1
|
Bielenica A, Głogowska A, Augustynowicz-Kopeć E, Orzelska-Górka J, Kurpios-Piec D, Struga M. In vitro antimycobacterial activity and interaction profiles of diarylthiourea-copper (II) complexes with antitubercular drugs against Mycobacterium tuberculosis isolates. Tuberculosis (Edinb) 2023; 143:102412. [PMID: 37774599 DOI: 10.1016/j.tube.2023.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The activity of several halogenated copper (II) complexes of 4-chloro-3-nitrophenylthiourea derivatives has been tested against Mycobacterium tuberculosis strains and strains of non-tuberculous mycobacteria. The compounds were 2-16 times more potent than current TB-drugs against multidrug-resistant M. tuberculosis 210. The 3,4-dichlorophenylthiourea complex (5) was equipotent to ethambutol (EMB) towards M. tuberculosis H37Rv and 192 strains. All derivatives acted 2-8 times stronger than isoniazid (INH) against nontuberculous isolates. In the presence of chosen coordinates, the 2-64 times reduction of MIC values of standard drugs was denoted. The synergistic interaction was found between the complex 4 and rifampicin (RMP), and additivity of 1-5, 8 in pairs with EMB and/or streptomycin (SM) against M. tuberculosis 800 was established. All coordination compounds in combination with at least one drug showed additive activity towards both H37Rv and 192 isolates. In 67% incidences of indifference, the individual MIC of a drug decreased 2-16-fold. One can conclude that the novel thiourea chelates described here are potent hits for further developments of new agents against tuberculosis.
Collapse
Affiliation(s)
- Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Agnieszka Głogowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138, Warsaw, Poland
| | - Jolanta Orzelska-Górka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Dagmara Kurpios-Piec
- Department of Biochemistry, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, 02-097, Warsaw, Poland
| |
Collapse
|
2
|
Mashele SA, Steel HC, Matjokotja MT, Rasehlo SSM, Anderson R, Cholo MC. Assessment of the efficacy of clofazimine alone and in combination with primary agents against Mycobacterium tuberculosis in vitro. J Glob Antimicrob Resist 2022; 29:343-352. [PMID: 35339735 DOI: 10.1016/j.jgar.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The chemotherapeutic regimens of drug-susceptible (DS)-tuberculosis (TB) patients comprise four primary anti-TB drugs; rifampicin (RMP), isoniazid (INH), ethambutol (EMB) and pyrazinamide (PZA), administered for six-to-nine months. These drug regimens target the various microbial populations that include actively-replicating (AR), slow-replicating (SR) and non-replicating (NR) organisms. Clofazimine (CFZ) has showed benefit in shortening DS-TB treatment in vivo from six to four months when used in combination with this regimen in murine models of experimental infection. However, its antimicrobial efficacy when used in combination with the primary drugs against the various microbial populations of Mycobacterium tuberculosis has not been demonstrated. METHODS In the current in vitro study, the inhibitory and bactericidal activities of CFZ in combination with the primary anti-TB drugs, RMP, INH and EMB against the AR and SR organisms in planktonic and biofilm-forming cultures, respectively, were evaluated by fractional inhibitory concentration index (FICI) and fractional bactericidal concentration index (FBCI) determinations, using the Loewe Additivity Model. RESULTS In planktonic cultures, CFZ demonstrated synergistic growth inhibitory activity in combination with RMP and INH individually and collectively. With respect to bactericidal activity, CFZ exhibited synergistic activity only in a two-drug combination with RMP. However, in biofilm-forming cultures, all CFZ-containing anti-TB drug combinations exhibited synergistic inhibitory and bactericidal effects, particularly in combination with RIF and INH. CONCLUSION Clofazimine exhibited synergistic effects in combination with primary anti-TB drugs against both planktonic and biofilm-forming cultures, showing potential benefit in augmenting treatment outcome when used during standard TB chemotherapy.
Collapse
Affiliation(s)
- S A Mashele
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - H C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M T Matjokotja
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - S S M Rasehlo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - R Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Staphylococcal ClpXP protease targets the cellular antioxidant system to eliminate fitness-compromised cells in stationary phase. Proc Natl Acad Sci U S A 2021; 118:2109671118. [PMID: 34782466 DOI: 10.1073/pnas.2109671118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
The transition from growth to stationary phase is a natural response of bacteria to starvation and stress. When stress is alleviated and more favorable growth conditions return, bacteria resume proliferation without a significant loss in fitness. Although specific adaptations that enhance the persistence and survival of bacteria in stationary phase have been identified, mechanisms that help maintain the competitive fitness potential of nondividing bacterial populations have remained obscure. Here, we demonstrate that staphylococci that enter stationary phase following growth in media supplemented with excess glucose, undergo regulated cell death to maintain the competitive fitness potential of the population. Upon a decrease in extracellular pH, the acetate generated as a byproduct of glucose metabolism induces cytoplasmic acidification and extensive protein damage in nondividing cells. Although cell death ensues, it does not occur as a passive consequence of protein damage. Instead, we demonstrate that the expression and activity of the ClpXP protease is induced, resulting in the degeneration of cellular antioxidant capacity and, ultimately, cell death. Under these conditions, inactivation of either clpX or clpP resulted in the extended survival of unfit cells in stationary phase, but at the cost of maintaining population fitness. Finally, we show that cell death from antibiotics that interfere with bacterial protein synthesis can also be partly ascribed to the corresponding increase in clpP expression and activity. The functional conservation of ClpP in eukaryotes and bacteria suggests that ClpP-dependent cell death and fitness maintenance may be a widespread phenomenon in these domains of life.
Collapse
|
4
|
Optimization of In Vitro Mycobacterium avium and Mycobacterium intracellulare Growth Assays for Therapeutic Development. Microorganisms 2019; 7:microorganisms7020042. [PMID: 30717247 PMCID: PMC6406338 DOI: 10.3390/microorganisms7020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/12/2019] [Accepted: 01/20/2019] [Indexed: 11/25/2022] Open
Abstract
Infection with nontuberculous mycobacteria (NTM) is a complication of lung disease in immunocompromised patients, including those with human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS), chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). The most widespread, disease-causing NTM is Mycobacterium avium complex (MAC), which colonizes the lungs as a combination of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacterial species. While combination drug therapy exists for MAC colonization, there is no cure. Therapeutic development to treat MAC has been difficult because of the slow-growing nature of the bacterial complex, limiting the ability to characterize the bacteria’s growth in response to new therapeutics. The development of a technology that allows observation of both the MAC predominant strains and MAC could provide a means to develop new therapeutics to treat NTM. We have developed a new methodology in which M. avium and M. intracellulare can be optimally grown in short term culture to study each strain independently and in combination, as a monitor of growth kinetics and efficient therapeutic testing protocols.
Collapse
|
5
|
Goldberg ND, Vadlamudi A, Parrish N. Treatment of refractory Crohn's disease and pyoderma gangrenosum with a combination regimen of rifaximin, gentamicin and metronidazole. Case Rep Gastroenterol 2015; 9:25-8. [PMID: 25802494 PMCID: PMC4342856 DOI: 10.1159/000369965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The etiology of Crohn's disease (CD) remains controversial. It is hypothesized that CD is the result of an abnormal immune response to the gut flora in genetically susceptible hosts. However, an infectious etiology has not been completely ruled out. Antibiotics have been utilized with some success to modify the course of the disease. Here, we report a patient with CD and pyoderma gangrenosum refractory to standard therapy, including biologics, who achieved remission with a combination of rifaximin, gentamicin and metronidazole.
Collapse
Affiliation(s)
- Neil D Goldberg
- St. Joseph Medical Center, The University of Maryland, Towson, Md., USA
| | | | - Nicole Parrish
- The Johns Hopkins Medical Institutions, Baltimore, Md., USA
| |
Collapse
|
6
|
Tomioka H. Prospects for development of new antimycobacterial drugs. J Infect Chemother 2000; 6:8-20. [PMID: 11810525 DOI: 10.1007/s101560050043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1999] [Accepted: 01/05/2000] [Indexed: 11/30/2022]
Abstract
In this article, I have thoroughly reviewed the status of development of new antimycobacterial drugs, particularly fluoroquinolones (ciprofloxacin, ofloxacin, sparfloxacin, levofloxacin, gatifloxacin, sitafloxacin, and moxifloxacin), new macrolides (clarithromycin, azithromycin, and roxithromycin), rifamycin derivatives (rifabutin, rifapentine, and KRM-1648), and others. The main purpose of this review was to describe the in-vitro and in-vivo activities of these drugs against Mycobacterium tuberculosis and Mycobacterium avium complex. In addition, the therapeutic efficacy of these drugs in the clinical treatment of mycobacterial infections has also been briefly mentioned.
Collapse
Affiliation(s)
- H Tomioka
- Department of Microbiology and Immunology, Shimane Medical University, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
7
|
Heifets LB. Clarithromycin against Mycobacterium avium complex infections. TUBERCLE AND LUNG DISEASE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL UNION AGAINST TUBERCULOSIS AND LUNG DISEASE 1996; 77:19-26. [PMID: 8733409 DOI: 10.1016/s0962-8479(96)90070-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The turning point in antimicrobial therapy of Mycobacterium avium infections came with the development of two new macrolides, clarithromycin and azithromycin. Controlled clinical trials, the first ever conducted with any agent among patients with M. avium infection, indicated the high efficiency of clarithromycin, in either acquired immune deficiency syndrome (AIDS) patients having a disseminated infection or non-AIDS patients with localized pulmonary disease. Monotherapy with clarithromycin resulted in elimination of bacteremia in almost all patients with disseminated infection, which is inevitably followed by a relapse of bacteremia in patients who survived long enough to reach this event. The strains susceptible to clarithromycin isolated before therapy contained 10(-8) or 10(-9) resistant mutants, and the relapses of bacteremia were caused by multiplication of these pre-existing mutants. Clarithromycin-resistance was associated with a mutation in the 23S rRNA gene. Cross-resistance between clarithromycin and azithromycin was confirmed with laboratory mutants and clinical isolates. At least two methods for determining the susceptibility of the M. avium isolates to clarithromycin are available: one is minimum inhibitory concentration (MIC) determination on Mueller-Hinton agar (pH 7.4) supplemented with 10% Oleic acid-albumin-dextrose catalase, the other is MIC determination in 7H12 broth, also at pH 7.4. The breakpoints for 'susceptible' for these methods are < or = 8.0 micrograms/ml and < or = 2.0 micrograms/ml, respectively. The breakpoints for 'resistant' are > 128 micrograms/ml for the agar method and > 32.0 micrograms/ml for the broth method. The predictability value of MIC determination was confirmed by comparing the test results with the patients' clinical and bacteriological response to therapy. The remaining major problem in the therapy of the M. avium infections is a selection of companion drugs to be used in combination with clarithromycin (or azithromycin) to prevent the emergence of the macrolide-resistance. A number of clinical trials are now in progress to find a solution to this problem.
Collapse
Affiliation(s)
- L B Heifets
- Department of Microbiology, University of Colorado Health Sciences Center, USA
| |
Collapse
|
8
|
Ellis LC, Benson CA, Koenig GI, Trenholme GM. Postantibiotic effect of clarithromycin alone and combined with ethambutol against Mycobacterium avium complex. Antimicrob Agents Chemother 1995; 39:2803-6. [PMID: 8593025 PMCID: PMC163035 DOI: 10.1128/aac.39.12.2803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The postantibiotic effect (PAE) of clarithromycin alone and in combination with ethambutol was determined for two clinical blood isolates of Mycobacterium avium complex. An average PAE, ranging from 5.5 to 18.0 h, was noted for each isolate at each clarithromycin concentration except when isolate B was exposed to clarithromycin at the MIC. The addition of ethambutol did not enhance the PAE observed with clarithromycin alone. The clinical implications of the PAE of clarithromycin for M. avium complex remain to be determined.
Collapse
Affiliation(s)
- L C Ellis
- Department of Medicine, Rush Medical College, Rush-Presbyterian-St Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
9
|
Mor N, Vanderkolk J, Mezo N, Heifets L. Effects of clarithromycin and rifabutin alone and in combination on intracellular and extracellular replication of Mycobacterium avium. Antimicrob Agents Chemother 1994; 38:2738-42. [PMID: 7695255 PMCID: PMC188278 DOI: 10.1128/aac.38.12.2738] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The combined effect of clarithromycin and rifabutin against Mycobacterium avium multiplying either within human monocyte-derived macrophages or extracellularly in a liquid medium was additive: both MICs and MBCs were twofold lower for the combination than they were for each drug alone. Prolonged exposure for 4 weeks of M. avium-infected macrophages to combined concentrations that were only twofold greater than the MICs resulted in a 100-fold decrease in the number of viable bacteria, while in the drug-free controls a 100-fold or greater increase in comparison with the initial viable counts took place. Comparison of this effect with the results of the prolonged exposure to each drug alone suggested that under these experimental conditions rifabutin enhanced the antimicrobial activity of clarithromycin against intracellular bacteria. At the same time, inhibition of intracellular growth by a 2-h pulsed exposure of the infected macrophages to the combination of the two drugs was not different from the effect induced by clarithromycin alone. In conclusion, clarithromycin played the major role in the antimicrobial activity of the tested combination, while rifabutin may have enhanced this effect during a prolonged exposure of the intracellular bacteria to these two agents.
Collapse
Affiliation(s)
- N Mor
- National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206
| | | | | | | |
Collapse
|
10
|
In vitro and in vivo activities of clarithromycin against the Mycobacterium avium complex. Int J Antimicrob Agents 1994; 4:175-81. [DOI: 10.1016/0924-8579(94)90006-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/1994] [Indexed: 10/27/2022]
|
11
|
Treatment and developmental therapeutics of Mycobacterium avium complex (MAC) infections. Int J Antimicrob Agents 1994; 4:247-70. [DOI: 10.1016/0924-8579(94)90025-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/1993] [Indexed: 11/24/2022]
|
12
|
Barradell LB, Plosker GL, McTavish D. Clarithromycin. A review of its pharmacological properties and therapeutic use in Mycobacterium avium-intracellulare complex infection in patients with acquired immune deficiency syndrome. Drugs 1993; 46:289-312. [PMID: 7691518 DOI: 10.2165/00003495-199346020-00007] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Results from noncomparative and placebo-controlled studies demonstrate the efficacy of clarithromycin in the treatment of disseminated Mycobacterium avium-intracellulare complex (MAC) infection in patients with acquired immune deficiency syndrome (AIDS). Whether given alone or in combination with other antimycobacterial treatments, doses of 500 to 2000mg (typically 1000mg) administered twice daily are effective in controlling bacteraemia in these patients. Clarithromycin has also been shown to improve clinical symptoms of infection and may improve quality of life in AIDS patients with MAC infection. Clarithromycin is generally well tolerated when used in the doses typically required for the treatment of MAC infection (1000 or 2000 mg/day). Gastrointestinal disturbances are the most commonly occurring adverse events and occur most frequently at dosages of 4000 mg/day. Thus, clarithromycin, as monotherapy or in combination with other antimycobacterial agents, is well tolerated and effectively eradicates MAC from the blood in the short term in patients with AIDS: however, short term monotherapy may lead to bacterial resistance, underscoring the importance of long term treatment with a combination of antimycobacterial agents. While the optimal combination regimen to prevent the development of resistance to antimycobacterial agents. While the optimal combination regimen to prevent the development of resistance to antimycobacterial agents by MAC remains to be determined, clarithromycin will almost certainly be a valuable agent in any such combination.
Collapse
|