1
|
Chatterjee AK. Discovery of novel anti-infective agents. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:39-117. [PMID: 39034055 DOI: 10.1016/bs.apha.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Academic and other non-profit institutions have a long-term vision to improve human health where commercial interests can be limited for profit organizations. Medicinal chemistry to these diseases with no commercial benefit needs is well suited in the academic environment and this chapter outlines some work conducted at Calibr-Skaggs around antibiotic drug development that has led to initiation of multiple clinical trials over the last decade.
Collapse
Affiliation(s)
- Arnab K Chatterjee
- Calibr-Skaggs Institute of Innovation Medicines, Scripps Research, La Jolla, CA, United States.
| |
Collapse
|
2
|
Gupta AK, Eliasen AM, Andahazy W, Zhou F, Henson K, Chi V, Woods AK, Joseph SB, Kuhen KL, Wisler J, Ramachandruni H, Duffy J, Burrows JN, Vadas E, Slade A, Schultz PG, McNamara CW, Chatterjee AK. A Prodrug Strategy to Reposition Atovaquone as a Long-Acting Injectable for Malaria Chemoprotection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579395. [PMID: 38979188 PMCID: PMC11230151 DOI: 10.1101/2024.02.08.579395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Recent malaria drug discovery approaches have been extensively focused on the development of oral, smallmolecule inhibitors for disease treatment whereas parenteral routes of administration have been avoided due to limitations in deploying a shelf-stable injectable even though it could be dosed less frequently. However, an updated target candidate profile from Medicines for Malaria Venture (MMV) and stakeholders have advocated for long-acting injectable chemopreventive agents as an important interventive tool to improve malaria prevention. Here, we present strategies for the development of a long-acting, intramuscular, injectable atovaquone prophylactic therapy. We have generated three prodrug approaches that are contrasted by their differential physiochemical properties and pharmacokinetic profiles: mCBK068, a docosahexaenoic acid ester of atovaquone formulated in sesame oil, mCKX352, a heptanoic acid ester of atovaquone formulated as a solution in sesame oil, and mCBE161, an acetic acid ester of atovaquone formulated as an aqueous suspension. As a result, from a single 20 mg/kg intramuscular injection, mCKX352 and mCBE161 maintain blood plasma exposure of atovaquone above the minimal efficacious concentration for >70 days and >30 days, respectively, in cynomolgus monkeys. The differences in plasma exposure are reflective of the prodrug strategy, which imparts altered chemical properties that ultimately influence aqueous solubility and depot release kinetics. On the strength of the pharmacokinetic and safety profiles, mCBE161 is being advanced as a first-in-class clinical candidate for first-in-human trials.
Collapse
|
3
|
Macintyre F, Ramachandruni H, Burrows JN, Holm R, Thomas A, Möhrle JJ, Duparc S, Hooft van Huijsduijnen R, Greenwood B, Gutteridge WE, Wells TNC, Kaszubska W. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar J 2018; 17:402. [PMID: 30384848 PMCID: PMC6211409 DOI: 10.1186/s12936-018-2549-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Over the last 15 years, the majority of malaria drug discovery and development efforts have focused on new molecules and regimens to treat patients with uncomplicated or severe disease. In addition, a number of new molecular scaffolds have been discovered which block the replication of the parasite in the liver, offering the possibility of new tools for oral prophylaxis or chemoprotection, potentially with once-weekly dosing. However, an intervention which requires less frequent administration than this would be a key tool for the control and elimination of malaria. Recent progress in HIV drug discovery has shown that small molecules can be formulated for injections as native molecules or pro-drugs which provide protection for at least 2 months. Advances in antibody engineering offer an alternative approach whereby a single injection could potentially provide protection for several months. Building on earlier profiles for uncomplicated and severe malaria, a target product profile is proposed here for an injectable medicine providing long-term protection from this disease. As with all of such profiles, factors such as efficacy, cost, safety and tolerability are key, but with the changing disease landscape in Africa, new clinical and regulatory approaches are required to develop prophylactic/chemoprotective medicines. An overall framework for these approaches is suggested here.
Collapse
Affiliation(s)
- Fiona Macintyre
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - René Holm
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium.,Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Anna Thomas
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Jörg J Möhrle
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | | | - Brian Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Timothy N C Wells
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland.
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| |
Collapse
|
4
|
Peters W. The chemotherapy of rodent malaria. LVII. Drug combinations to impede the selection of drug resistance, part 1: which model is appropriate? ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Watkins WM, Brandling-Bennett AD, Nevill CG, Carter JY, Boriga DA, Howells RE, Koech DK. Chlorproguanil/dapsone for the treatment of non-severe Plasmodium falciparum malaria in Kenya: a pilot study. Trans R Soc Trop Med Hyg 1988; 82:398-403. [PMID: 3068855 DOI: 10.1016/0035-9203(88)90133-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chlorocycloguanil, the active metabolite of chlorproguanil, was synergistic in vitro with dapsone against 2 culture-adapted Plasmodium falciparum isolates from Kenya; maximal synergy occurred at lower concentrations that it did with pyrimethamine and sulfadoxine. 48 children with asymptomatic P. falciparum infections were treated with chlorproguanil (at a target dose of 1.2 mg/kg) and dapsone (target dose of 1.2 or 2.4 mg/kg); all were free of parasitaemia by day 7. The following numbers had recurrences on days 14, 21, and 28, respectively: 1 of 48, 7 of 47, and 7 of 40. All 39 children treated with pyrimethamine (target dose 1.2 mg/kg) and sulfadoxine (target dose 24 mg/kg) were cleared of infection, while the following had recurrences on days 14, 21, and 28: 1 of 39, 2 of 38, and 2 of 36. The rate of decrease in parasitaemia was the same in the 2 groups, and there was no change in haematocrit or haemoglobin during the follow-up. The rate of recurrence in the children receiving chlorporguanil/dapsone was higher, probably because these drugs have a much shorter clearance time than pyrimethamine/sulfadoxine. Chlorproguanil/dapsone is an effective combination for treating P. falciparum malaria and deserves further study.
Collapse
Affiliation(s)
- W M Watkins
- Biomedical Sciences Research Centre, Kenya Medical Research Institute, (KEMRI), Nairobi
| | | | | | | | | | | | | |
Collapse
|