1
|
Singh B, Jaiswal S, Kodgire P. Outer membrane proteins and vesicles as promising vaccine candidates against Vibrio spp. infections. Crit Rev Microbiol 2024; 50:417-433. [PMID: 37272649 DOI: 10.1080/1040841x.2023.2212072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
Indiscriminate use of antibiotics to treat bacterial infections has brought unmanageable antibiotic-resistant strains into existence. Vibrio spp. represents one such gram-negative enteric pathogenic group with more than 100 species, infecting humans and fish. The Vibrio spp. is demarcated into two groups, one that causes cholera and the other producing non-cholera or vibriosis infections. People who encounter contaminated water are at risk, but young children and pregnant women are the most vulnerable. Though controllable, Vibrio infection still necessitates the development of preventative measures, such as vaccinations, that can lessen the severity of the infection and reduce reliance on antibiotic use. With emerging multi-drug resistant strains, efforts are needed to develop newer vaccines, such as subunit-based or outer membrane vesicle-based. Thus, this review strives to bring together available information about Vibrio spp. outer membrane proteins and vesicles, encompassing their structure, function, and immunoprotective role.
Collapse
Affiliation(s)
- Brijeshwar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
2
|
Abstract
Most bacteria are protected from environmental offenses by a cell wall consisting of strong yet elastic peptidoglycan. The cell wall is essential for preserving bacterial morphology and viability, and thus the enzymes involved in the production and turnover of peptidoglycan have become preferred targets for many of our most successful antibiotics. In the past decades, Vibrio cholerae, the gram-negative pathogen causing the diarrheal disease cholera, has become a major model for understanding cell wall genetics, biochemistry, and physiology. More than 100 articles have shed light on novel cell wall genetic determinants, regulatory links, and adaptive mechanisms. Here we provide the first comprehensive review of V. cholerae's cell wall biology and genetics. Special emphasis is placed on the similarities and differences with Escherichia coli, the paradigm for understanding cell wall metabolism and chemical structure in gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Sara B Hernandez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| |
Collapse
|
3
|
Gladkikh AS, Feranchuk SI, Ponomareva AS, Bochalgin NO, Mironova LV. Antibiotic resistance in Vibrio cholerae El Tor strains isolated during cholera complications in Siberia and the Far East of Russia. INFECTION GENETICS AND EVOLUTION 2019; 78:104096. [PMID: 31689544 DOI: 10.1016/j.meegid.2019.104096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Abstract
Currently, the spread of antimicrobial resistance (AMR) is a global trend and poses a severe threat to public health. The causative agent of cholera, a severe infectious disease with pandemic expansion, becomes more and more resistant to a wider range of drugs with every coming year. The Vibrio cholerae genome is highly flexible and adaptive; the acquisition of the SXT mobile element with a cluster of antibiotic resistance genes on it has marked a new stage in the adaptive evolution of the pathogen. The territory of Siberia and the Russian Far East is free of cholera; however, in the 1970s and 1990s a number of infection importation cases and acute outbreaks associated with the cholera importation were reported. The aim of this study was to describe the phenotypic characteristics and genetic determinants of AMR in V. cholerae strains isolated during epidemic complications in Siberia and the Far East of Russia, as well as to clarify the origin of the strains. The present research comprises analysis of nine V. cholerae El Tor strains isolated from patients and water sources during epidemic complications in Siberia and the Russian Far East in the 1990s. Here, we compared the phenotypic manifestations of antibiotic resistance among strains, harbored the resistance patterns in genomes; we also determined the structure, the type of SXT elements, and the mobilome profile based on the accepted classification. We identified that strains that caused outbreaks in Vladivostok and Yuzhno-Sakhalinsk in 1999 had ICEVchCHN4210 type SXT element with deletion of some loci. The research shows that the integration of the genome, SNP and the mobilome, associated with antibiotic resistance, analyses is necessary to understand the cholera epidemiology, it also helps to establish the origin of strains. The study of resistance determinants features allowed to make a conclusion about the heterogeneity of V. cholerae strains that were isolated during outbreaks in Vladivostok and Yuzhno-Sakhalinsk in 1999.
Collapse
Affiliation(s)
- A S Gladkikh
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia.
| | - S I Feranchuk
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - A S Ponomareva
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - N O Bochalgin
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - L V Mironova
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| |
Collapse
|
4
|
Kim HI, Kim JA, Choi EJ, Harris JB, Jeong SY, Son SJ, Kim Y, Shin OS. In vitro and in vivo antimicrobial efficacy of natural plant-derived compounds against Vibrio cholerae of O1 El Tor Inaba serotype. Biosci Biotechnol Biochem 2014; 79:475-83. [PMID: 25516242 DOI: 10.1080/09168451.2014.991685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, we investigated antibacterial activities of 20 plant-derived natural compounds against Gram-negative enteric pathogens. We found that both flavonoids and non-flavonoids, including honokiol and magnolol, possess specific antibacterial activities against V. cholerae, but not against other species of Gram-negative bacterium which we tested. Using various antibacterial assays, we determined that there was a dose-dependent bactericidal and biofilm inhibitory activity of honokiol and magnolol against Vibrio cholerae. In addition to antibacterial activities, these molecules also induced an attenuating effect on reactive oxygen species (ROS) production and pro-inflammatory responses generated by macrophages in response to lipopolysaccharides (LPS). Additionally, Caenorhabditis elegans lethality assay revealed that honokiol and magnolol have an ability to extend a lifespan of V. cholerae-infected worms, contributing to prolonged survival of worms after lethal infection. Altogether, our data show for the first time that honokiol and magnolol may be considered as attractive protective or preventive food adjuncts for cholera.
Collapse
Affiliation(s)
- Hyung-Ip Kim
- a Department of Biomedical Sciences , College of Medicine, Korea University , Seoul , Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Chakrabortty A, Das S, Majumdar S, Mukhopadhyay K, Roychoudhury S, Chaudhuri K. Use of RNA arbitrarily primed-PCR fingerprinting to identify Vibrio cholerae genes differentially expressed in the host following infection. Infect Immun 2000; 68:3878-87. [PMID: 10858198 PMCID: PMC101662 DOI: 10.1128/iai.68.7.3878-3887.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1999] [Accepted: 03/31/2000] [Indexed: 01/01/2023] Open
Abstract
Evidence suggests that a repertoire of Vibrio cholerae genes are differentially expressed in vivo, and regulation of virulence factors in vivo may follow a different pathway. Our work was aimed at characterization of in vivo-grown bacteria and identification of genes that are differentially expressed following infection by RNA arbitrarily primed (RAP)-PCR fingerprinting. The ligated rabbit ileal loop model was used. The motility of in vivo-grown bacteria increased by 350% over that of in vitro-grown bacteria. Also, the in vivo-grown cells were more resistant to killing by human serum. By using the RAP-PCR strategy, five differentially expressed transcripts were identified. Two in vitro-induced transcripts encoded polypeptides for the leucine tRNA synthatase and the 50S ribosomal protein, and the three in vivo-induced transcripts encoded the SucA and MurE proteins and a polypeptide of unknown function. MurE is a protein involved in the peptidoglycan biosynthetic pathway. The lytic profiles of in vivo- and in vitro-grown cells suspended in distilled water were compared; the former was found to be slightly less sensitive to lysis. Ultrathin sections of both cells observed under the transmission electron microscope revealed that in contrast to the usual wavy discontinuous membrane structure of the in vitro-grown cells, in vivo-grown cells had a more rigid, clearly visible double-layered structure. The V. cholerae murE gene was cloned and sequenced. The sequence contained an open reading frame of 1,488 nucleotides with its own ribosome-binding site. A plasmid containing the murE gene of V. cholerae was transformed into V. cholerae 569B, and a transformed strain, 569BME, containing the plasmid was obtained. Ultrathin sections of 569BME viewed under a transmission electron microscope revealed a slightly more rigid cell wall than that of wild-type 569B. When V. cholerae 569B and 569BME cells were injected separately into ligated rabbit ileal loops, the transformed cells had a preference for growth in the ileal loops versus laboratory conditions.
Collapse
Affiliation(s)
- A Chakrabortty
- Biophysics Division, Indian Institute of Chemical Biology, Jadavpur, Calcutta-700 032, India
| | | | | | | | | | | |
Collapse
|
7
|
Chakrabarti SR, Chaudhuri K, Sen K, Das J. Porins of Vibrio cholerae: purification and characterization of OmpU. J Bacteriol 1996; 178:524-30. [PMID: 8550475 PMCID: PMC177687 DOI: 10.1128/jb.178.2.524-530.1996] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Three outer membrane proteins with molecular masses of 40, 38, and 27 kDa of the hypertoxinogenic strain 569B of Vibrio cholerae have been purified to homogeneity. The synthesis of all the three proteins is regulated by the osmolarity of the growth medium. The pore-forming ability of the 40-kDa protein, OmpT, and the 38-kDa protein, OmpU, has been demonstrated by using liposomes, in which these proteins were embedded. The 27-kDa protein, OmpX, though osmoregulated, is not a porin. OmpU constitutes 30% of the total outer membrane protein when grown in the presence of 1.0% NaCl in the growth medium and 60% in the absence of NaCl. OmpU is an acidic protein and is a homotrimer of 38-kDa monomeric units. Its secondary structure contains predominantly a beta-sheet, and three to four Ca2+ ions are associated with each monomeric unit. Removal of Ca2+ irreversibly disrupts the structure and pore-forming ability of the protein. The pore size of OmpU is 1.6 nm, and the specific activity of the OmpU channel is two- to threefold higher than that of Escherichia coli porin OmpF, synthesis of which resembles that of OmpU with respect to the osmolarity of the growth medium. The pore size of OmpT, which is analogous to OmpC of E. coli, is smaller than that of OmpU. Southern blot hybridization of V. cholerae genomic DNA digested with several restriction endonucleases with nick-translated E. coli ompF as the probe revealed no nucleotide sequence homology between the ompU and ompF genes. OmpU is also not antigenically related to OmpF. Anti-OmpF antiserum, however, cross-reacted with the 45-kDa V. cholerae outer membrane protein, OmpS, the synthesis of which is regulated by the presence of maltose in the growth medium. OmpU hemagglutinated with rabbit and human blood. This toxR-regulated protein is one of the possible virulence determinants in V. cholerae (V. L. Miller and J. J. Mekalanos, J. Bacteriol. 170:2575-2583, 1988).
Collapse
Affiliation(s)
- S R Chakrabarti
- Biophysics Division, Indian Institute of Chemical Biology, Calcutta, India
| | | | | | | |
Collapse
|
8
|
Deb A, Bhattacharyya D, Das J. A 25-kDa beta-lactam-induced outer membrane protein of Vibrio cholerae. Purification and characterization. J Biol Chem 1995; 270:2914-20. [PMID: 7852369 DOI: 10.1074/jbc.270.7.2914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A 25-kDa outer membrane protein, induced following treatment of Vibrio cholerae cells with beta-lactam antibiotics and constituting about 8-10% of the total outer membrane proteins of beta-lactam-resistant mutants, has been purified to homogeneity. It is a basic (pI 8.5) protein rich in beta-sheet structure and is a homodimer, the monomers being held together by hydrophobic interactions. The effective hydrophobicity of the protein is low, and a large part of the protein is exposed on the surface of the outer membrane. The protein does not have beta-lactamase or autolytic activity and is not a penicillin-binding protein. The Stoke's radius of the 25-kDa protein (26 A) is comparable to the pore size of the V. cholerae OmpF-like porin. Proteoliposome swelling assay showed that the 25-kDa protein might block the pores of OmpF through which beta-lactam antibiotics normally enter the cells. Twenty-two amino acid residues from the N-terminal end of the 25-kDa protein have been sequenced, and a 32-mer oligonucleotide probe was synthesized using the amino acid residues 2-12. This probe was used to identify the gene encoding the 25-kDa protein. The beta-lactam-resistant cells are insensitive to changes in the osmolarity of the growth medium in contrast to the wild type cells which exhibit osmoregulation of OmpF and OmpC synthesis. All beta-lactam-resistant mutants examined are resistant to novobiocin.
Collapse
Affiliation(s)
- A Deb
- Department of Biophysics, Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
9
|
Chaudhuri K, Bhadra RK, Das J. Cell surface characteristics of environmental and clinical isolates of Vibrio cholerae non-O1. Appl Environ Microbiol 1992; 58:3567-73. [PMID: 1282793 PMCID: PMC183145 DOI: 10.1128/aem.58.11.3567-3573.1992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cell surfaces of several toxigenic and nontoxigenic environmental and clinical isolates of Vibrio cholerae non-O1 have been examined. The environmental strains, irrespective of toxigenicity, are significantly more resistant to antibiotics and detergents than are V. cholerae O1 strains. The clinical isolates of non-O1 vibrios are as sensitive to a wide variety of chemicals as the O1 vibrios. The environmental non-O1 strains are also less susceptible to lysis when treated with protein denaturants or neutral and anionic detergents than are O1 vibrios and the clinical non-O1 strains. In contrast to O1 vibrios, the environmental non-O1 vibrios do not have exposed phospholipids in their outer membranes. These features of the cell surfaces of environmental non-O1 vibrios might have a role in the better survival of these organisms under environmental fluctuations.
Collapse
Affiliation(s)
- K Chaudhuri
- Biophysics Division, Indian Institute of Chemical Biology, Jadavpur, Calcutta
| | | | | |
Collapse
|