1
|
Zhanel GG, Kosar J, Baxter M, Dhami R, Borgia S, Irfan N, Dow G, Dube M, von den Baumen TR, Tascini C, Lee A, Chagla Z, Girouard G, Bourassa-Blanchette S, Wu M, Keynan Y, Walkty A, Karlowsky JA. How is ceftobiprole used in Canada: the CLEAR study final results. Expert Rev Anti Infect Ther 2024; 22:681-688. [PMID: 39008122 DOI: 10.1080/14787210.2024.2374280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND We report the final results of the clinical usage of ceftobiprole in patients in Canada from data in the national CLEAR (Canadian Le adership on Antimicrobial Real-Life Usage) registry. RESEARCH DESIGN AND METHODS The authors review the final data using the national ethics approved CLEAR study. Thereafter, the literature is surveyed regarding the usage of ceftobiprole to treat patients with infectious diseases via PubMed (up to March 2024). RESULTS In Canada, ceftobiprole is primarily used as directed therapy to treat a variety of severe infections caused by MRSA. It is primarily used in patients failing previous antimicrobials, is frequently added to daptomycin and/or vancomycin with high microbiological and clinical cure rates, along with an excellent safety profile. Several reports attest to the microbiological/clinical efficacy and safety of ceftobiprole. Ceftobiprole is also reported to be used empirically in select patients with community-acquired bacterial pneumonia (CABP), as well as hospital-acquired bacterial pneumonia (HABP). CONCLUSIONS In Canada, ceftobiprole is used mostly as directed therapy to treat a variety of severe infections caused by MRSA, in patients failing previous antimicrobials. It is frequently added to, and thus used in combination with daptomycin and/or vancomycin with high microbiological/clinical cure rates, and an excellent safety profile.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Justin Kosar
- Department of Pharmacy, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Melanie Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rita Dhami
- Department of Pharmacy, London Health Sciences Centre, London, Ontario, Canada
| | - Sergio Borgia
- Section of Infectious Diseases, William Osler Health System, Brampton, Ontario, Canada
| | - Neal Irfan
- Department of Pharmacy, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Gordon Dow
- Section of Infectious Diseases, Department of Medicine, The Moncton Hospital, New Brunswick, Canada
| | - Maxime Dube
- Department of Pharmacy, Sainte-Croix Hospital, Drummondville, Québec, Canada
| | | | - Carlo Tascini
- Infectious Diseases Clinic, DAME, Udine University Hospital, Udine, Italy
| | - Anna Lee
- Department of Pharmacy, Scarborough Health Network, Toronto, Ontario, Canada
| | - Zain Chagla
- Section of Infectious Diseases, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Gabriel Girouard
- Section of Infectious Diseases, Dr. Georges-L.-Dumont University Hospital, Moncton, New Brunswich, Canada
| | - Samuel Bourassa-Blanchette
- Medical Microbiology and Infectious Diseases, Memorial University of Newfoundland Faculty of Medicine, St. John's, Newfoundland, Canada
| | - May Wu
- Department of Pharmacy, Surrey Memorial Hospital, Vancouver, British Columbia, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Jean SS, Liu IM, Hsieh PC, Kuo DH, Liu YL, Hsueh PR. Off-label use versus formal recommendations of conventional and novel antibiotics for the treatment of infections caused by multidrug-resistant bacteria. Int J Antimicrob Agents 2023; 61:106763. [PMID: 36804370 DOI: 10.1016/j.ijantimicag.2023.106763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
The infections caused by multidrug- and extensively drug-resistant (MDR, XDR) bacteria, including Gram-positive cocci (GPC, including methicillin-resistant Staphylococcus aureus, MDR-Streptococcus pneumoniae and vancomycin-resistant enterococci) and Gram-negative bacilli (GNB, including carbapenem-resistant [CR] Enterobacterales, CR-Pseudomonas aeruginosa and XDR/CR-Acinetobacter baumannii complex) can be quite challenging for physicians with respect to treatment decisions. Apart from complicated urinary tract and intra-abdominal infections (cUTIs, cIAIs), bloodstream infections and pneumonia, these difficult-to-treat bacteria also cause infections at miscellaneous sites (bones, joints, native/prosthetic valves and skin structures, etc.). Antibiotics like dalbavancin, oritavancin, telavancin and daptomycin are currently approved for the treatment of acute bacterial skin and skin structural infections (ABSSSIs) caused by GPC. Additionally, ceftaroline, linezolid and tigecycline have been formally approved for the treatment of community-acquired pneumonia and ABSSSI. Cefiderocol and meropenem-vaborbactam are currently approved for the treatment of cUTIs caused by XDR-GNB. The spectra of ceftazidime-avibactam and imipenem/cilastatin-relebactam are broader than that of ceftolozane-tazobactam, but these three antibiotics are currently approved for the treatment of hospital-acquired pneumonia, cIAIs and cUTIs caused by MDR-GNB. Clinical investigations of other novel antibiotics (including cefepime-zidebactam, aztreonam-avibactam and sulbactam-durlobactam) for the treatment of various infections are ongoing. Nevertheless, evidence for adequate antibiotic regimens against osteomyelitis, arthritis and infective endocarditis due to several GPC and MDR-GNB is still mostly lacking. A comprehensive review of PubMed publications was undertaken and the formal indications and off-label use of important conventional and novel antibiotics against MDR/XDR-GPC and GNB isolates cultured from miscellaneous sites are presented in this paper.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dai-Huang Kuo
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Yi-Lien Liu
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Public Health, Taoyuan City Government, Taoyuan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
3
|
Synergistic Combinations of FDA-Approved Drugs with Ceftobiprole against Methicillin-Resistant Staphylococcus aureus. Microbiol Spectr 2023; 11:e0372622. [PMID: 36519895 PMCID: PMC9927495 DOI: 10.1128/spectrum.03726-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
New strategies are urgently needed to address the public health threat of antimicrobial resistance. Synergistic agent combinations provide one possible pathway toward addressing this need and are also of fundamental mechanistic interest. Effective methods for comprehensively identifying synergistic agent combinations are required for such efforts. In this study, an FDA-approved drug library was screened against methicillin-resistant Staphylococcus aureus (MRSA) (ATCC 43300) in the absence and presence of sub-MIC levels of ceftobiprole, a PBP2a-targeted anti-MRSA β-lactam. This screening identified numerous potential synergistic agent combinations, which were then confirmed and characterized for synergy using checkerboard analyses. The initial group of synergistic agents (sum of the minimum fractional inhibitory concentration ∑FICmin ≤0.5) were all β-lactamase-resistant β-lactams (cloxacillin, dicloxacillin, flucloxacillin, oxacillin, nafcillin, and cefotaxime). Cloxacillin-the agent with the greatest synergy with ceftobiprole-is also highly synergistic with ceftaroline, another PBP2a-targeted β-lactam. Further follow-up studies revealed a range of ceftobiprole synergies with other β-lactams, including with imipenem, meropenem, piperacillin, tazobactam, and cefoxitin. Interestingly, given that essentially all other ceftobiprole-β-lactam combinations showed synergy, ceftaroline and ceftobiprole showed no synergy. Modest to no synergy (0.5 < ∑FICmin ≤ 1.0) was observed for several non-β-lactam agents, including vancomycin, daptomycin, balofloxacin, and floxuridine. Mupirocin had antagonistic activity with ceftobiprole. Flucloxacillin appeared particularly promising, with both a low intrinsic MIC and good synergy with ceftobiprole. That so many β-lactam combinations with ceftobiprole show synergy suggests that β-lactam combinations can generally increase β-lactam effectiveness and may also be useful in reducing resistance emergence and spread in MRSA. IMPORTANCE Antimicrobial resistance represents a serious threat to public health. Antibacterial agent combinations provide a potential approach to combating this problem, and synergistic agent combinations-in which each agent enhances the antimicrobial activity of the other-are particularly valuable in this regard. Ceftobiprole is a late-generation β-lactam antibiotic developed for MRSA infections. Resistance has emerged to ceftobiprole, jeopardizing this agent's effectiveness. To identify synergistic agent combinations with ceftobiprole, an FDA-approved drug library was screened for potential synergistic combinations with ceftobiprole. This screening and follow-up studies identified numerous β-lactams with ceftobiprole synergy.
Collapse
|
4
|
Corcione S, Lupia T, De Rosa FG. Novel Cephalosporins in Septic Subjects and Severe Infections: Present Findings and Future Perspective. Front Med (Lausanne) 2021; 8:617378. [PMID: 34026774 PMCID: PMC8138473 DOI: 10.3389/fmed.2021.617378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
In past decade, cephalosporins have developed significantly, and data regarding novel cephalosporins (i.e., ceftobiprole, ceftaroline, ceftolozane/tazobactam, ceftazidime/avibactam, and cefiderocol) within septic and bacteremic subjects are rising. These compounds generally offer very promising in vitro microbiological susceptibility, although the variability among gram-negative and -positive strains of different cohorts is noticed in the literature. We require further pharmacological data to measure the best dose in order to prevent sub-therapeutic drug levels in critically ill patients. These new compounds in theory are the sparing solution in the Enterobacteriales infection group for different antimicrobial classes such as aminoglycosides notably within endovascular and GNB-bacteremias, as well as colistin and carbapenem-sparing strategies, favoring good safety profile molecules. Moreover, new cephalosporins are the basis for the actual indications to open up new and exciting prospects for serious infections in the future. In future, patients will be addressed with the desirable approach to sepsis and serious infections in terms of their clinical situation, inherent features of the host, the sensitivity profile, and local epidemiology, for which evidence of the use of new cephalosporin in the treatment of severe infections will fill the remaining gaps.
Collapse
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy.,Tufts University School of Medicine, Boston, MA, United States
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | | |
Collapse
|
5
|
Lupia T, Pallotto C, Corcione S, Boglione L, De Rosa FG. Ceftobiprole Perspective: Current and Potential Future Indications. Antibiotics (Basel) 2021; 10:170. [PMID: 33567771 PMCID: PMC7915564 DOI: 10.3390/antibiotics10020170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Ceftobiprole combines an excellent spectrum for community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP) pathogens, with a low/medium MDR risk, and the β-lactams' safety in frail patients admitted to the hospital in internal medicine wards which may be at high risk of adverse events by anti-MRSA coverage as oxazolidinones or glycopeptides. We aimed to report the available evidence regarding ceftobiprole use in pneumonia and invasive bacterial infections, shedding light on ceftobiprole stewardship. The clinical application and real-life experiences of using ceftobiprole for bloodstream infections, including infective endocarditis, are limited but nevertheless promising. In addition, extended-spectrum ceftobiprole activity, including Enterococcus faecalis, Enterobacteriaceae, and Pseudomonas aeruginosa, has theoretical advantages for use as empirical therapy in bacteremia potentially caused by a broad spectrum of microorganisms, such as catheter-related bacteremia. In the future, the desirable approach to sepsis and severe infections will be administered to patients according to their clinical situation, the intrinsic host characteristics, the susceptibility profile, and local epidemiology, while the "universal antibiotic strategy" will no longer be adequate.
Collapse
Affiliation(s)
- Tommaso Lupia
- Infectious Diseases Unit, Cardinal Massaia Hospital, 14100 Asti, Italy;
| | - Carlo Pallotto
- Infectious Diseases Unit 1, Santa Maria Annunziata Hospital, Central District, Tuscany Health Care, Bagno a Ripoli, 500012 Florence, Italy;
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10124 Turin, Italy;
- Infectious Diseases, Tufts University School of Medicine, Boston, MA 02109, USA
| | - Lucio Boglione
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Francesco Giuseppe De Rosa
- Infectious Diseases Unit, Cardinal Massaia Hospital, 14100 Asti, Italy;
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10124 Turin, Italy;
| |
Collapse
|
6
|
Zhanel GG, Kosar J, Baxter M, Dhami R, Borgia S, Irfan N, MacDonald KS, Dow G, Lagacé-Wiens P, Dube M, Bergevin M, Tascini C, Keynan Y, Walkty A, Karlowsky J. Real-life experience with ceftobiprole in Canada: Results from the CLEAR (CanadianLEadership onAntimicrobialReal-life usage) registry. J Glob Antimicrob Resist 2021; 24:335-339. [PMID: 33540083 DOI: 10.1016/j.jgar.2021.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Ceftobiprole is an advanced-generation cephalosporin with a favourable safety profile. Published data on the clinical use of ceftobiprole are limited. We report use of ceftobiprole in Canadian patients using data captured by the CLEAR registry. METHODS The CLEAR registry uses the web-based research data management program REDCap™ (online survey) to facilitate clinicians entering details associated with their clinical experiences using ceftobiprole. RESULTS Data were available for 38 patients treated with ceftobiprole. The most common infections treated were endocarditis (42.1% of patients), bone and joint infection (23.7%) and hospital-associated bacterial pneumonia (15.8%). 92.1% of patients had bacteraemia and 21.1% were in intensive care. Ceftobiprole was used because of failure of (71.1%), resistance to (18.4%) or adverse effects from (10.5%) previously prescribed antimicrobial agents. Ceftobiprole was primarily used as directed therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections (94.7% of patients). Ceftobiprole susceptibility testing was performed on isolates from 47.4% of patients. It was used concomitantly with daptomycin in 55.3% of patients and with vancomycin in 18.4% of patients. Treatment duration was primarily >10 days (65.8% of patients) with microbiological success in 97.0% and clinical success in 84.8% of patients. 2.6% of patients had gastrointestinal adverse effects. CONCLUSION In Canada to date, ceftobiprole is used as directed therapy to treat a variety of severe infections caused by MRSA. It is primarily used in patients failing previous antimicrobials, is frequently added to, and thus used in combination with daptomycin or vancomycin with high microbiological and clinical cure rates and an excellent safety profile.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Justin Kosar
- Department of Pharmacy, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Melanie Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rita Dhami
- Department of Pharmacy, London Health Sciences Centre, London, Ontario, Canada
| | - Sergio Borgia
- Section of Infectious Diseases, William Osler Health System, Brampton, Ontario, Canada
| | - Neal Irfan
- Department of Pharmacy, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Kelly S MacDonald
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gordon Dow
- Section of Infectious Diseases, Department of Medicine, The Moncton Hospital, New Brunswick, Canada
| | - Philippe Lagacé-Wiens
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maxime Dube
- Department of Pharmacy, Sainte-Croix Hospital, Drummondville, Québec, Canada
| | - Marco Bergevin
- Section of Infectious Diseases, Department of Medicine, Cité de la Santé, Montreal, Québec, Canada
| | - Carlo Tascini
- First Division of Infectious Diseases, Cotugno Hospital, Naples, Italy
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Hamed K, Engelhardt M, Jones ME, Saulay M, Holland TL, Seifert H, Fowler VG. Ceftobiprole versus daptomycin in Staphylococcus aureus bacteremia: a novel protocol for a double-blind, Phase III trial. Future Microbiol 2020; 15:35-48. [PMID: 31918579 PMCID: PMC7046132 DOI: 10.2217/fmb-2019-0332] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although Staphylococcus aureus is a common cause of bacteremia, treatment options are limited. The need for new therapies is particularly urgent for methicillin-resistant S. aureus bacteremia (SAB). Ceftobiprole is an advanced-generation, broad-spectrum cephalosporin with activity against both methicillin-susceptible and -resistant S. aureus. This is a Phase III, randomized, double-blind, active-controlled, parallel-group, multicenter, two-part study to establish the efficacy and safety of ceftobiprole compared with daptomycin in the treatment of SAB, including infective endocarditis. Anticipated enrollment is 390 hospitalized adult patients, aged ≥18 years, with confirmed or suspected complicated SAB. The primary end point is overall success rate. Target completion of the study is in the second half of 2021. Clinicaltrials.gov identifier: NCT03138733
Collapse
Affiliation(s)
- Kamal Hamed
- Basilea Pharmaceutica International Ltd, Basel, Switzerland
| | | | - Mark E Jones
- Basilea Pharmaceutica International Ltd, Basel, Switzerland
| | - Mikael Saulay
- Basilea Pharmaceutica International Ltd, Basel, Switzerland
| | - Thomas L Holland
- Department of Medicine, Duke University Medical Center & Duke Clinical Research Institute, Durham, NC, USA
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology & Hygiene, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Vance G Fowler
- Department of Medicine, Duke University Medical Center & Duke Clinical Research Institute, Durham, NC, USA
| |
Collapse
|
8
|
Ceftobripole: Experience in staphylococcal bacteremia. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2019; 32 Suppl 3:24-28. [PMID: 31364338 PMCID: PMC6755346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ceftobiprole is a new cephalosporin with an extended spectrum activity against the majority of microorganisms isolated in bacteremia including methicillin-susceptible (MSSA) and -resistant S. aureus (MRSA). This antibiotic has demonstrated a potent activity against MRSA in animal models of endocarditis in monotherapy but particularly in combination with daptomycin, suggesting that this combination could be a future option to improve the outcome of staphylococcal endovascular infections. In addition, the extended-spectrum ceftobiprole activity, including coagulase-negative staphylococci, Enterococcus faecalis, Enterobacteriaceae and Pseudomonas aeruginosa represents an advantage for use as empirical therapy in bacteremia potentially caused by a broad spectrum of microorganisms, such as in catheter-related bacteremia.
Collapse
|
9
|
Bal AM, David MZ, Garau J, Gottlieb T, Mazzei T, Scaglione F, Tattevin P, Gould IM. Future trends in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection: An in-depth review of newer antibiotics active against an enduring pathogen. J Glob Antimicrob Resist 2017; 10:295-303. [PMID: 28732783 DOI: 10.1016/j.jgar.2017.05.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a major public health problem. Vancomycin and teicoplanin have been in clinical use for several decades but their drawbacks are well described. In the last 10 years, several antibiotics have been made available for clinical use. Daptomycin and linezolid have been extensively used during this period. Other agents such as ceftaroline, ceftobiprole, dalbavancin, oritavancin, tedizolid and telavancin have been approved by regulatory agencies since 2009. Many others, such as the newer tetracyclines, fluoroquinolones, oxazolidinones and pleuromutilins, are in various stages of development. In addition, an ongoing multicentre trial is investigating the role of combination of vancomycin or daptomycin with β-lactam antibiotics. This review discusses the role of the newer antibiotics, reflecting the views of the 6th MRSA Consensus Conference meeting of the International Society of Chemotherapy MRSA Working Group that took place in 2016.
Collapse
Affiliation(s)
- A M Bal
- Department of Microbiology, University Hospital Crosshouse, Kilmarnock KA2 0BE, UK.
| | - M Z David
- Departments of Medicine, Paediatrics, and Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - J Garau
- Department of Medicine, Hospital Universitari Mútua de Terrassa, Plaza Dr Robert 5, Barcelona 08221, Spain
| | - T Gottlieb
- Department of Microbiology and Infectious Diseases, Concord Hospital, Sydney, NSW 2139, Australia
| | - T Mazzei
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Firenze, Firenze, Italy
| | - F Scaglione
- Department of Oncology and Onco-Haematology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - P Tattevin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 35033 Rennes, France
| | - I M Gould
- Department of Microbiology, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK
| |
Collapse
|
10
|
Efficacy of Telavancin Alone and in Combination with Ampicillin in a Rat Model of Enterococcus faecalis Endocarditis. Antimicrob Agents Chemother 2017; 61:AAC.02489-16. [PMID: 28320712 DOI: 10.1128/aac.02489-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/06/2017] [Indexed: 11/20/2022] Open
Abstract
We first assessed telavancin (TLV) pharmacokinetics in rats after a single subcutaneous dose of 35 mg/kg of body weight. The pharmacokinetic data were used to predict a TLV dose that simulates human exposure, and the efficacy of TLV was then evaluated using a TLV dose of 21 mg/kg every 12 h against Enterococcus faecalis OG1RF (TLV MIC of 0.06 μg/ml) in a rat endocarditis model with an indwelling catheter. Therapy was given for 3 days with TLV, daptomycin (DAP), or ampicillin (AMP) monotherapy and with combinations of TLV plus AMP, AMP plus gentamicin (GEN), and AMP plus ceftriaxone (CRO); rats were sacrificed 24 h after the last dose. Antibiotics were given to simulate clinically relevant concentrations or as used in other studies. TLV treatment resulted in a significant decrease in bacterial burden (CFU per gram) in vegetations from 6.0 log10 at time 0 to 3.1 log10 after 3 days of therapy. Bacterial burdens in vegetations were also significantly lower in the TLV-treated rats than in the AMP (P = 0.0009)- and AMP-plus-GEN (P = 0.035)-treated rats but were not significantly different from that of the AMP-plus-CRO-treated rats. Bacterial burdens from vegetations in TLV monotherapy and TLV-plus-AMP-and-DAP groups were similar to each other (P ≥ 0.05). Our data suggest that further study of TLV as a therapeutic alternative for deep-seated infections caused by vancomycin-susceptible E. faecalis is warranted.
Collapse
|
11
|
Frantz S, Buerke M, Horstkotte D, Levenson B, Mellert F, Naber CK, Thalhammer F. Kommentar zu den 2015-Leitlinien der Europäischen Gesellschaft für Kardiologie zur Infektiösen Endokarditis. KARDIOLOGE 2016. [DOI: 10.1007/s12181-016-0058-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Tong SYC, Nelson J, Paterson DL, Fowler VG, Howden BP, Cheng AC, Chatfield M, Lipman J, Van Hal S, O’Sullivan M, Robinson JO, Yahav D, Lye D, Davis JS. CAMERA2 - combination antibiotic therapy for methicillin-resistant Staphylococcus aureus infection: study protocol for a randomised controlled trial. Trials 2016; 17:170. [PMID: 27029920 PMCID: PMC4815121 DOI: 10.1186/s13063-016-1295-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia is a serious infection resulting in 20-50 % 90-day mortality. The limitations of vancomycin, the current standard therapy for MRSA, make treatment difficult. The only other approved drug for treatment of MRSA bacteraemia, daptomycin, has not been shown to be superior to vancomycin. Surprisingly, there has been consistent in-vitro and in-vivo laboratory data demonstrating synergy between vancomycin or daptomycin and an anti-staphylococcal β-lactam antibiotic. There is also growing clinical data to support such combinations, including a recent pilot randomised controlled trial (RCT) that demonstrated a trend towards a reduction in the duration of bacteraemia in patients treated with vancomycin plus flucloxacillin compared to vancomycin alone. Our aim is to determine whether the addition of an anti-staphylococcal penicillin to standard therapy results in improved clinical outcomes in MRSA bacteraemia. METHODS/DESIGN We will perform an open-label, parallel-group, randomised (1:1) controlled trial at 29 sites in Australia, New Zealand, Singapore, and Israel. Adults (aged 18 years or older) with MRSA grown from at least one blood culture and able to be randomised within 72 hours of the index blood culture collection will be eligible for inclusion. Participants will be randomised to vancomycin or daptomycin (standard therapy) given intravenously or to standard therapy plus 7 days of an anti-staphylococcal β-lactam (flucloxacillin, cloxacillin, or cefazolin). The primary endpoint will be a composite outcome at 90 days of (1) all-cause mortality, (2) persistent bacteraemia at day 5 or beyond, (3) microbiological relapse, or (4) microbiological treatment failure. The recruitment target of 440 patients is based on an expected failure rate for the primary outcome of 30 % in the control arm and the ability to detect a clinically meaningful absolute decrease of 12.5 %, with a two-sided alpha of 0.05, a power of 80 %, and assuming 10 % of patients will not be evaluable for the primary endpoint. DISCUSSION Key potential advantages of adding anti-staphylococcal β-lactams to standard therapy for MRSA bacteraemia include their safety profile, low cost, and wide availability. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02365493 . Registered 24 February 2015.
Collapse
Affiliation(s)
- Steven Y. C. Tong
- />Menzies School of Health Research, Charles Darwin University, Darwin, NT Australia
- />Royal Darwin Hospital, Darwin, NT Australia
| | - Jane Nelson
- />Menzies School of Health Research, Charles Darwin University, Darwin, NT Australia
| | - David L. Paterson
- />University of Queensland, Centre for Clinical Research, Herston, QLD Australia
| | - Vance G. Fowler
- />Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC USA
- />Duke Clinical Research Institute, Duke University Medical Center, Durham, NC USA
| | - Benjamin P. Howden
- />Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at The Doherty Institute, Melbourne, VIC Australia
| | - Allen C. Cheng
- />Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC Australia
- />Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC Australia
| | - Mark Chatfield
- />Menzies School of Health Research, Charles Darwin University, Darwin, NT Australia
| | - Jeffrey Lipman
- />Burns, Trauma Critical Care Research Centre, The University of Queensland, Brisbane, QLD Australia
- />Faculty of Health, Queensland University of Technology, Brisbane, QLD Australia
| | - Sebastian Van Hal
- />Department of Microbiology and Infectious Disease Royal Prince Alfred Hospital, Sydney, NSW Australia
| | - Matthew O’Sullivan
- />Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW Australia
- />Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW Australia
| | - James O. Robinson
- />Department of Microbiology and Infectious Diseases, Pathwest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital, Perth, WA Australia
- />Australian Collaborating Centre for Enterococcus and Staphylococcus Species (ACCESS) Typing and Research, School of Veterinary and Life Sciences, Murdoch University, Perth, WA Australia
| | - Dafna Yahav
- />Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- />Rabin Medical Center, Petah Tikvah, Israel
| | - David Lye
- />Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
- />Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joshua S. Davis
- />Menzies School of Health Research, Charles Darwin University, Darwin, NT Australia
- />John Hunter Hospital, Newcastle, NSW Australia
| | - for the CAMERA2 study group and the Australasian Society for Infectious Diseases Clinical Research Network
- />Menzies School of Health Research, Charles Darwin University, Darwin, NT Australia
- />Royal Darwin Hospital, Darwin, NT Australia
- />University of Queensland, Centre for Clinical Research, Herston, QLD Australia
- />Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC USA
- />Duke Clinical Research Institute, Duke University Medical Center, Durham, NC USA
- />Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at The Doherty Institute, Melbourne, VIC Australia
- />Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC Australia
- />Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC Australia
- />Burns, Trauma Critical Care Research Centre, The University of Queensland, Brisbane, QLD Australia
- />Faculty of Health, Queensland University of Technology, Brisbane, QLD Australia
- />Department of Microbiology and Infectious Disease Royal Prince Alfred Hospital, Sydney, NSW Australia
- />Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW Australia
- />Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW Australia
- />Department of Microbiology and Infectious Diseases, Pathwest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital, Perth, WA Australia
- />Australian Collaborating Centre for Enterococcus and Staphylococcus Species (ACCESS) Typing and Research, School of Veterinary and Life Sciences, Murdoch University, Perth, WA Australia
- />Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- />Rabin Medical Center, Petah Tikvah, Israel
- />Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
- />Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- />John Hunter Hospital, Newcastle, NSW Australia
| |
Collapse
|
13
|
Scheeren TWL. Ceftobiprole medocaril in the treatment of hospital-acquired pneumonia. Future Microbiol 2015; 10:1913-28. [DOI: 10.2217/fmb.15.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ceftobiprole medocaril is a fifth-generation cephalosporin approved in Europe as single-agent therapy for hospital-acquired pneumonia (HAP), excluding ventilator-associated pneumonia (VAP). It is rapidly converted to the active metabolite ceftobiprole following intravenous administration. Ceftobiprole has a broad spectrum of activity, notably against methicillin-resistant Staphylococcus aureus, ampicillin-susceptible enterococci, penicillin-resistant pneumococci and Enterobacteriaceae not producing extended-spectrum β-lactamase. Ceftobiprole is primarily excreted renally by glomerular filtration, with minimal propensity for interaction with co-administered drugs. Normal dose is ceftobiprole 500 mg, administered by 2-h intravenous infusion every 8 h, with dose adjustment according to renal function. In a pivotal Phase III trial in patients with HAP, ceftobiprole monotherapy was as efficacious as ceftazidime/linezolid for clinical and microbiological cure and was noninferior to ceftazidime/linezolid in the subgroup of patients with HAP excluding VAP. Ceftobiprole and ceftazidime/linezolid were similarly well tolerated. Ceftobiprole is an efficacious and well-tolerated option for empirical treatment of patients with HAP (excluding VAP).
Collapse
Affiliation(s)
- Thomas WL Scheeren
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
14
|
Syed YY. Ceftobiprole medocaril: a review of its use in patients with hospital- or community-acquired pneumonia. Drugs 2015; 74:1523-42. [PMID: 25117196 DOI: 10.1007/s40265-014-0273-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ceftobiprole, the active metabolite of the prodrug ceftobiprole medocaril (Zevtera(®)), is a new generation broad-spectrum intravenous cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Ceftobiprole exhibits potent in vitro activity against a number of Gram-positive and Gram-negative pathogens associated with hospital-acquired pneumonia (HAP) and community-acquired pneumonia (CAP). It is the first cephalosporin monotherapy approved in the EU for the treatment of both HAP (excluding ventilator associated-pneumonia [VAP]) and CAP. In phase III trials, ceftobiprole medocaril was noninferior, in terms of clinical cure rates at the test-of-cure visit, to ceftazidime plus linezolid in patients with HAP and to ceftriaxone ± linezolid in patients with CAP severe enough to require hospitalization. In patients with HAP, noninferiority of ceftobiprole medocaril to ceftazidime plus linezolid was not demonstrated in a subset of patients with VAP. In patients with CAP, ceftobiprole medocaril was effective in those at risk for poor outcomes (pneumonia severity index ≥91, Pneumonia Patient Outcomes Research Team score IV-V or bacteraemic pneumonia). In the phase III trials, ceftobiprole medocaril was generally well tolerated, with ≈10 % of patients discontinuing the treatment because of adverse events. The most common treatment-related adverse events occurring in ceftobiprole recipients in the trials in patients with HAP or CAP included nausea, diarrhoea, infusion site reactions, vomiting, hepatic enzyme elevations and hyponatraemia. Therefore, ceftobiprole medocaril monotherapy offers a simplified option for the initial empirical treatment of patients with HAP (excluding VAP) and in those with CAP requiring hospitalization.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer, Private Bag 65901, Mairangi Bay 0754, Auckland, New Zealand,
| |
Collapse
|
15
|
Synergistic efficacy of meropenem and rifampicin in a murine model of sepsis caused by multidrug-resistant Acinetobacter baumannii. Eur J Pharmacol 2014; 729:116-22. [DOI: 10.1016/j.ejphar.2014.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 11/23/2022]
|
16
|
Evaluation of the in vitro activities of ceftobiprole and comparators in staphylococcal colony or microtitre plate biofilm assays. Int J Antimicrob Agents 2014; 43:32-9. [DOI: 10.1016/j.ijantimicag.2013.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/16/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
|
17
|
Lagacé-Wiens PRS, Rubinstein E. Pharmacokinetic and pharmacodynamics evaluation of ceftobiprole medocaril for the treatment of hospital-acquired pneumonia. Expert Opin Drug Metab Toxicol 2013; 9:789-99. [PMID: 23590397 DOI: 10.1517/17425255.2013.788150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ceftobiprole is a cephalosporin with activity against methicillin-resistant Staphylococcus aureus, Enterobacteriaceae, and Pseudomonas aeruginosa with a promising role in the treatment of hospital-acquired pneumonia (HAP). Cure rates, however, with ceftobiprole at the doses studied may be inferior to conventional treatment in the ventilator-acquired subset of HAP. AREAS COVERED Literature was sought using PubMed and through abstracts from the Interscience Conference on Antimicrobial Agents and Chemotherapy (2006 - 2012) and the European Congress of Clinical Microbiology and Infectious Diseases (2007 - 2012). The authors used the search terms "ceftobiprole," "BAL9141," "RO63-9141," "BAL5788," and 'RO5788." The article discusses the activity, mechanism of action, pharmacokinetics (PK), pharmacodynamics (PD), and clinical trials of ceftobiprole in HAP. The article also provides discussion of how PK/PD parameters play a role in the outcome of HAP treatment and how dosing in ventilator-associated pneumonia (VAP) should be reconsidered in light of altered PK/PD. EXPERT OPINION In patients with normal PK and non-VAP, ceftobiprole is effective for the treatment of HAP in the recommended doses, ceftobiprole is unlikely to achieve the desired PD targets when PK parameters are altered in VAP (e.g., increased volume of distribution and clearance). In these settings, off-label use at higher doses may overcome these limitations; but in the presence of alternative therapies, it cannot be currently recommended.
Collapse
Affiliation(s)
- Philippe R S Lagacé-Wiens
- St. Boniface General Hospital/Diagnostic Services of Manitoba, Department of Microbiology, Winnipeg, Manitoba, R2H 2A6, Canada.
| | | |
Collapse
|
18
|
Antimicrobial activity of geranium oil against clinical strains of Staphylococcus aureus. Molecules 2012; 17:10276-91. [PMID: 22929626 PMCID: PMC6268326 DOI: 10.3390/molecules170910276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/12/2012] [Accepted: 08/14/2012] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to investigate the antibacterial properties of geranium oil obtained from Pelargonium graveolens Ait. (family Geraniaceae), against one standard S. aureus strain ATCC 433000 and seventy clinical S. aureus strains. The agar dilution method was used for assessment of bacterial growth inhibition at various concentrations of geranium oil. Susceptibility testing of the clinical strains to antibiotics was carried out using the disk-diffusion and E-test methods. The results of our experiment showed that the oil from P. graveolens has strong activity against all of the clinical S. aureus isolates—including multidrug resistant strains, MRSA strains and MLSB-positive strains—exhibiting MIC values of 0.25–2.50 μL/mL.
Collapse
|
19
|
Roosens B, Bala G, Droogmans S, Van Camp G, Breyne J, Cosyns B. Animal models of organic heart valve disease. Int J Cardiol 2012; 165:398-409. [PMID: 22475840 DOI: 10.1016/j.ijcard.2012.03.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/18/2012] [Accepted: 03/03/2012] [Indexed: 01/23/2023]
Abstract
Heart valve disease is a frequently encountered pathology, related to high morbidity and mortality rates in industrialized and developing countries. Animal models are interesting to investigate the causality, but also underlying mechanisms and potential treatments of human valvular diseases. Recently, animal models of heart valve disease have been developed, which allow to investigate the pathophysiology, and to follow the progression and the potential regression of disease with therapeutics over time. The present review provides an overview of animal models of primary, organic heart valve disease: myxoid age-related, infectious, drug-induced, degenerative calcified, and mechanically induced valvular heart disease.
Collapse
Affiliation(s)
- Bram Roosens
- Centrum Voor Hart- en Vaatziekten (CHVZ), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|