setting in Alberta, Canada. A total of 23 patients (12 women and 11 men; mean age, 66.1 ± 13.8 years) with a chronic wound that failed to heal with conventional treatment were included in the study. Wound assessments including the Bates-Jensen Wound Assessment Tool, wound-related pain, wound size, and patient quality of life (QoL) were conducted at baseline, after dressing application for 1 and 2 weeks, and during 4- and 12-week follow-ups. RESULTS Dressing application at 1 and 2 weeks improved patients' wound healing progression as measured through significantly decreased Bates-Jensen Wound Assessment Tool scores with a more than 10% decrease at 4- and 12-week follow-up ( P < .001). Pain ( P = .004), and QoL psyche subscore ( P = .008) significantly improved at 4-week follow-ups, although wound area, perimeter, and QoL body and everyday subscores were not significantly affected. Wound size was not significantly affected. CONCLUSIONS The silver oxynitrate dressing may improve healing progression in patients with chronic wounds, enhance patient experience by reducing wound-related pain, and improve patients' mental well-being. Further studies are warranted to elucidate the effect of silver oxynitrate dressings on wound area, perimeter, and volume measurements.
Collapse
Affiliation(s)
- Jimena Rodriguez-Arguello
- At the Ward of the 21st Century (W21C) Research and Innovation Centre, Calgary, Alberta, Canada, Jimena Rodriguez-Arguello, BHSc, is Research Assistant; Karin Lienhard, PhD, CCRP, is Research Associate; and Rose Geransar, PhD, is Research Manager. Ranjani Somayaji, MD, is Assistant Professor, University of Calgary. John Conly, MD, is Medical Director, W21C Research and Innovation Centre and Infectious Disease Physician and Professor, Cumming School of Medicine, University of Calgary. Chester Ho, MD, is Professor and Division Director, Division of Physical Medicine and Rehabilitation, University of Alberta. Laurie Parsons, MD, is Dermatologist and Medical Director, Southern Alberta Sheldon Chumir Wound Clinic, and Clinical Associate Professor, University of Calgary
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
3
|
Masadeh MM, Al-Tal Z, Khanfar MS, Alzoubi KH, Sabi SH, Masadeh MM. Synergistic Effect of Silver Nanoparticles with Antibiotics for Eradication of Pathogenic Biofilms. Curr Pharm Biotechnol 2024; 25:1884-1903. [PMID: 38231054 DOI: 10.2174/0113892010279217240102100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles (AgNP) could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms. METHODS AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes. RESULTS The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations (MBEC) ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases. CONCLUSION The present findings encourage the development of alternative therapies with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Zeinab Al-Tal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biological Sciences, Faculty of Science, The Hashemite University, Zarqa 13110, Jordan
| | - Majd M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
4
|
Li Z, Zhang S, Zuber F, Altenried S, Jaklenec A, Langer R, Ren Q. Topical application of Lactobacilli successfully eradicates Pseudomonas aeruginosa biofilms and promotes wound healing in chronic wounds. Microbes Infect 2023; 25:105176. [PMID: 37406851 DOI: 10.1016/j.micinf.2023.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Chronic wounds are difficult to treat due to the presence of biofilm which prevents wound healing. Pseudomonas aeruginosa is one of the most common pathogens found in chronic wounds and conventional treatment strategies have been ineffective in the eradication of its biofilm, without harming the surrounding healthy tissue at the same time. Here, we introduced an innovative approach applying the probiotic product Bio-K+ (containing three lactobacilli) topically as an antimicrobial and antibiofilm agent. We identified lactic acid as the main active component. While antibiotics and antiseptics such as silver-ions only demonstrated limited efficacy, Bio-K+ was able to completely eradicate mature P. aeruginosa biofilms established in an in-vitro and ex-vivo human skin model. Furthermore, it demonstrated biocompatibility in the co-culture with human dermal fibroblasts and accelerated the migration of fibroblasts in a cell migration assay promoting wound healing. To enhance clinical practicability, we introduced Bio-K+ into the hydrocolloid dressing Aquacel, achieving sustained release of lactic acid and biofilm eradication. This new treatment approach applying probiotics could represent a major improvement in the management of chronic wounds and can be extended in treating other biofilm-associated infections.
Collapse
Affiliation(s)
- Zhihao Li
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Sixuan Zhang
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Flavia Zuber
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefanie Altenried
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Qun Ren
- Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
5
|
Doherty C, Byrne CV, Baqader S, El-Chami C, McBain AJ, Thomason HA. Anti-biofilm effects and healing promotion by silver oxynitrate-based dressings. Sci Rep 2023; 13:2014. [PMID: 36737464 PMCID: PMC9898495 DOI: 10.1038/s41598-022-26856-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023] Open
Abstract
Microbial growth within a wound often manifests as biofilms, which can prevent healing and is difficult to eradicate. Novel silver dressings claim to combat wound infection, but anti-biofilm efficacy and effects on healing independent of infection are often unclear. Using in vitro and in vivo S. aureus and P. aeruginosa biofilm models, we report the efficacy of a dressing which produces Ag1+ ions; an Ag1+ dressing containing ethylenediaminetetraacetic acid and benzethonium chloride (Ag1+/EDTA/BC), and a dressing containing silver oxynitrate (Ag Oxysalts) which produces Ag1+, Ag2+ and Ag3+ ions, against wound biofilms, and their effects on healing. Ag1+ dressings had minimal effect on in vitro and murine (C57BL/6j) wound biofilms. In contrast, Ag Oxysalts and Ag1+/EDTA/BC dressings significantly reduced viable bacteria within in vitro biofilms and demonstrated a visible reduction in bacteria and EPS components within murine wound biofilms. The dressings had different effects on the healing of biofilm-infected and uninfected wounds, with Ag Oxysalts dressings having a greater beneficial effect on re-epithelialisation, wound size and inflammation than the control treatment and the other silver dressings. The different physicochemical properties of the silver dressings result in varied effects on wound biofilms and healing which should be considered when selecting dressings to treat biofilm-infected wounds.
Collapse
Affiliation(s)
- Christopher Doherty
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Charlotte V Byrne
- 3M Medical Solutions Division. King Edward Court, King Edward Road, Knutsford, Cheshire, WA16 0BE, UK
| | - Sajwa Baqader
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Community Nursing and Healthcare Department, Faculty of Nursing, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Cecile El-Chami
- School of Biological Sciences, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Helen A Thomason
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,3M Medical Solutions Division. King Edward Court, King Edward Road, Knutsford, Cheshire, WA16 0BE, UK.
| |
Collapse
|
6
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
7
|
Madajska K, Dobrzańska L, Muzioł T, Szymańska IB. Silver ionic compounds as a source of metal carriers in the gas phase. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Pormohammad A, Hansen D, Turner RJ. Antibacterial, Antibiofilm, and Antioxidant Activity of 15 Different Plant-Based Natural Compounds in Comparison with Ciprofloxacin and Gentamicin. Antibiotics (Basel) 2022; 11:1099. [PMID: 36009966 PMCID: PMC9404727 DOI: 10.3390/antibiotics11081099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Plant-based natural compounds (PBCs) are comparatively explored in this study to identify the most effective and safe antibacterial agent/s against six World Health Organization concern pathogens. Based on a contained systematic review, 11 of the most potent PBCs as antibacterial agents are included in this study. The antibacterial and antibiofilm efficacy of the included PBCs are compared with each other as well as common antibiotics (ciprofloxacin and gentamicin). The whole plants of two different strains of Cannabis sativa are extracted to compare the results with sourced ultrapure components. Out of 15 PBCs, tetrahydrocannabinol, cannabidiol, cinnamaldehyde, and carvacrol show promising antibacterial and antibiofilm efficacy. The most common antibacterial mechanisms are explored, and all of our selected PBCs utilize the same pathway for their antibacterial effects. They mostly target the bacterial cell membrane in the initial step rather than the other mechanisms. Reactive oxygen species production and targeting [Fe-S] centres in the respiratory enzymes are not found to be significant, which could be part of the explanation as to why they are not toxic to eukaryotic cells. Toxicity and antioxidant tests show that they are not only nontoxic but also have antioxidant properties in Caenorhabditis elegans as an animal model.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- C-Crest Laboratories Inc., Montreal, QC H1P 3H8, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1635-1644. [DOI: 10.1093/jac/dkac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
|
10
|
Spina CJ, Notarandrea-Alfonzo JE, Guerra ED, Goodall C, Bohle DS, Precht R. Synthesis and Structural and Spectroscopic Studies of a pH-Neutral Argentic Chelate Complex: Tribasic Silver (III) Bisperiodate. ACS OMEGA 2021; 6:27017-27025. [PMID: 34693121 PMCID: PMC8529604 DOI: 10.1021/acsomega.1c03523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The preparation of stable hypervalent metal complexes containing Ag(III) has historically been challenging due to their propensity for reduction under ambient conditions. This work explores the preparation of a tripotassium silver bisperiodate complex as a tetrahydrate via chemical oxidation of the central silver atom and orthoperiodate chelation. The isolation of the chelate complex in high yield and purity was achieved via acidimetric titration. The comprehensive physiochemical characterization of the tribasic silver bisperiodate included single crystal X-ray diffraction, thermogravimetric and differential scanning calorimetry, and infrared and ultraviolet-visible spectroscopy. Infrared and UV-visible absorption spectra (λmax 255 and 365 nm) were in good agreement with historically prepared pentabasic diperiodatoargentate chelate complexes. The C2/c monoclinic distorted square planar structure of the bis-chelate complex affords a mutually supportive framework to both Ag(III) and I(VII), conferring stability under both thermal and long-term ambient conditions. Thermal analysis of the tribasic silver bisperiodate complex identified an endothermic mass loss, ΔH = +278.35 kJ/mol, observed at 139.0 °C corresponding to a solid-state reduction of silver from Ag(III) to Ag(I). Under ambient conditions, no significant degradation was observed over a 12 month period (P = 0.30) for the silver bisperiodate complex in a solid state, with an observed half-life of τ1/2 = 147 days in a pH-neutral aqueous solution.
Collapse
Affiliation(s)
| | | | | | | | | | - Rod Precht
- Exciton
Pharma Corp, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
11
|
Mann R, Holmes A, McNeilly O, Cavaliere R, Sotiriou GA, Rice SA, Gunawan C. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance. J Nanobiotechnology 2021; 19:291. [PMID: 34579731 PMCID: PMC8474960 DOI: 10.1186/s12951-021-01027-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background Treatment of bacterial biofilms are difficult and in many cases, expensive. Bacterial biofilms are naturally more resilient to antimicrobial agents than their free-living planktonic counterparts, rendering the community growth harder to control. The present work described the risks of long-term use of an important alternative antimicrobial, silver nanoparticles (NAg), for the first time, on the dominant mode of bacterial growth. Results NAg could inhibit the formation as well as eradicating an already grown biofilm of Pseudomonas aeruginosa, a pathogen notorious for its resilience to antibiotics. The biofilm-forming bacterium however, evolved a reduced sensitivity to the nanoparticle. Evidence suggests that survival is linked to the development of persister cells within the population. A similar adaptation was also seen upon prolonged exposures to ionic silver (Ag+). The persister population resumed normal growth after subsequent passage in the absence of silver, highlighting the potential risks of recurrent infections with long-term NAg (and Ag+) treatments of biofilm growth. The present study further observed a potential silver/antibiotic cross-resistance, whereby NAg (as well as Ag+) could not eradicate an already growing gentamicin-resistant P. aeruginosa biofilm. The phenomena is thought to result from the hindered biofilm penetration of the silver species. In contrast, both silver formulations inhibited biofilm formation of the resistant strain, presenting a promising avenue for the control of biofilm-forming antibiotic-resistant bacteria. Conclusion The findings signify the importance to study the nanoparticle adaptation phenomena in the biofilm mode of bacterial growth, which are apparently unique to those already reported with the planktonic growth counterparts. This work sets the foundation for future studies in other globally significant bacterial pathogens when present as biofilms. Scientifically based strategies for management of pathogenic growth is necessary, particularly in this era of increasing antibiotic resistance. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01027-8.
Collapse
Affiliation(s)
- Riti Mann
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amy Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia
| | - Oliver McNeilly
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rosalia Cavaliere
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Scott A Rice
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Cindy Gunawan
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia. .,School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
12
|
Aazem I, Rathinam P, Pillai S, Honey G, Vengellur A, Bhat SG, Sailaja GS. Active bayerite underpinned Ag2O/Ag: An efficient antibacterial nanohybrid combating microbial contamination. Metallomics 2021; 13:6342163. [PMID: 34351413 DOI: 10.1093/mtomcs/mfab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022]
Abstract
Active surfaces with bactericidal properties are of paramount importance in health care sector as a judicious approach to confront prevalent challenges presented by disastrous pathogenic infections and antibiotic-resistant microbes. Herein, we present Bayerite underpinned Ag2O/Ag (ALD), a nanohybrid with excellent antibacterial and antibiofilm functionalities against tested standard strains and clinical isolates. The multicomponent system coexists and complement each other with respect to phase and functionalities, demonstrated by XRD, XPS and TEM analyses. In situ reduction of Ag+ ions to Ag0 over Bayerite as a stable bound phase is favoured by pH of the reaction, yielding 60-80% bound Ag protruding outwards facilitating active surface for interaction with microbes. ALD has a minimum inhibitory concentration (MIC) of 0.068 mg/mL against clinical isolates: Pseudomonas aeruginosa RRLP1, RRLP2, Acinetobactor baumannii C78 and C80. Disc diffusion assay demonstrated excellent antibacterial activity against standard strains (positive control: standard antibiotic disc, Amikacin). ALD incorporated PMMA films (5 and 10 wt%(PALD-5 and PALD-10) exhibited significant contact killing (99.9%) of clinical isolates in drop-test besides strong antibacterial activity (disc diffusion assay) comparable to that of ALD. ALD exemplified a dose (0.034 mg/mL and 0.017 mg/mL) dependent biofilm inhibition (p < 0.001) and significant eradication of pre-formed biofilms (p < 0.001) by clinical isolates. PALD 5 and PALD 10 significantly declined the number of viable biofilm associated bacteria (99.9%) compared to control. Both ALD and PALD samples are proposed as green antibacterial materials with antibiofilm properties. Results also present ample opportunity to explore PALD as antibacterial and/or antibiofilm coating formulations.
Collapse
Affiliation(s)
- Irthasa Aazem
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala-682022 - India
| | - Prasanth Rathinam
- Department of Biochemistry and Medical Biotechnology Laboratory, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, Kerala -689101, India
| | - Saju Pillai
- Material Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala-695019, India
| | - Gopinathan Honey
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - Ajith Vengellur
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala-682022 - India.,Centre for Excellence in Advanced Materials, Cochin University of Science and Technology, Kochi, Kerala-682022, India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| |
Collapse
|
13
|
Li W, Wang Y, Qi Y, Zhong D, Xie T, Yao K, Yang S, Zhou M. Cupriferous Silver Peroxysulfite Superpyramids as a Universal and Long-Lasting Agent to Eradicate Multidrug-Resistant Bacteria and Promote Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:3729-3738. [PMID: 35006803 DOI: 10.1021/acsabm.0c00889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Because of the emergent evolution of multidrug-resistant (MDR) bacteria, resistance to traditional antibiotics has been increasingly causing public health concerns that it can rapidly overcome the development of antibacterial agents. Here, we demonstrated a facile electrodeposition method to prepare silver peroxysulfite (Ag7O8HSO4, AOHS) superpyramids on band-aids with extraordinary antibacterial performance. The porous structure and the sharp apex of AOHS superpyramids could facilitate the release of high-valence silver ions, which possess highly efficient MDR bacteria-killing effect and keep long-term antibacterial activity (>99% killing efficiency, recycle at least 4 times) because of their superior destruction capability of the membrane of the bacteria. A layer of copper was further evaporated onto the AOHS pyramids decorated on a band-aid, which could promote wound tissue angiogenesis and prohibit bacterial infection simultaneously, and finally accelerate the healing process in MDR bacteria-infected wound in vivo. The simple and low-cost fabrication process, as well as the outstanding antibacterial performance, make AOHS pyramids have promising applications in bacterial infection and practical sterilization fields, especially toward multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Wanlin Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yanling Wang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuchen Qi
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Danni Zhong
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Tingting Xie
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Min Zhou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.,The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.,State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
15
|
Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). BIOFOULING 2021; 37:1-35. [PMID: 33618584 DOI: 10.1080/08927014.2020.1869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Orthopedic device related infections (ODRI's) represent a difficult to treat situation owing to their biofilm based nature. Biofilm infections once established are difficult to eradicate even with an aggressive treatment regimen due to their recalcitrance towards antibiotics and immune attack. The involvement of antibiotic resistant pathogens as the etiological agent further worsens the overall clinical picture, pressing on the need to look into alternative treatment strategies. The present review highlightes the microbiological challenges associated with treatment of ODRI's due to biofilm formation on the implant surface. Further, it details the newer anti-infective modalities that work either by preventing biofilm formation and/or through effective disruption of the mature biofilms formed on the medical implant. The study, therefore aims to provide a comprehensive insight into the newer anti-biofilm interventions (non-antibiotic approaches) and a better understanding of their mechanism of action essential for improved management of orthopedic implant infections.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Zhenwu Gao
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Zhenwei Tan
- Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China
| | - Jun Xiao
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Li Wei
- Nursing Department, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yirui Chen
- Department of Orthopedics, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Pormohammad A, Turner RJ. Silver Antibacterial Synergism Activities with Eight Other Metal(loid)-Based Antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9120853. [PMID: 33260495 PMCID: PMC7760997 DOI: 10.3390/antibiotics9120853] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
The present study surveys potential antibacterial synergism effects of silver nitrate with eight other metal or metalloid-based antimicrobials (MBAs), including silver nitrate, copper (II) sulfate, gallium (III) nitrate, nickel sulfate, hydrogen tetrachloroaurate (III) trihydrate (gold), aluminum sulfate, sodium selenite, potassium tellurite, and zinc sulfate. Bacteriostatic and bactericidal susceptibility testing explored antibacterial synergism potency of 5760 combinations of MBAs against three bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) in three different media. Silver nitrate in combination with potassium tellurite, zinc sulfate, and tetrachloroaurate trihydrate had remarkable bactericidal and bacteriostatic synergism effects. Synergism properties of MBAs decreased effective antibacterial concentrations remarkably and bacterial cell count decreased by 8.72 log10 colony-forming units (CFU)/mL in E. coli, 9.8 log10 CFU/mL in S. aureus, and 12.3 log10 CFU/mL in P. aeruginosa, compared to each MBA alone. Furthermore, most of the MBA combinations inhibited the recovery of bacteria; for instance, the combination of silver nitrate–tetrachloroaurate against P. aeruginosa inhibited the recovery of bacteria, while three-fold higher concentration of silver nitrate and two-fold higher concentration of tetrachloroaurate were required for inhibition of recovery when used individually. Overall, higher synergism was typically obtained in simulated wound fluid (SWF) rather than laboratory media. Unexpectedly, the combination of A silver nitrate–potassium tellurite had antagonistic bacteriostatic effects in Luria broth (LB) media for all three strains, while the combination of silver nitrate–potassium tellurite had the highest bacteriostatic and bactericidal synergism in SWF. Here, we identify the most effective antibacterial MBAs formulated against each of the Gram-positive and Gram-negative pathogen indicator strains.
Collapse
|
17
|
The Effects of Silver Sulfadiazine on Methicillin-Resistant Staphylococcus aureus Biofilms. Microorganisms 2020; 8:microorganisms8101551. [PMID: 33050001 PMCID: PMC7600712 DOI: 10.3390/microorganisms8101551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), the most commonly detected drug-resistant microbe in hospitals, adheres to substrates and forms biofilms that are resistant to immunological responses and antimicrobial drugs. Currently, there is a need to develop alternative approaches for treating infections caused by biofilms to prevent delays in wound healing. Silver has long been used as a disinfectant, which is non-specific and has relatively low cytotoxicity. Silver sulfadiazine (SSD) is a chemical complex clinically used for the prevention of wound infections after injury. However, its effects on biofilms are still unclear. In this study, we aimed to analyze the mechanisms underlying SSD action on biofilms formed by MRSA. The antibacterial effects of SSD were a result of silver ions and not sulfadiazine. Ionized silver from SSD in culture media was lower than that from silver nitrate; however, SSD, rather than silver nitrate, eradicated mature biofilms by bacterial killing. In SSD, sulfadiazine selectively bound to biofilms, and silver ions were then liberated. Consequently, the addition of an ion-chelator reduced the bactericidal effects of SSD on biofilms. These results indicate that SSD is an effective compound for the eradication of biofilms; thus, SSD should be used for the removal of biofilms formed on wounds.
Collapse
|
18
|
Niyonshuti II, Krishnamurthi VR, Okyere D, Song L, Benamara M, Tong X, Wang Y, Chen J. Polydopamine Surface Coating Synergizes the Antimicrobial Activity of Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40067-40077. [PMID: 32794690 DOI: 10.1021/acsami.0c10517] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal nanoparticles, especially silver nanoparticles (AgNPs), have drawn increasing attention for antimicrobial applications. Most studies have emphasized on the correlations between the antibacterial potency of AgNPs and the kinetics of metallic to ionic Ag conversion, while other antimicrobial mechanisms have been underestimated. In this work, we focused on the surface effects of polydopamine (PDA) coating on the antimicrobial activity of AgNPs. A method of fast deposition of PDA was used to synthesize the PDA-AgNPs with controllable coating thickness ranging from 3 to 25 nm. The antimicrobial activities of the PDA-AgNPs were analyzed by fluorescence-based growth curve assays on Escherichia coli. The results indicated that the PDA-AgNPs exhibited significantly higher antibacterial activities than poly(vinylpyrrolidone)-passivated AgNPs (PVP-AgNPs) and PDA themselves. It was found that the PDA coating synergized with the AgNPs to prominently enhance the potency of the PDA-AgNPs against bacteria. The analysis of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy elucidated that the synergistic effects could be originated from the interaction/coordination between Ag and catechol group on the PDA coating. The synergistic effects led to increased generation of reactive oxygen species and the consequent bacterial damage. These findings demonstrated the importance of the surface effects on the antimicrobial properties of AgNPs. The underlying molecular mechanisms have shined light on the future development of more potent metal nanoparticle-based antimicrobial agents.
Collapse
Affiliation(s)
- Isabelle I Niyonshuti
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | - Deborah Okyere
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Liang Song
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mourad Benamara
- Institute of Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
19
|
Multiple Compounds Secreted by Pseudomonas aeruginosa Increase the Tolerance of Staphylococcus aureus to the Antimicrobial Metals Copper and Silver. mSystems 2020; 5:5/5/e00746-20. [PMID: 32900873 PMCID: PMC7483513 DOI: 10.1128/msystems.00746-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alternative antimicrobials, such as metals, are one of the methods currently used to help mitigate antibiotic resistance. Metal-based antimicrobials such as copper and silver are used currently both to prevent and to treat infections. Although the efficacy of these antimicrobials has been determined in single-species culture, bacteria rarely exist in a single-species group in the environment. Both Pseudomonas aeruginosa and Staphylococcus aureus are often found associated with each other in severe chronic infections displaying increased virulence and antibiotic tolerance. In this study, we determined that multiple compounds secreted by P. aeruginosa are able to increase the tolerance of S. aureus to both copper and silver. This work demonstrates the expansive chemical communication occurring in polymicrobial infections between bacteria. Metal-based antimicrobials have been used for thousands of years to treat and prevent bacterial infections. Currently, both silver and copper are used in health care and industry to prevent and treat the spread of harmful bacteria. However, like most antimicrobial agents, their efficacy against polymicrobial infections has not been fully elucidated. Coinfection with Pseudomonas aeruginosa and Staphylococcus aureus and the resulting interactions have been implicated in higher virulence, antibiotic resistance, and increased chronic infections. Here, the influence of secreted compounds from P. aeruginosa on metal antimicrobial tolerance in S. aureus was examined. This study determined that multiple compounds from P. aeruginosa increase the tolerance of S. aureus to copper and/or silver when cultured in simulated wound fluid. The presence of these secreted compounds from P. aeruginosa during exposure of S. aureus to copper or silver increased the MIC from 500 μM to 2,000 μM for copper and 16 to 63 μM for silver. The contribution of specific compounds to S. aureus tolerance was determined using gene deletion and disruption mutants, and metabolite analysis. Compounds identified as potential contributors were then individually added to S. aureus during metal exposure. Copper tolerance in S. aureus was found to be increased by amino acids and dihydroaeruginoate (Dha) secreted by P. aeruginosa. The silver tolerance provided to S. aureus was influenced only by two amino acids, serine and threonine, as well as the Pseudomonas quinolone signal (PQS) molecules from P. aeruginosa. IMPORTANCE Alternative antimicrobials, such as metals, are one of the methods currently used to help mitigate antibiotic resistance. Metal-based antimicrobials such as copper and silver are used currently both to prevent and to treat infections. Although the efficacy of these antimicrobials has been determined in single-species culture, bacteria rarely exist in a single-species group in the environment. Both Pseudomonas aeruginosa and Staphylococcus aureus are often found associated with each other in severe chronic infections displaying increased virulence and antibiotic tolerance. In this study, we determined that multiple compounds secreted by P. aeruginosa are able to increase the tolerance of S. aureus to both copper and silver. This work demonstrates the expansive chemical communication occurring in polymicrobial infections between bacteria.
Collapse
|
20
|
Spina CJ, Notarandrea-Alfonzo J, Hay M, Ladhani R, Huszczynski S, Khursigara C, Precht R. Silver oxynitrate gel formulation for enhanced stability and antibiofilm efficacy. Int J Pharm 2020; 580:119197. [PMID: 32145339 DOI: 10.1016/j.ijpharm.2020.119197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/15/2022]
Abstract
Topical semi-solid formulations are ubiquitous in personal care and pharmaceutical applications. For centuries, these topical formulations have facilitated delivery of active ingredients such as botanical oils, medicinal extracts and more recently antibiotics and biologics. Numerous strategies exist for the stabilization and release of these active ingredients from semi-solid formulations, namely, inclusion of anti-oxidants and surfactants to extend shelf life and facilitate delivery respectively. However, in the instance where the active ingredient itself is an oxidizing agent, traditional strategies for formulation have limited utility. Recent evidence has highlighted the exceptional efficacy and safety of highly oxidizing silver compounds, containing Ag2+ and Ag3+. These higher oxidation states of silver provide antimicrobial and antibiofilm activity without impairing healing. However, as strong oxidizing agents, their application in medical device and pharmaceutical formulations such as semi-solid formulations are limited. The present study reports on the development of a silicone-based gel formulation of silver oxynitrate (Ag7NO11), a higher oxidation state silver complex. In this study the chemical stability of silver oxynitrate was examined through solid state characterization with X-ray diffraction, formulation stability and microstructure of the semi-solid gel evaluated through various rheological techniques, therapeutic functionality of the semi-solid formulation investigated through in-vitro planktonic and biofilm antimicrobial studies, and biocompatibility assessed though in-vitro mammalian fibroblast and in-vivo porcine wound healing models. Enhanced stability of silver oxynitrate within the semi-solid formulation was observed over a four-month X-ray diffraction study. At the end of the study, silver oxynitrate was identified as the principal diffraction pattern in the semi-solid formulation where argentic oxide diffraction peaks were observed to be dominant in silver oxynitrate powders alone. Viscoelastic or gel-like behavior of the formulation was observed under dynamic rheological study where the storage modulus (G' = 1.77 ± 0.02 × 104 Pa) significantly exceeded the loss modulus (G″ = 4.89 ± 3.72 × 102 Pa) (p < 0.0001). No significant (p = 0.84) change was observed in the apparent viscous response within the last three months of the study period indicative that the formulation approached a steady rheological state. The silver oxynitrate semi-solid formulation provided sustained in-vitro antimicrobial activity (>99.99% kill) over seven days with a significant reduction in biofilm within 6 h (p < 0.001). In-vitro mammalian fibroblast studies demonstrated the formulation to be non-cytotoxic and 100% epithelialization was observed within a six-day in-vivo porcine deep partial-thickness wound. The improved chemical stability, biocompatibility and efficacy results indicate that silicone gel semi-solid formulation may be a promising medicinal configuration to facilitate expansion of the clinical use of silver oxynitrate.
Collapse
Affiliation(s)
| | | | - Michelle Hay
- Exciton Technologies Incorporation, Edmonton, AB T5J 4P6, Canada
| | - Roohee Ladhani
- Exciton Technologies Incorporation, Edmonton, AB T5J 4P6, Canada
| | | | | | - Rod Precht
- Exciton Technologies Incorporation, Edmonton, AB T5J 4P6, Canada
| |
Collapse
|
21
|
Directed Silica Co-Deposition by Highly Oxidized Silver: Enhanced Stability and Versatility of Silver Oxynitrate. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Novel silver compounds in higher oxidation states, Ag (II) and Ag (III), have emerged as desirable alternatives to existing forms of antimicrobial silver compounds. Offering enhanced efficacy without sacrificing biocompatibility. Unique physiochemical characteristics associated with higher oxidation state silver confer desirable therapeutic traits. However, these same characteristics create challenges in terms of long-term stability and chemical compatibility with conventional biomedical materials. Core-shell methodologies, utilizing silica as a mesoporous or amorphous shell, have been adopted to enhance the stability of reactive active ingredients or cores. These methodologies commonly utilize controlled condensation of silicic acids in non-aqueous media by way of hydrolyzing alkyl silicates: the Stöber process or modified processes thereof. However, these strategies are not conducive to cores of higher oxidation state silver wherein hydroxyl organic precursors and by-products are incompatible with strong oxidizing agents. Addressing these challenges, we present a strategy herein for the preparation of a self-directed silver oxynitrate-silica, Ag7NO11:SiO2, framework. The method described utilizes pH gradients generated from the oxidation reaction of soluble silver, Ag (I), with a strong oxidizing agent/alkaline silicate media to facilitate spatial control over the protonation and subsequent condensation of silicic acid from aqueous solution. The resulting Ag7NO11:SiO2 framework confers enhanced long term and thermal stability to silver oxynitrate without impairing aqueous degradation profiles or subsequent antimicrobial and antibiofilm activities.
Collapse
|
22
|
Pellissery AJ, Vinayamohan PG, Yin HB, Mooyottu S, Venkitanarayanan K. In vitro efficacy of sodium selenite in reducing toxin production, spore outgrowth and antibiotic resistance in hypervirulent Clostridium difficile. J Med Microbiol 2019; 68:1118-1128. [PMID: 31172910 DOI: 10.1099/jmm.0.001008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study investigated the efficacy of the essential mineral, selenium (sodium selenite), in reducing the toxin production, spore outgrowth and antibiotic resistance of Clostridium difficile in vitro. METHODOLOGY Two hypervirulent C. difficile isolates were cultured in brain heart infusion broth with and without a sub-minimum inhibitory concentration (sub-MIC) of sodium selenite, and the supernatant and bacterial pellet were harvested for total toxin quantitation and RT-qPCR analysis of toxin-encoding genes, respectively. Additionally, C. difficile isolates were cultured in brain heart infusion broth containing 0.5 or 1× the minimum inhibitory concentration (MIC) of either ciprofloxacin or vancomycin with or without sub-MICs of sodium selenite. Further, the effect of sodium selenite on C. difficile germination and spore outgrowth was also determined by exposing C. difficile spores to a sub-MIC of sodium selenite in a germination medium and measuring the germination and outgrowth by measuring the optical density at 600 nm. RESULTS Sodium selenite significantly reduced C. difficile toxin synthesis, cytotoxicity and spore outgrowth. Further, the expression of the toxin production genes, tcdA and tcdB, was downregulated in the presence of sodium selenite, while sodium selenite significantly increased the sensitivity of C. difficile to ciprofloxacin , but not vancomycin, as revealed by decreased bacterial growth in samples containing ciprofloxacin+selenium compared to the antibiotic control. Although the sub-MIC of sodium selenite did not inhibit spore germination, it was capable of completely inhibiting spore outgrowth. CONCLUSION Our results suggest that sodium selenite could potentially be used to control C. difficile and indicate that future in vivo studies are warranted.
Collapse
Affiliation(s)
| | | | | | - Shankumar Mooyottu
- Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
23
|
Gugala N, Vu D, Parkins MD, Turner RJ. Specificity in the Susceptibilities of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus Clinical Isolates to Six Metal Antimicrobials. Antibiotics (Basel) 2019; 8:antibiotics8020051. [PMID: 31052359 PMCID: PMC6627307 DOI: 10.3390/antibiotics8020051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
In response to the occurrence of antibiotic resistance, there has been rapid developments in the field of metal-based antimicrobials. Although it is largely assumed that metals provide broad-spectrum microbial efficacy, studies have shown that this is not always the case. Therefore, in this study, we compared the susceptibilities of 93 clinical isolates belonging to the species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus against six metals, namely aluminum, copper, gallium, nickel, silver and zinc. To provide qualitative comparative information, the resulting zones of growth inhibition were compared to the minimal inhibitory concentrations of three indicator strains E. coli ATCC 25922, P. aeruginosa ATCC 27853 and S. aureus ATCC 25923. Here, we demonstrate that the metal efficacies were species- and isolate-specific. Only several isolates were either resistant or sensitive to all of the six metals, with great variability found between isolates. However, the greatest degree of similarity was found with the E. coli isolates. In contrast, the susceptibilities of the remaining two collections, S. aureus and P. aeruginosa, were more highly dispersed. Using this information, we have shown that metals are not equal in their efficacies. Hence, their use should be tailored against a particular microorganism and care should be taken to ensure the use of the correct concentration.
Collapse
Affiliation(s)
- Natalie Gugala
- Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada.
| | - Dennis Vu
- Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada.
| | - Michael D Parkins
- Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, Canada.
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
24
|
Abstract
Silver is added to an array of commercially available healthcare products including wound dressings. However, overuse of silver is being raised as a potential health concern due to the possible selection of tolerant or resistant bacteria and as a factor that may induce cross resistance to antibiotics. To date, there are only a limited number of studies that have documented evidence of silver resistance in bacteria isolated from medical situations. These studies have indicated low levels of silver resistance in bacteria. However, in comparison to antibiotics, only a small number of studies have been undertaken to investigate silver resistance. It is clear that more studies are required to confirm the most effective therapeutic levels of silver that are needed to kill microbes. In addition, it is probable that sub-therapeutic levels of silver may potentially select for enhanced microbial tolerance. Nevertheless, to date, there still remains very little evidence that silver resistance is a growing health concern in wound care; more studies are clearly needed to substantiate this concern, which has not been observed clinically to any major degree. The issue of biofilm tolerance to silver is more complicated and data on the effect of silver on biofilms is sparse at present.
Collapse
Affiliation(s)
- Steven L Percival
- a R&D Department, Centre of Excellence in Biofilm Science (CEBS) , 5D Health Protection Group Ltd , Liverpool Bio-Innovation Hub , Liverpool , UK
| | - Anne-Marie Salisbury
- a R&D Department, Centre of Excellence in Biofilm Science (CEBS) , 5D Health Protection Group Ltd , Liverpool Bio-Innovation Hub , Liverpool , UK
| | - Rui Chen
- a R&D Department, Centre of Excellence in Biofilm Science (CEBS) , 5D Health Protection Group Ltd , Liverpool Bio-Innovation Hub , Liverpool , UK
| |
Collapse
|
25
|
Medici S, Peana M, Nurchi VM, Zoroddu MA. Medical Uses of Silver: History, Myths, and Scientific Evidence. J Med Chem 2019; 62:5923-5943. [DOI: 10.1021/acs.jmedchem.8b01439] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Valeria M. Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | | |
Collapse
|
26
|
Enhanced aqueous stability of silver oxynitrate through surface modification with alkanethiols. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Gugala N, Lemire J, Chatfield-Reed K, Yan Y, Chua G, Turner RJ. Using a Chemical Genetic Screen to Enhance Our Understanding of the Antibacterial Properties of Silver. Genes (Basel) 2018; 9:E344. [PMID: 29986482 PMCID: PMC6071238 DOI: 10.3390/genes9070344] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022] Open
Abstract
It is essential to understand the mechanisms by which a toxicant is capable of poisoning the bacterial cell. The mechanism of action of many biocides and toxins, including numerous ubiquitous compounds, is not fully understood. For example, despite the widespread clinical and commercial use of silver (Ag), the mechanisms describing how this metal poisons bacterial cells remains incomplete. To advance our understanding surrounding the antimicrobial action of Ag, we performed a chemical genetic screen of a mutant library of Escherichia coli—the Keio collection, in order to identify Ag sensitive or resistant deletion strains. Indeed, our findings corroborate many previously established mechanisms that describe the antibacterial effects of Ag, such as the disruption of iron-sulfur clusters containing proteins and certain cellular redox enzymes. However, the data presented here demonstrates that the activity of Ag within the bacterial cell is more extensive, encompassing genes involved in cell wall maintenance, quinone metabolism and sulfur assimilation. Altogether, this study provides further insight into the antimicrobial mechanism of Ag and the physiological adaption of E. coli to this metal.
Collapse
Affiliation(s)
- Natalie Gugala
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Joe Lemire
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Kate Chatfield-Reed
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Ying Yan
- Department of Mathematics and Statistics, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Gordon Chua
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
28
|
De Leersnyder I, De Gelder L, Van Driessche I, Vermeir P. Influence of growth media components on the antibacterial effect of silver ions on Bacillus subtilis in a liquid growth medium. Sci Rep 2018; 8:9325. [PMID: 29921908 PMCID: PMC6008294 DOI: 10.1038/s41598-018-27540-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Numerous studies have investigated the antibacterial effect of both silver ions and silver nanomaterials on a large diversity of environmentally and clinically relevant bacteria. However, contradictory results are reported in which inhibition concentrations were varying by a 10-fold. This study investigated whether this variance in results could be attributed to the difference in experimental conditions, especially the microbial growth medium. B. subtilis was exposed to 500 µg L-1 Ag+ in liquid growth media with different concentrations of some commonly used media components: tryptone, yeast extract, Cl-, and S2-. The toxic effect was investigated by means of three complementary analysis techniques: (i) analyzing the growth curves obtained by optical density measurements, (ii) using flow cytometry, and (iii) by transmission electron microscopy. The silver ion toxicity towards B. subtilis decreased as more tryptone, yeast extract, or S2- was present. This study demonstrates that the medium composition, rarely acknowledged as an important experimental factor in bacterial toxicity studies, has a profound impact on the observed silver toxicity towards B. subtilis.
Collapse
Affiliation(s)
- Ilse De Leersnyder
- Department of Green Chemistry and Technology, Laboratory of Chemical Analysis (LCA), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Leen De Gelder
- Department of Biotechnology, Laboratory for Environmental Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Isabel Van Driessche
- Department of Inorganic and Physical Chemistry, Sol-gel Center for Research on Inorganic Powders and Thin film Synthesis (SCRiPTS), Faculty of Science, Ghent University, Ghent, Belgium
| | - Pieter Vermeir
- Department of Green Chemistry and Technology, Laboratory of Chemical Analysis (LCA), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Thomason HA, Lovett JM, Spina CJ, Stephenson C, McBain AJ, Hardman MJ. Silver oxysalts promote cutaneous wound healing independent of infection. Wound Repair Regen 2018. [DOI: 10.1111/wrr.12627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Helen A. Thomason
- Crawford Healthcare Ltd.; Knutsford Cheshire United Kingdom
- Faculty of Biology, Medicine and Health; The University of Manchester; Manchester United Kingdom
| | | | | | | | - Andrew J. McBain
- Faculty of Biology, Medicine and Health; The University of Manchester; Manchester United Kingdom
| | | |
Collapse
|
30
|
Panico A, Paladini F, Pollini M. Development of regenerative and flexible fibroin‐based wound dressings. J Biomed Mater Res B Appl Biomater 2018; 107:7-18. [DOI: 10.1002/jbm.b.34090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Angelica Panico
- Department of Engineering for InnovationUniversity of SalentoLecce Italy
| | - Federica Paladini
- Department of Engineering for InnovationUniversity of SalentoLecce Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECHLecce, Italy
- CNR NANOTEC‐Institute of Nanotechnology c/o Campus EcotekneLecce Italy
| | - Mauro Pollini
- Department of Engineering for InnovationUniversity of SalentoLecce Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECHLecce, Italy
- CNR NANOTEC‐Institute of Nanotechnology c/o Campus EcotekneLecce Italy
| |
Collapse
|
31
|
Abstract
Microbial biofilms, which are elaborate and highly resistant microbial aggregates formed on surfaces or medical devices, cause two-thirds of infections and constitute a serious threat to public health. Immunocompromised patients, individuals who require implanted devices, artificial limbs, organ transplants, or external life support and those with major injuries or burns, are particularly prone to become infected. Antibiotics, the mainstay treatments of bacterial infections, have often proven ineffective in the fight against microbes when growing as biofilms, and to date, no antibiotic has been developed for use against biofilm infections. Antibiotic resistance is rising, but biofilm-mediated multidrug resistance transcends this in being adaptive and broad spectrum and dependent on the biofilm growth state of organisms. Therefore, the treatment of biofilms requires drug developers to start thinking outside the constricted "antibiotics" box and to find alternative ways to target biofilm infections. Here, we highlight recent approaches for combating biofilms focusing on the eradication of preformed biofilms, including electrochemical methods, promising antibiofilm compounds and the recent progress in drug delivery strategies to enhance the bioavailability and potency of antibiofilm agents.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sarah C. Mansour
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
32
|
Mazzei L, Cianci M, Gonzalez Vara A, Ciurli S. The structure of urease inactivated by Ag(i): a new paradigm for enzyme inhibition by heavy metals. Dalton Trans 2018; 47:8240-8247. [DOI: 10.1039/c8dt01190g] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular details of the inactivation of urease, a nickel-dependent virulence factor for human pathogens and negatively affecting the efficiency of soil nitrogen fertilization, are elucidated through the crystal structure of the enzyme complex with Ag(i).
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- I-40127 Bologna
- Italy
| | - Michele Cianci
- Department of Agricultural
- Food and Environmental Sciences
- Marche Polytechnic University
- Ancona
- Italy
| | | | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- I-40127 Bologna
- Italy
| |
Collapse
|
33
|
Kalan L, Zhou M, Labbie M, Willing B. Measuring the microbiome of chronic wounds with use of a topical antimicrobial dressing - A feasibility study. PLoS One 2017; 12:e0187728. [PMID: 29155834 PMCID: PMC5695787 DOI: 10.1371/journal.pone.0187728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Polymicrobial communities colonize all wounds, and biofilms are hypothesized to be a key link to the chronic state and stalled healing. Molecular methods offer greater insight when studying microbial ecology in chronic wounds, as only a small fraction of wound bacteria are cultured by currently available methods and studies have shown little agreement between culture and molecular based approaches. Some interventions, like dressings with oxidized silver, are reported to help the stalled wounds move to a normal healing trajectory but the underlying mechanisms are difficult to measure. One hypothesis is that the use of topical antimicrobial dressings targets the wound microbiome and reduces bioburden. OBJECTIVES Our objective was to determine if culture-independent molecular methods could be used to identify the microbial composition in chronic wounds, and measure the microbiome over time when a topical antimicrobial dressing is used to reduce bioburden. METHODS Patients with chronic wounds defined as >6 weeks in duration and not taking systemic antibiotics were recruited to participate. A wound contact layer containing silver oxynitrate was applied immediately after routine sharp debridement material was collected and swabs of the wound bed taken. Next-generation sequencing of the bacterial 16S rRNA gene in each specimen was used to measure the microbiome. RESULTS Distinct bacterial communities were observed between swab and debridement samples, highlighting spatial differences and the importance of sampling consistency. The microbial communities appeared to be similar between different diabetes statuses, but different among the three wound categories included. CONCLUSIONS Culture-independent methods can be applied to measure the microbiome of chronic wounds even when a topical antimicrobial dressing is applied to the wound.
Collapse
Affiliation(s)
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - Benjamin Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Lemire JA, Kalan L, Gugala N, Bradu A, Turner RJ. Silver oxynitrate - an efficacious compound for the prevention and eradication of dual-species biofilms. BIOFOULING 2017; 33:460-469. [PMID: 28521545 DOI: 10.1080/08927014.2017.1322586] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Preventing and eradicating biofilms remains a challenge in clinical and industrial settings. Recently, the present authors demonstrated that silver oxynitrate (Ag7NO11) prevented and eradicated single-species planktonic and biofilm populations of numerous microbes at lower concentrations than other silver (Ag) compounds. Here, the antimicrobial and anti-biofilm efficacy of Ag7NO11 is elaborated by testing its in vitro activity against combinations of dual-species, planktonic and biofilm populations of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. As further evidence emerges that multispecies bacterial communities are more common in the environment than their single-species counterparts, this study reinforces the diverse applicability of the minimal biofilm eradication concentration (MBEC™) assay for testing antimicrobial compounds against biofilms. Furthermore, this study demonstrated that Ag7NO11 had enhanced antimicrobial and anti-biofilm activity compared to copper sulfate (CuSO4) and silver nitrate (AgNO3) against the tested bacterial species.
Collapse
Affiliation(s)
- Joe A Lemire
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | | | - Natalie Gugala
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | - Alexandru Bradu
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | - Raymond J Turner
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| |
Collapse
|
35
|
Kalan LR, Pepin DM, Ul-Haq I, Miller SB, Hay ME, Precht RJ. Targeting biofilms of multidrug-resistant bacteria with silver oxynitrate. Int J Antimicrob Agents 2017; 49:719-726. [PMID: 28390963 DOI: 10.1016/j.ijantimicag.2017.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/16/2017] [Accepted: 01/22/2017] [Indexed: 11/16/2022]
Abstract
A topical antimicrobial, silver oxynitrate (Ag7NO11), has recently become available that exploits the antimicrobial activity of ionic silver but has enhanced activity because highly oxidised silver atoms are stabilised with oxygen in a unique chemical formulation. The objective of this study was to use a multifaceted approach to characterise the spectrum of antimicrobial and antibiofilm activity of a wound dressing coated with Ag7NO11 at a concentration of 0.4 mg Ag/cm2. Physiochemical properties that influence efficacy were also evaluated, and Ag7NO11 was found to release a high level of Ag ions, including Ag2+ and Ag3+, without influencing the pH of the medium. Time-kill analysis demonstrated that a panel of multidrug-resistant pathogens isolated from wound specimens remained susceptible to Ag7NO11 over a period of 7 days, even with repeated inoculations of 1 × 106 CFU/mL to the dressing. Furthermore, established 72-h-old biofilms of Pseudomonas aeruginosa, Staphylococcus aureus and two carbapenem-resistant Gram-negative bacteria (blaNDM-1-positive Klebsiella pneumoniae and blaVIM-2-positive P. aeruginosa) were disrupted and eradicated by Ag7NO11 in vitro. Ag7NO11 is a proprietary compound that exploits novel Ag chemistry and can be considered a new class of topical antimicrobial agent. Biocompatibility testing has concluded Ag7NO11 to be non-toxic for cytotoxicity, acute systemic toxicity, irritation and sensitisation.
Collapse
Affiliation(s)
- Lindsay R Kalan
- Exciton Technologies Inc., Suite 4000, 10230 Jasper Avenue, Edmonton, Alberta T5J 4P6, Canada.
| | - Deanna M Pepin
- Exciton Technologies Inc., Suite 4000, 10230 Jasper Avenue, Edmonton, Alberta T5J 4P6, Canada
| | - Imran Ul-Haq
- Exciton Technologies Inc., Suite 4000, 10230 Jasper Avenue, Edmonton, Alberta T5J 4P6, Canada
| | - Steve B Miller
- Exciton Technologies Inc., Suite 4000, 10230 Jasper Avenue, Edmonton, Alberta T5J 4P6, Canada
| | - Michelle E Hay
- Exciton Technologies Inc., Suite 4000, 10230 Jasper Avenue, Edmonton, Alberta T5J 4P6, Canada
| | - Roderick J Precht
- Exciton Technologies Inc., Suite 4000, 10230 Jasper Avenue, Edmonton, Alberta T5J 4P6, Canada
| |
Collapse
|
36
|
Gugala N, Lemire JA, Turner RJ. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains. J Antibiot (Tokyo) 2017; 70:775-780. [PMID: 28196974 DOI: 10.1038/ja.2017.10] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
Abstract
The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.
Collapse
Affiliation(s)
- Natalie Gugala
- The Biofilm Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joe A Lemire
- The Biofilm Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Raymond J Turner
- The Biofilm Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
37
|
Surendran-Nair M, Kollanoor-Johny A, Ananda-Baskaran S, Norris C, Lee JY, Venkitanarayanan K. Selenium reduces enterohemorrhagic Escherichia coli O157:H7 verotoxin production and globotriaosylceramide receptor expression on host cells. Future Microbiol 2016; 11:745-56. [DOI: 10.2217/fmb.16.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigated the efficacy of selenium (Se) in reducing Escherichia coli O157:H7 verotoxin production and toxin gene expression. Additionally, the effect of Se on globotriaosylceramide (Gb3) receptor in human lymphoma cells was determined. Materials & methods: The effect of Se on verotoxin synthesis was determined by standard ELISA, whereas its effect on Gb3 receptor was determined by flow cytometry and real-time quantitative PCR. Results & conclusions: Se reduced extracellular and intracellular verotoxin concentration by 40–60% and 80–90%, respectively (p < 0.05), and downregulated verotoxin genes (p < 0.05). Se reduced Gb3 receptor synthesis in lymphoma cells, and real-time quantitative PCR data revealed a significant downregulation of LacCer synthase gene (GalT2) involved in Gb3 synthesis. Further studies are warranted to validate these results in an appropriate animal model.
Collapse
Affiliation(s)
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Animal Science, University of Minnesota, St Paul, MN, USA
| | | | - Carol Norris
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
38
|
Kuehl R, Brunetto PS, Woischnig AK, Varisco M, Rajacic Z, Vosbeck J, Terracciano L, Fromm KM, Khanna N. Preventing Implant-Associated Infections by Silver Coating. Antimicrob Agents Chemother 2016; 60:2467-75. [PMID: 26883700 PMCID: PMC4808148 DOI: 10.1128/aac.02934-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/04/2016] [Indexed: 01/22/2023] Open
Abstract
Implant-associated infections (IAIs) are a dreaded complication mainly caused by biofilm-forming staphylococci. Implant surfaces preventing microbial colonization would be desirable. We examined the preventive effect of a silver-coated titanium-aluminum-niobium (TiAlNb) alloy. The surface elicited a strong, inoculum-dependent activity againstStaphylococcus epidermidisandStaphylococcus aureusin an agar inhibition assay. Gamma sterilization and alcohol disinfection did not alter the effect. In a tissue cage mouse model, silver coating of TiAlNb cages prevented perioperative infections in an inoculum-dependent manner and led to a 100% prevention rate after challenge with 2 × 10(6)CFU ofS. epidermidisper cage. InS. aureusinfections, silver coating had only limited effect. Similarly, daptomycin or vancomycin prophylaxis alone did not preventS. aureusinfections. However, silver coating combined with daptomycin or vancomycin prophylaxis thwarted methicillin-resistantS. aureusinfections at a prevention rate of 100% or 33%, respectively. Moreover, silver release from the surface was independent of infection and occurred rapidly after implantation. On day 2, a peak of 82 μg Ag/ml was reached in the cage fluid, corresponding to almost 6× the MIC of the staphylococci. Cytotoxicity toward leukocytes in the cage was low and temporary. Surrounding tissue did not reveal histological signs of silver toxicity.In vitro, no emergence of silver resistance was observed in several clinical strains of staphylococci upon serial subinhibitory silver exposures. In conclusion, our data demonstrate that silver-coated TiAlNb is potent for prevention of IAIs and thus can be considered for clinical application.
Collapse
Affiliation(s)
- Richard Kuehl
- Infection Biology Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | | | - Anne-Kathrin Woischnig
- Infection Biology Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Massimo Varisco
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Zarko Rajacic
- Infection Biology Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Juerg Vosbeck
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Nina Khanna
- Infection Biology Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
39
|
Moriarty TF, Kuehl R, Coenye T, Metsemakers WJ, Morgenstern M, Schwarz EM, Riool M, Zaat SA, Khana N, Kates SL, Richards RG. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016; 1:89-99. [PMID: 28461934 PMCID: PMC5367564 DOI: 10.1302/2058-5241.1.000037] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Orthopaedic and trauma device-related infection (ODRI) remains one of the major complications in modern trauma and orthopaedic surgery.Despite best practice in medical and surgical management, neither prophylaxis nor treatment of ODRI is effective in all cases, leading to infections that negatively impact clinical outcome and significantly increase healthcare expenditure.The following review summarises the microbiological profile of modern ODRI, the impact antibiotic resistance has on treatment outcomes, and some of the principles and weaknesses of the current systemic and local antibiotic delivery strategies.The emerging novel strategies aimed at preventing or treating ODRI will be reviewed. Particular attention will be paid to the potential for clinical impact in the coming decades, when such interventions are likely to be critically important.The review focuses on this problem from an interdisciplinary perspective, including basic science innovations and best practice in infectious disease. Cite this article: Moriarty TF, Kuehl R, Coenye T, et al. Orthopaedic device related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016;1:89-99. DOI: 10.1302/2058-5241.1.000037.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nina Khana
- University Hospital of Basel, Switzerland
| | | | | |
Collapse
|